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Foreword

The physics community has recently commemorated the centenary of the birth of general
relativity, developed by Albert Einstein between 1907 and 1915. This magnificent theory,
which unites relativity and gravity within the framework of non-Euclidean geometry, has long
been viewed as a unique feature in the physics landscape. Its lofty height has intimidated
the majority of physicists, and few have ventured to climb its mathematically steep slopes,
especially while the connection of this theory to observable reality remained tenuous.

That era has vanished, because general relativity has now come to play an essential role
in the remarkable recent advances in astrophysics and cosmology. Astrophysics has revealed
the existence of ‘compact’ stars like neutron stars, whose matter is so concentrated that
the deformation of time and space predicted by general relativity becomes tangible. And
then there are the celebrated black holes, which have outgrown the bounds of mathematical
abstraction and science fiction to become part of the daily life of astrophysicists. A definitive
proof of their existence has recently been provided by the detection of the gravitational waves
emitted when they merge, thus opening a new window in astronomy.

On the cosmological side, general relativity lies at the heart of our current understand-
ing of the expansion of the universe. Cosmological observations have recently revealed the
presence of a mysterious ‘dark energy’ which may correspond to the cosmological constant
initially introduced by Einstein to obtain a static universe, and then quickly abandoned,
before its current revival to explain the observational data. Owing to the enormous progress
which has been made in measurement accuracy, relativity has even become a part of the
daily life of an ordinary person: the accurate functioning of the GPS actually requires the
inclusion of effects due to special and general relativity.

All these fascinating aspects of relativity, and others, are presented and explained rigor-
ously and accurately in this book by Nathalie Deruelle and Jean-Philippe Uzan. The theory
of general relativity constitutes the climax of this impressive work, which assembles and
summarizes, in a coherent and extremely deep manner, the various relativistic aspects of
‘classical’ (that is, non-quantum) theoretical physics, starting from the description of New-
tonian mechanics and gravitation.

One of the strengths of this book is its revelation of the continued relevance of a number of
principles and mathematical tools beyond the conceptual rupture which relativity represents
compared to the theories of classical physics. For example, the authors study Newtonian
physics in an accelerated reference frame and arbitrary coordinates using the same formalism
as that used to describe spacetime in general relativity. The echoes back and forth between the
chapters on electromagnetic waves and gravitational waves emphasize both the conceptual
differences and the similarities in the treatment of these two concepts. The simultaneous
embrace of Newtonian gravity, special relativity, and general relativity allows the reader to
be led gradually from familiar, gentle terrain to the highest peaks.

Many of the sections in this book are enriched by research topics, and present viewpoints
and results which the reader will find only rarely, if at all, in other textbooks on these
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viii Foreword

subjects. This book therefore constitutes a remarkable reference work, from which the reader
can extract a great variety of information as well as many calculation techniques, and it can
serve as a point of entry to research articles. It is written equally for the student passionate
about theoretical physics and for the researcher wishing to acquire a deeper understanding
of relativity, as well as for the curious reader with a scientific background who wishes to
independently explore various facets of relativity under the tutelage of experienced guides.

I have had the privilege of sharing my professional life with the two authors of this
book, and of being a witness to their insatiable curiosity and passion for transmitting their
knowledge to others. I have also had the great fortune to share with Nathalie Deruelle
many years of teaching general relativity, and it has been a pleasure to rediscover in this
book various paths which she explored during our pedagogical adventure. This book attests
admirably to a passionate encounter between a demanding but fascinating scientific domain
and two scientists who are simultaneously participants in the continuing development of the
field and transmitters of their knowledge to future generations.

David Langlois
June 2018
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Part I

Kinematics

I do not define Time, Space, Place and Motion, as being well known to all. Only I must
observe, that the vulgar conceive those quantities under no other notions but from the relation
they bear to sensible objects. And thence arise certain prejudices, for the removing of which,
it will be convenient to distinguish them into Absolute and Relative, True and Apparent,
Mathematical and Common.

Absolute Space, in its own nature, without regard to any thing external, remains always
similar and immovable.

Absolute, True, and Mathematical Time, of itself, and from its own nature flows equably
without regard to any thing external, and by another name is called Duration. . .

Sir Isaac Newton, Philosophiæ Naturalis Principia Mathematica, London, 1687; English
translation by Andrew Motte, The Mathematical Principles of Natural Philosophy,

London, 1729
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1

Cartesian coordinates

In this first chapter we give an elementary and brief presentation of Euclidean geometry, which
provides the mathematical framework in which the laws of Newtonian physics are formulated.

1.1 Absolute space and time

In Newtonian physics, ‘space’ and ‘relative, apparent, and common’ place are represented
by a mathematical ensemble of points, the ‘absolute’ space E3, which is postulated to be
Euclidean.

Each point of this space is thus characterized by three real numbers, its coordinates,
which define its position. In addition, there exist systems of coordinates called Cartesian
coordinates such that the distance r12 between two points with coordinates (X1, Y1, Z1) and
(X2, Y2, Z2) is given by the Pythagorean theorem

r12 =
√

(X2 −X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2 =

√√√√
i=3∑

i=1

(Xi
2 −Xi

1)
2 . (1.1)

It vanishes only if the two points coincide.
The length element, that is, the square of the distance dl (≥ 0) between two infinitesimally

separated points with Cartesian coordinates (see Fig. 1.1) Xi and Xi+dXi, which is used to
measure lengths of curves and to display the metric properties of figures, is then written as

dl2 = dX2 + dY 2 + dZ2 =
∑

i,j

δij dX
idXj ≡ δij dX

idXj . (1.2)

X

Y

O

Fig. 1.1 Cartesian coordinates and frame in two dimensions.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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12 Book 1. Part I: Kinematics

The second equality defines the Kronecker delta δij ; in this geometrical context its six
components (δij = 1 if i = j, δij = 0 otherwise) are referred to as the coefficients of the
Euclidean metric in Cartesian coordinates. The third equality defines the Einstein summation
convention, according to which repeated indices are summed over (they are then referred to as
dummy indices). The origin with coordinates (0, 0, 0) and the three axes (X,Y, Z) constitute
a Cartesian frame S.

As for the ‘apparent’ time, it is represented by a real number, the ‘absolute’ or universal
time t ∈ R.

Fig. 1.2 Absolute frame and motion.

It is therefore possible to represent Newtonian spacetime N4 as a ‘foliation’, that is, a
stack of copies of Euclidean space E3 ordered by increasing time t: N4 = E3×R. The ensemble
of copies of a point in E3 then becomes a ‘fiber’ of N4 representing a point at absolute rest.
In this kinematical context the ensemble of Cartesian frames indexed by t is referred to as
an absolute frame.1 (See Fig. 1.2.)

The motion of a physical object without extent or internal structure, called a point par-
ticle, is represented by a curve in spacetime called a world line or, equivalently, a trajectory,
that is, a curve in E3: t �→ P (t) ∈ E3, where the parameter t is the absolute time.

1.2 The absolute reference frame

The absolute time t is made concrete by clocks and watches, that is, by repetitive phenom-
ena numbered in increasing order. A good clock is ultimately a device which measures, no
matter what sort of motion it undergoes, time intervals, expressed for example in seconds,
in accordance with the predictions of the laws of dynamics written as a function of absolute
time.

A Cartesian frame of absolute space is materialized in ‘relative, apparent, and common’
space by a reference frame. Specifically, this reference frame is a solid trihedron, that is,
an ensemble of physical objects whose relative distances are constant in time and for which
an orientation of the axes has been chosen (by using the right-hand rule, for example).
It is constructed by means of instruments which qualify as rigid (i.e., they are also solids)

1We note that t belongs to the real line R and not to the circle S1: in Newtonian mechanics time has no
beginning and no end.
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throughout repeated use such as rulers, compasses, and so on, using the Pythagorean theorem
and its consequences. Finally, a length standard, for example, the meter, is chosen. This
reference frame, which establishes a grid on physical space, is ‘good’ if all the Euclidean
properties of figures are verified to within the measurement accuracy.2

The absolute reference frame which materializes the absolute frame of Newtonian space-
time is a reference frame which must be at rest in order for it to be possible to identify
the fibers of N4 with physical objects at rest. For Newton, the absolute reference frame was
formed by the solar system and the stars far enough away to appear fixed, which he postu-
lated to be at absolute rest. We note that since the universe appears to be essentially empty,
the points of E3 are for the most part only ‘virtually materialized’, a contradiction in terms
which shocked Descartes and Kant. Beginning in the seventeenth century, this difficulty was
circumvented by introducing the concept of the aether, a nebulous medium responsible for
materializing E3.

If space and time do actually embody the structure attributed to them by Newton, we
can predict an elementary but important result. Let us imagine two travelers A and B who
simultaneously depart from a certain place and return to the same place after their separate
peregrinations. The durations of the trips measured by A and B must be the same, i.e.,
their watches, which are synchronized when they start out, must indicate the same time at
arrival.3

1.3 Change of Cartesian coordinates

We postulate that if the labeling of the points of E3 is changed, the distance between
two points remains unchanged. Here, we restrict ourselves to transformations Xi �→ X ′i

which preserve the form of the length element, that is, transformations such that dl2 ≡
δij dX

idXj = δij dX
′idX ′j . Then, by definition, the new coordinates X ′i are also Cartesian,

and the transformations are given by

X ′i = R i
j (X

j − dj) with R i
k R j

l δij = δkl . (1.3)

We impose the condition detR = +1, where detR is the determinant of the rotation ma-
trix R i

j (i numbers the lines and j the columns); the transformation therefore preserves
the orientation of the axes. Such transformations form the (proper) group of transforma-
tions of Cartesian frames, a group with n(n+ 1)/2 parameters, n of them translational and
n(n− 1)/2 rotational, where n is the dimension of the space.4

2If measurements give results which systematically contradict the Euclidean predictions (e.g., if the sum
of the angles of a triangle is not equal to π), it can be deduced that the representation of the actual space (the
surface of the Earth, for example) by a Euclidean plane is inadequate. For a masterful and concise exposition
of the interplay between phenomena and their mathematical representation see the letter of A. Einstein to
M. Solovine in, e.g., J. Eisenstaedt (2002).

3If in a single experiment this were not the case, it would most likely indicate that their watches are not
accurate. However, if a large number of carefully performed experiments gave a result systematically different
from the prediction, one would conclude, in agreement with Einstein, that the absolute spacetime of Newton
does not adequately represent the actual universe.

4Note that we always assume that the topology of the absolute space is trivial and that a global orientation
exists, thereby excluding spaces of the Möbius-strip type in two dimensions or the Klein-bottle type in three
dimensions.
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Y 

O 

Y ′ 

O ′

X′

X 

φ

Fig. 1.3 Change of Cartesian coordinates.

In two dimensions the rotation matrix R i
j is parametrized by an angle φ (see Fig. 1.3)

and we have

R X
X = cosφ, R X

Y = sinφ, R Y
X = − sinφ, and R Y

Y = cosφ . (1.4)

The Euler angles

In three dimensions the three parameters characterizing a rotation can be taken to be the
Euler angles. If we use ON to denote the intersection of the X ′OY ′ and XOY planes, these
three angles are: the precession angle Φ, which is the angle ON makes with the X axis; the
proper rotation angle Ψ, which is the angle ON makes with the X ′ axis; and the nutation angle
Θ, which is the angle between the Z′ axis and the Z axis (see Fig. 1.4). The elements of the
rotation matrix R i

j are then given by

Ψ

Θ

Y ′
Z 

Φ
X′

X 

N

Y

Z ′

Fig. 1.4 The Euler angles.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R 1
1 = cosΦ cosΨ− sinΦ sinΨ cosΘ,

R 1
2 = sinΦ cosΨ + cosΦ sinΨ cosΘ,

R 1
3 = sinΨ sinΘ

R 2
1 = − cosΦ sinΨ− sinΦ cosΨ cosΘ,

R 2
2 = cosΦ cosΨ cosΘ− sinΦ sinΨ,

R 2
3 = cosΨ sinΘ

R 3
1 = sinΦ sinΘ, R 3

2 = − cosΦ sinΘ,

R 3
3 = cosΘ.

(1.5)

The element Ri
j of the inverse matrix (such that Ri

kRk
j = Rk

jRi
k = δij) is equal to

5 Rj
i. We

therefore have R1
1 = cosΦ cosΨ− sinΦ sinΨ cosΘ, R1

2 = − cosΦ sinΨ− sinΦ cosΨ cosΘ, and
so on.

Since the form of the length element is invariant under translations and rotations, the
choice of the origin and the direction of the axes of the absolute reference frame cannot be of
any importance. This is one way of phrasing the Copernican Principle, the (active) version
of which can be stated as follows. Euclidean geometry is universal; a triangular solid, for
example, must possess the same geometrical properties no matter where it is located. The
universe does not deform it; it is a neutral receptacle of matter that we call homogeneous
and isotropic.

We recall that this reference frame must, on the other hand, be at rest. We therefore
determine it by trial and error, using the fact that, to within the measurement accuracy,
the motions of physical objects must obey the laws of dynamics as they are written in
the absolute frame. For low-precision experiments, the ‘laboratory walls’ can prove to be
good enough for materializing the absolute Cartesian frame. However, in the case of more
sophisticated experiments it is necessary to use a frame attached to the center of the Earth,
and so on, see Section 2.5.

1.4 The group of rigid displacements

In order to simplify the description of certain phenomena or to study them in a moving
reference frame, it is sometimes useful to go from the absolute Cartesian frame S of the
spacetime N4 = E3 ×R to a moving frame S ′, that is, to a family of frames of E3 indexed by
t, the origins and directions of the axes of which vary from leaf to leaf, i.e., in each section E3
of N4. This operation differs from the passage from one Cartesian frame to another because
the labeling of the points (which are at rest in S) depends on the time in S ′. However, we
shall continue to postulate that the distance between two points is the same in S and in S ′,
that is, that a rigid body remains rigid, no matter what motion it undergoes.

We shall consider only the set of transformations Xi → X ′i which preserve the form
of the length element, with the three axes remaining orthonormal (and having the same
orientation) throughout the motion of the frame. This is defined by

5In fact, Ri
jR

j
k = δik implies that Ri

j = δikδjlR l
k (which is a rather heavy-handed way of stating that

the element Ri
j is equal to R j

i ), because Ri
j is a rotation matrix (i.e., a matrix satisfying R i

k R j
l δij = δkl).
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X ′i = R i
j (t)
(
Xj − dj(t)

)
, with R i

k (t)R j
l (t) δij = δkl and detR = +1, (1.6)

where the components in S ′ of the rotation matrix R i
j (t) of the three axes and of the

translation of the origin di(t) depend on the time (the three Euler angles defined in Section 1.3
are therefore now functions of the time).

Fig. 1.5 Time-dependent change of frame.

This set of transformations forms the group of rigid displacements. They describe the time
evolution of the position and orientation of a reference solid trihedron undergoing arbitrary
motion relative to the absolute reference frame.

The subgroup of general translations

X ′i = R i
j

(
Xj − dj(t)

)
, (1.7)

where R i
j is independent of time and dj(t) is arbitrary, is called the Milne group.

The subgroup of translations which are linear in time, called the Galilean group, will play
a central role in what follows. The passage from the absolute Cartesian frame S to a frame
undergoing uniform rectilinear motion relative to S, called a Galilean or inertial frame, is
carried out by means of a Galilean transformation

X ′i = R i
j (X

j −Xj
0 − V j

0 t) , (1.8)

where R i
j , X

i
0, and V i

0 are constants.

1.5 Kinematics of a point particle (I)

The motion of a point particle P is represented by a curved trajectory of equation
t ∈ R �→ P (t) ∈ E3, where t is the absolute time. If the Cartesian coordinates of the points
P (t) in the absolute frame S are given by the three functions Xi(t), then their three time
derivatives

V i(t) ≡ dXi

dt
≡ Ẋi , (1.9)
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where the dot denotes differentiation with respect to time, are the components of the velocity
of P in S at the instant t. Similarly, ai(t) ≡ dV i/dt = d2Xi/dt2 ≡ Ẍi are the components
of its acceleration.

Under a time-independent change of Cartesian frame (see Fig. 1.5), the trajectory equa-
tions become X ′i = X ′i(t) = R i

j (Xj(t) − dj), so that the components of the velocity and
acceleration in S ′ then become

V ′i ≡ dX ′i

dt
= R i

j V
j , a′i ≡ dV ′i

dt
= R i

j a
j . (1.10)

It is just as simple to find the law governing the transformation of the velocity and accelera-
tion in going to a moving frame. The Cartesian coordinates of P in S ′ are given by the three
functions X ′i(t) = R i

j (t)
(
Xj(t)− dj(t)

)
, so that, by the Leibniz rule,

⎧
⎪⎪⎨

⎪⎪⎩

V ′i ≡ dX ′i

dt
= R i

j V j + Ṙ i
j X

j − (R i
j d

j)·

a′i ≡ dV ′i

dt
= R i

j aj + 2 Ṙ i
j V j + R̈ i

j Xj − (R i
j d

j)·· .

(1.11)

We see that the V ′i(t) are not equal to the R i
j (t)V

j(t); the additional terms arise from the
motion of the frame and not from the motion of the point particle. The same occurs for the
acceleration, unless the transformation is Galilean.

Instantaneous rotation of a frame

The rotation matrix R j
k and the inverse matrix Ri

l satisfy Ri
kR k

j = Rk
jR i

k = δij . Let us

introduce functions of time ω′
ij such that Ṙk

i R j
k =−Rk

i Ṙ j
k ≡ω′ j

i ≡δjkω′
ik. Using R i

k R j
l δij =

δkl, it is easily shown that ω′
ij = −ω′

ji. Since the space is three-dimensional, the three independent

components of ω′
ij can be replaced by three other functions of time ω′k using ω′

ij ≡ eijk ω
′k,

where eijk is the Levi-Civita symbol (see its definition and properties below). We therefore have

Ṙ k
l = −ekmi ω

′m R i
l and Ṙl

i = ekmi ω
′m Rl

k.
In (1.11) for the V ′i let us replace the old coordinates Xj by the new ones Xj = Rj

k X
′k+dj .

Using the above results, we can rewrite the V ′i in the form

V ′i = R i
j (V

j − ḋj)− eijk ω
′jX ′k. (1.12)

Taking the derivative with respect to time, we likewise obtain

a′i = R i
j (a

j − d̈j)− 2 eijk ω
′j V ′k − eijk ω̇

′jX ′k + eijk ω
′j eklm X ′l ω′m, (1.13)

where the last term can be written as X ′iΩ2 − ω′i(Ω.X) using the notation Ω2 ≡ δijω
′iω′j

and (Ω.X) ≡ δijω
′iX ′j . We note that it can also be written as −∂Ucentr/∂X

′i with Ucentr =

− 1
2
eijke

k
lmω′jω′mX ′lX ′i.

If the components of the matrix R j
k are written as functions of the Euler angles (see Sec-

tion 1.3), the three functions ω′k become

ω′1 = Φ̇ sinΨ sinΘ + Θ̇ cosΨ, ω′2 = Φ̇ cosΨ sinΘ− Θ̇ sinΨ, ω′3 = Φ̇ cosΘ + Ψ̇. (1.14)

This describes the instantaneous rotation of the moving frame.
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The Levi-Civita symbol

The Levi-Civita symbol (in n dimensions) ei1...in is completely antisymmetric (that is,
ei1...ij ...ik...in = −ei1...ik...ij ...in ∀ j, k ) and is such that e12...n = +1. In three dimensions it
can be shown that

eijkelmn = δilδjmδkn + δimδjnδkl + δinδjlδkm − δilδjnδkm − δimδjlδkn − δinδjmδkl, (1.15)

which implies that eijke
k
mn = δimδjn − δinδjm, eijke

jk
l = 2δil, and eijke

ijk = 6.

If Ai
l is a 3× 3 matrix, then eijkA

i
lA

j
mAk

p = detA elmp, where detA is the determinant of Ai
l.

Therefore, detA = eijkA
i
1A

j
2A

k
3 .

Rotation about an axis

Show that in going from an absolute frame to a frame rotating with angular velocity Ω(t) ≡
dφ/dt (according to the right-hand rule) about the Z axis, the components (d2X/dt2 ≡ Ẍ,

d2Y/dt2 ≡ Ÿ ) of the acceleration of a point particle become

{
Ẍ ′ = +2ΩẎ ′ +Ω2X ′ + Ω̇Y ′ + cosφẌ + sinφŸ

Ÿ ′ = −2ΩẊ ′ +Ω2Y ′ − Ω̇X ′ − sinφẌ + cosφŸ .
(1.16)

1.6 Cartesian vectors and vector fields

The choice of a particular Cartesian frame should be of no kinematical importance as long
as the frame is at rest. It is therefore natural to consider the components of the velocity
of a point particle P (t) in any frame at rest, that is, the set of V ′i = R i

j V
j parametrized

by time-independent rotation matrices R i
j , as an equivalence class, that is, a unique object

corresponding to the velocity of P (t), denoted v, the functions V i(t) and V ′i(t) being just
their avatars in the frames S and S ′. Likewise, ai and a′i = R i

j a
j are the avatars of the

acceleration a of P (t).
In addition to the velocity and acceleration of point particles, Newtonian mechanics will

introduce a number of quantities (for example, forces) of the same type, that is, quantities
such that if T i are their components in a Cartesian coordinate system S, their components
in another Cartesian system at rest S ′ are given by

T ′i = R i
j T

j . (1.17)

The equivalence class of the T ′i is the (Cartesian) vector T .
Since the new coordinates X ′i are related to the old ones as X ′i = R i

j (X
j − dj), an

example of a vector is the separation vector la of two points Pa and P , which has the
components lia = Xi −Xi

a in S and l′ia ≡ X ′i −X ′i
a = R i

j lja in S ′.
Therefore, the Euclidean length element gives the distance between two points Pa and

P (see Section 1.1), as well as the norm l2 (or the square of the length |l| ≡
√
l2) of the

separation vector la: l
2 ≡ δij l

i
al

j
a = δij (X

i −Xi
a)(X

j −Xj
a). By extension, the norm T 2 of

any vector T (and its length or modulus |T | ≡
√
T 2) can be defined, as well as the scalar
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product (T.U) of two vectors, in the following way: if T i and U j are their components in S,
then

T 2 ≡ |T |2 ≡ δijT
jT i = TiT

i, (T.U) ≡ δijT
jU i = TiU

i, with Ti ≡ δijT
j (1.18)

(the three Ti are numerically equal to the three T i). The norm of a vector or the scalar product
of two vectors has the same numerical value in S and S ′ because δijT

jU i = δijT
′jU ′i.

Up to now we have defined a vector as a set of three numbers (e.g., la or T with components
lia or T i) or three functions of time [e.g., the velocity v with components V i(t)]. It will turn
out to be particularly useful to introduce, à la Faraday, vector fields, that is, sets of three
functions of the coordinates which transform as (1.17) under a change of Cartesian frame at
rest. From this perspective the velocity (or acceleration) becomes a vector field evaluated on
the trajectory: V i(t) = V i(Xj(t)). Likewise, a scalar field Φ(Xi) is a function of coordinates
which is invariant under a change of frame: Φ′(X ′i) = Φ(Xi). Finally, the separation vector
lia = Xi −Xi

a can be viewed as a vector field, a function of the Xi.
We recall that, as we have seen in Section 1.5, the velocity and acceleration do

not transform as vectors in going to a moving frame. On the other hand, the separa-
tion vector itself transforms according to (1.17) in the larger group of rigid displacements:
X ′i = R i

j (t)(X
j − dj(t)).

In the next chapter we shall define the mathematical spaces to which the geometrical
quantities we have introduced—scalars, vectors, and the metric—belong.
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2

Vector geometry

The goal of this chapter is to go from the concept of a vector as an object whose components
transform as T i → R i

j T
j under a change of frame to the ‘intrinsic’ concept of a vector, T . These

concepts are also generalized to ‘tensors’.

2.1 Tensor spaces

We recall that a vector space E is an ensemble of objects v or w called vectors such that
(αv + βw), where α and β are real numbers, is also a vector, and where vector addition and
multiplication by a real number possess the usual properties of commutativity, associativity,
and the existence of an identity element and an inverse. By defining a basis {ei} and the
dimension n of E, any vector v of E can be uniquely decomposed as v = vi ei, where the n
real numbers vi, i = 1, 2, ...n, are the components of v in the basis {ei} (we use the Einstein
summation convention).1

We also recall that the dual space of E, denoted E∗, is the ensemble of linear maps, or
forms, which associate a real number with a vector. The dual space E∗ can be constructed
as follows. To each basis {ei} of E we associate the basis {εj} of E∗, called the dual basis
(or conjugate basis), using the formula εj(ei) = δji , where δji is the Kronecker delta. Then,
any form λ ∈ E∗ can be decomposed uniquely as λ = λj ε

j , where the λj are its components
or coefficients in the basis {εj}.

Finally, we recall that the dual of the dual is isomorphic to E, because the action of the
form λ = λiε

i on the vector v = viej , namely, λ(v) = λiv
i, can also be viewed as the action

of v on λ. We can then write λ(v) ≡ v(λ). Therefore, vectors are also operators acting on
forms to give numbers.

Bilinear forms a associate a real number with a pair of vectors. Their ensemble is denoted
as L2(E × E,R). They can be defined as follows. For v = viei ∈ E and w = wjej ∈ E, by
linearity we have a(v, w) = vi wj a(ei, ej); therefore, knowledge of a is equivalent to knowledge
of the n2 real numbers aij ≡ a(ei, ej), the components (or coefficients) of a in the basis {ei}.

The tensor product notation ⊗ gives rise to an ‘automatic’ definition of multilinear forms.
If we define εi ⊗ εj as a bilinear form such that (εi ⊗ εj)(v, w) = εi(v) εj(w) = vi wj [with
(εi ⊗ εj)(ek, el) = δikδ

j
l ], we can then write a = aij ε

i ⊗ εj . The εi ⊗ εj form a basis of
L2(E × E,R) which can be denoted as E∗ ⊗ E∗.

Analogously, an element b of L2(E × E∗, R) ≡ E∗ ⊗ E associates a real number with a
pair consisting of a vector and a form and is written as b = b j

i εi ⊗ ej , and so on.

1Occasionally, we will use the common notation of writing vectors as a symbol with an arrow above, in

which case the basis vectors will be denoted as (�i,�j,�k). A more detailed exposition of tensor calculus can be
found, for example, in A. Lichnerowicz (1950).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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Therefore, rather than dealing with bi- or multilinear forms, it will be more economical
to use tensors. For example, T = T k

ij εi ⊗ εj ⊗ ek is, by definition, a tensor which is 2-fold

covariant and singly contravariant. A basis of the ensemble of such tensors is εi ⊗ εj ⊗ ek,
constructed as the tensor product of the basis ei of E and the conjugate basis εj of E∗.
Therefore, vectors become singly contravariant tensors and forms become singly covariant
tensors. In general, we can write

T = T
i1...ip
j1...jq

ei1 ⊗ ei2 ...⊗ eip ⊗ εj1 ⊗ ... ⊗ εjq . (2.1)

A tensor which is p-fold contravariant and q-fold covariant is said to be of the type, or
valence,2

(
p
q

)
. Tensors of the type

(
p
q

)
form a vector space. Products of the components of

two tensors T and T ′ of the types
(
p
q

)
and
(
p′

q′

)
are the components of the tensor T ⊗ T ′ of

type
(
p+p′

q+q′

)
, the tensor product of T and T ′. The spaces of multilinear forms are thus unified

and become the elements of a tensor algebra of infinite dimension.
Contraction transforms a tensor of type

(
p
q

)
into a tensor of type

(
p−1
q−1

)
by summation

over one covariant index and one contravariant index. For example, the quantities T ia
kam

obtained by summing the components of a tensor of type
(
2
3

)
over the dummy index a are

the components of a tensor of type
(
1
2

)
(and ea ⊗ εa = 1). The trace of a tensor of type

(
p
p

)

is contraction on all its indices: T = T ijk...
ijk... .

A tensor T ijk
l , for example, is symmetric in its contravariant indices i and j if T ijk

l = T jik
l

and antisymmetric in them if T ijk
l = −T jik

l . An (anti)symmetric tensor is (anti)symmetric
in all its indices. An antisymmetric tensor of type

(
0
p

)
is also referred to as a p-form.

2.2 Affine and Euclidean planes

An affine space E of dimension n is an ensemble of points where each bipoint, i.e., each pair
of points ordered as pa and p and denoted as (pa, p), is identified with a vector of a vector
space E of the same dimension, denoted pap and called the separation vector. The bipoints
must satisfy the Chasles relation: for any point O, pap = paO + Op, and if p is a point of E
and F is a vector of E, then there exists one and only one point q such that pq = F . This
set of a point and a vector is called a bound vector. (‘Unbound’ vectors, i.e., the elements of
E, are therefore referred to as free vectors.)

An affine frame of E is the ensemble of a point O as the origin and a basis ei of E,
that is, a set of bound vectors S = (O, {ei}). Therefore, the vector Op associated with
the bipoint (O, p) can be decomposed as Op = Xiei, where the Xi are simultaneously the
components of Op in the basis {ei} and the coordinates of p in the frame S. The vector
Op ≡ R is called the radius vector or the position vector of the point p. The separation
vector pap = Op−Opa = R−Ra ≡ la can be decomposed as la = (Xi −Xi

a)ei.
Each bipoint is identified with a single vector but, conversely, a ‘free’ vector F corresponds

to an entire equivalence class of bipoints called equipollents (p, q), where p is any point and
pq = F . Two equipollent bipoints (p1, q1) and (p2, q2) form a parallelogram. The operation
which associates (p1, q1) with (p2, q2) is called parallel transport.

2A way of making the valence
(p
q

)
of a tensor manifest is to write T

J1...Jp

I1...Iq
(taking care not to confuse this

with the components T
j1...jp
i1...iq

of the tensor in some basis).
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F(p)

q 

O

p 

Fpar (p)
F(q)

e1

e2 

Fig. 2.1 Parallel transport.

It is this identification of bound vectors as bipoints which permits the well known graph-
ical representation of a vector field F (p) [also denoted as F (Op), F (R), or F (Xi)] as an
oriented segment attached to the point where it is evaluated. And it is the equipollence re-
lation which allows the parallel transport of the vector F (p) to another point q where it will
have the same components as at p; see Fig. 2.1.

A Euclidean space is an affine space equipped with a Euclidean metric, that is, with a
bilinear symmetric form (or 2-fold covariant tensor)

e = δijε
i ⊗ εj , (2.2)

where δij is the Kronecker delta. The action of e on the basis vectors ei of E then is e(ek, el) =
e(el, ek) = δkl. Therefore, the basis {ei} is orthonormal, the frame S = (O, {ei}) is Cartesian,
and the coordinates Xi of p in the frame S are its Cartesian coordinates. The signature of
the Euclidean metric, namely, the diagonal elements of the matrix δij , is (+1,+1, ...), and
its sign is the product of these elements, that is, +1. The metric defines the norm of a
vector v2 ≡ e(v, v), its length or modulus |v| ≡

√
v2, as well as the distance between two

points, which is equal to the length of their separation vector. Finally, it defines a bijective
correspondence between vectors and forms: if a vector v has components vi, the associated
form has the components δijv

j (numerically equal to the vi).
Let us relate the length element dl2 defined in Section 1.1 to the metric e. Let p and q be

two infinitesimally close points of the absolute space E3 with coordinates Xi and (Xi+ dXi)
in the absolute Cartesian frame S. We denote the vector of the associated vector space as
dp ≡ pq = dXiei, and so dl2 is the result of the action of the metric e on the vector dp:

e(dp, dp) = dXi dXje(ei, ej) = dXi dXjδij ≡ dl2. (2.3)

More generally, the action of e on two vectors v and w defines their scalar product: (v.w) ≡
e(v, w).
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2.3 Change of basis and frame

A vector v is defined independently of the selected basis ei or e
′
i: v=viei=v′je′j . Therefore,

if e′j = Ri
j ei, we will have vi = Ri

j v
′j and v′j = R j

i vi, where R j
i is the inverse of the

matrix Ri
j (i.e., Rk

i R
j
k = Rj

k R k
i = δji ).

A change of basis in E induces a change of basis in the dual space E∗: εj → ε′j = R j
i εi.

The basis {ε′j} remains the conjugate of the basis {e′j}: ε′j(e′i) = δji . In the basis {ε′j} a form

λ can be decomposed as λ = λiε
i = λ′

jε
′j with λi = R j

i λ′
j and λ′

j = Ri
jλi.

A bilinear form transforms in the same way. Writing a = aijε
i ⊗ εj with aij ≡ a(ei, ej)

in the basis {ei} and its associated basis {εi}, then in the bases {e′j}, {ε′j} we will have

a′kl ≡ a(e′k, e
′
k) = Ri

kR
j
laij . By extension we obtain the transformation law for tensor

components under a change of basis:

T
′i1...ip
j1...jq

= R i1
k1

...R ip
kp

Rl1
j1
...Rlq

jq
T

k1...kp

l1...lq
. (2.4)

Therefore, the components of a vector, a form, and more generally a tensor are just their
avatars in a given basis, and their superior status is revealed in the transformation laws
obeyed by their components. In fact, the entire ‘component’ approach of geometry is based
on this, and the transformation law (2.4) can be viewed as a definition of a tensor; see
Section 1.6.

Let S = (O, {ei}) and S ′ = (O′, {e′j}) be two frames of an affine space E . The radius
vectors O′p ≡ R′ and Op ≡ R of the point p in S ′ and S are related as, setting OO′ ≡ d,

O′p = Op−OO′, that is, R′ = R− d , or

X ′ie′i = Xiei − diei, which implies that X ′i = R i
j (X

j − dj),
(2.5)

and we again obtain (1.3). We note that the radius vector of a point p is the same in the two
frames only if their origins coincide.

Until now we have not imposed any conditions on the matrix R j
i except that it be

invertible. Henceforth, we shall require that it be a proper rotation matrix, that is, that it
satisfy the relations

R k
i R l

j δkl = δij ⇐⇒ Rk
iRl

jδkl = δij , detR = 1 . (2.6)

[See (1.5) for the explicit expression of this rotation matrix and its inverse as a function of
the Euler angles in three-dimensional space.] This subset of changes of affine frame defines
the changes of Cartesian frame which preserve the value of the components of the Euclidean
metric. Indeed, the general expression (2.4) states that if the δij are the components of the
metric in S, then the components δ′ij in S ′ are

δ′ij = Rk
iRl

jδkl = δij (2.7)

owing to (2.6). The components of the Levi-Civita tensor (Section 1.5) are also invariant
under rotations in three dimensions:

e′ijk = R l
i R m

j R p
k elmp = detR eijk = eijk . (2.8)
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2.4 Kinematics of a point particle (II)

The motion of a point particle is represented by the curve P (t) in E3 or, equivalently, by its
radius vector OP (t), where t is the absolute time. The velocity vector of P in S is

v(t) =
dOP

dt
≡ dR

dt
≡ Ṙ . (2.9)

If OP is decomposed as OP = Xi(t) ei, then v = V i(t) ei, where the three functions of
time V i(t) ≡ dXi/dt ≡ Ẋi(t) are its components introduced in Section 1.5. Similarly, the
acceleration vector of P in S is a = ai(t)ei, where ai(t) ≡ Ẍi(t).

Basis vectors and derivative operators

Here we shall make a remark which will prove to be useful when we deal with non-Cartesian
coordinates. The velocity vector v that we have just defined is a ‘free’ vector belonging to the
vector space E3 which subtends E3. As such, it is not bound to the point P at which it is
evaluated. It is however possible to attach it to that point and to interpret it as the tangent to
the trajectory at P , in which case it becomes an element of a copy of E3 associated with P , the
tangent space of E3 at P , denoted E(P ), with the basis vectors ei(P ) (isomorphic to the ei, i.e.,
having the same components).

If we now identify the trajectory with the coordinate line X1 = t, X2 = const, X3 = const,
we will have V 1 = dX1/dt = 1, V 2 = V 3 = 0, that is, v = e1(P ). Therefore, the vector e1(P )
is a velocity, that is, a derivative operator. Let us be more precise and introduce the derivative
operator ∂

∂X1 . It acts at P on the coordinates Xi as ∂
∂X1 (X

i) = δi1, which are nothing but the

components of ei1(P ). More generally, since the operators ∂
∂Xj are in one-to-one correspondence

with the basis vectors ej(P ) of E(P ), we see the emergence of an identification of vectors with
derivative operators. This will be developed further in Chapter 4.

As we have seen in Section 1.6, the velocity and acceleration are vectors (or singly con-
travariant tensors) in time-independent changes of Cartesian frames X ′i = R i

j Xj − di.

Indeed, it is only if R i
j and di are constants that the components of the velocity and ac-

celeration transform as the components of a vector according to the formula already seen in
(1.10):

V ′i(t) ≡ dX ′i

dt
= R i

j V
j(t) , a′i(t) ≡ dV ′i

dt
= R i

j a
j(t) . (2.10)

We therefore can speak of a velocity vector v without specifying the affine frame in which it
is evaluated only if the basis vectors are at rest. The same is true for the acceleration vector
a (and its derivatives).

On the other hand, if the frame S ′ is moving relative to the absolute frame S, then the
velocity and acceleration of a trajectory P (t) are not represented by the same vectors in S
and S ′. Indeed, taking the time derivative of the vector equation X ′ie′i = Xiei − diei, we
obtain [see (2.5)] {

v′ = v − ḋ− Ω ∧R′

a′ = a− d̈− 2Ω ∧ v′ +Ω ∧ (R′ ∧ Ω)− Ω̇ ∧R′,
(2.11)

where ∧ denotes the vector product (see Section 2.6 below). Here R′ ≡ O′P = X ′i(t) e′i is
the radius vector of P (t) in S ′; v′ ≡ Ẋ ′i e′i (�= Ṙ′ because e′i depends on time) and a′ ≡ Ẍ ′i e′i
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are its velocity and acceleration with respect to S ′; v ≡ Ẋi ei (= Ṙ) and a ≡ Ẍi ei are its
velocity and acceleration with respect to S; and d ≡ OO′ = diei. Finally, Ω, defined as

ė′i = Ω ∧ e′i, (2.12)

is the rotation vector of S ′ relative to S. The term −2Ω ∧ v′ is the Coriolis acceleration and
Ω ∧ (R′ ∧ Ω) is the centrifugal acceleration. The latter can also be written as −∇R′Ucentr

with Ucentr = − 1
2R

′.(Ω ∧ (R′ ∧ Ω)); here ∇ is the gradient operator, see Section 2.6.
These equations are the vector versions of (1.11)–(1.13), from which we can also find

the components of Ω in S ′ (Ω = ω′ie′i) as a function of the Euler angles characterizing the
rotation of S ′ with respect to S.

We therefore cannot speak of absolute velocity or acceleration, that is, velocity and ac-
celeration independent of the frames in which they are evaluated, whenever these frames
are derived one from the other by time-dependent transformations. The only exceptions are
Galilean transformations, for which the rotation matrix is a constant and the translation
vector is linear in time, and which leave the acceleration unchanged:

a′ = a or, in component form, a′i(t) = R i
j a

j(t) . (2.13)

As far as the velocity is concerned, it is never represented by the same vector in two frames,
one derived from the other by a time-dependent transformation. Under Galilean transforma-
tions

v′ = v − V0 or, in component form, V ′i(t) = R i
j (V j(t)− V j

0 ) . (2.14)

This Galilean law of velocity addition shows that the frames S and S ′ are not kinematically
equivalent.

2.5 Examples of moving frames

• Reference frame corresponding to the ‘laboratory walls’. Let us choose as our (approx-
imately) absolute reference frame the frame attached to the center of the Earth with the
e3 axis pointing toward the North Pole and the other two axes pointing toward two fixed
stars. The origin of the laboratory frame is on the surface of the Earth and the directions of
its axes are defined by choosing the Euler nutation angle Θ = π/2 (see Section 1.3). Then
e′1 ≡ e′z points along the radius directed from the center of the Earth and e′2 ≡ e′x points
along the meridian toward the pole (and e′3 ≡ e′y points to the west). The angle Ψ is the
fixed latitude of the location and Φ = ω t, where ω is the (constant) angular velocity of the
Earth’s rotation. Then the components of the rotation vector (see Section 1.5) are

ω′x = ω cosΨ, ω′y = 0, ω′z = ω sinΨ. (2.15)

• The Kepler frame. We consider a frame S ′ whose origin is attached to a moving point
P = P (t), and we decompose the radius vector R ≡ OP (t) in the absolute frame S as
R = Xiei with

X = r sin θ cosφ , Y = r sin θ sinφ , Z = r cos θ, (2.16)
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where the angle φ(t) ∈ [0, 2π], the angle θ(t) ∈ [0, π], and r(t) =
√

(R.R) is the distance
from the origin of S ′ to the origin of S. We choose e′1 to point along the radius vector R and
e′2 and e′3 such that3

⎧
⎪⎪⎨

⎪⎪⎩

e′1 = cosφ sin θ e1 + sinφ sin θ e2 + cos θ e3

e′2 = cosφ cos θ e1 + sinφ cos θ e2 − sin θ e3

e′3 = − sinφ e1 + cosφ e2 .

(2.17)

The components of the rotation vector Ω in S ′ are, from (1.14),

ω′1 = φ̇ cos θ , ω′2 = −φ̇ sin θ , ω′3 = θ̇ , (2.18)

so that

ė′1 = θ̇e′2 + φ̇ sin θe′3 , ė′2 = −θ̇e′1 + φ̇ cos θe′3 , ė′3 = −φ̇(sin θe′1 + cos θe′2) . (2.19)

The conjugate forms ε′i (which permit the metric in S ′ to be written as e = δij ε
′i ⊗ ε′j)

are given by similar expressions:
⎧
⎪⎪⎨

⎪⎪⎩

ε′1 = cosφ sin θ ε1 + sinφ sin θ ε2 + cos θ ε3

ε′2 = cosφ cos θ ε1 + sinφ cos θ ε2 − sin θ ε3

ε′3 = − sinφ ε1 + cosφ ε2 .

(2.20)

This frame will prove useful for solving the Kepler problem in Sections 12.1–12.4.

The Frenet trihedron

The Frenet trihedron (see Fig. 2.2) is a frame attached to a trajectory such that e′1 is tangent

to the trajectory, i.e., e′1 ∝ ḋ where d(t) is the position vector of the point in the absolute frame
S and e′2 is proportional to ė′1. It is a simple exercise to show that

e′1 =
ḋ

√
ḋ.ḋ

, e′2 =
(ḋ.ḋ)d̈− (ḋ.d̈)ḋ
√

ḋ.ḋ
√

ḋ ∧ d̈
, e′3 =

ḋ ∧ d̈
√

(ḋ ∧ d̈)2
. (2.21)

If we introduce the curvature κ and the torsion τ of the trajectory as

κ ≡

√

(ḋ ∧ d̈)2

(ḋ.ḋ)3/2
, τ ≡ ḋ.(d̈ ∧ ˙̈

d)

(ḋ ∧ d̈)2
, (2.22)

we obtain the Frenet–Serret equations giving the time derivatives of the basis vectors as well as
the rotation vector of the trihedron:

ė′1 = κ e′2, ė′2 = −κ e′1 + τ e′3, ė′3 = −τ e′2, and Ω = τ e′1 + κ e′3 . (2.23)

3The e′2 axis points toward the equator along the meridian, which amounts to choosing (see Section 1.3)
the Euler nutation angle to be Θ = −π/2. We have also set Φ(t) ≡ φ(t) and Ψ(t) ≡ θ(t)− π/2.
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Fig. 2.2 The (a) laboratory, (b) Frenet, and (c) Kepler frames.

2.6 The ABCs of vector calculus

• Algebraic operations. If A and B are two vectors, we can define the following.
The vector product A ∧ B is a form with the components (A ∧ B)i = eijkA

jBk, where
eijk is the Levi-Civita symbol defined in Section 1.5. The components can also be written as
(AY BZ − AZBY , AZBX − AXBZ , AXBY − AY BX). The associated vector (A ∧ B)i has
the same components because the metric components are δij (see the remark at the end of
Section 2.2). It is orthogonal to A and B.

The scalar product of the two vectors is given by

(A.B) = δijA
iBj = AXBX +AY BY +AZBZ .

Using the properties of the Levi-Civita symbol given in Section 1.5, it is easily shown that

A.(B ∧ C) = C.(A ∧B), A ∧ (B ∧ C) = (A.C)B − (A.B)C,
(A ∧B)2 = A2B2 − (A.B)2 .

(2.24)

• Differential operators. Let a function of the point p be variously denoted as f(p), f(Op),
f(R), or f(Xi). Its exterior derivative, denoted by df , is the form with components
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(∂Xf, ∂Y f, ∂Zf), and its gradient, denoted by ∇f , is the associated vector (with the same
components).4

The curl of a field of forms v(R) with components Vi(X,Y, Z) is the vector denoted by
∇∧ v with components

(∇∧ v)i = eijk ∂Vj/∂X
k = (∂Y VZ − ∂ZVY , −∂ZVX + ∂XVZ , ∂XVY − ∂Y VX).

(Since forms and vectors have the same components, the indices can be raised and lowered
freely.)

The divergence of a vector field v(R) with components V i(Xj) is the scalar

∇.v ≡ ∂V i/∂Xi = (∂XV X + ∂Y V
Y + ∂ZV

Z).

The Laplacian of a function (or ‘scalar field’) f(R) is defined as

�f ≡ ∇.∇f = δij
∂2f

∂Xi∂Xj
= ∂2

XXf + ∂2
Y Y f + ∂2

ZZf.

Using the definitions, it is easily shown that

∇.(∇∧ V ) ≡ 0, ∇∧ (∇f) ≡ 0,
∇∧∇ ∧ V = −�V +∇∇.V, ∇.(V ∧W ) = −V.∇∧W +W.∇∧ V,

∇∧ (V ∧W ) = (W.∇)V − (V.∇)W −W (∇.V ) + V (∇.W ),
∇(V.W ) = V ∧ (∇∧W ) + (V.∇)W +W ∧ (∇∧ V ) + (W.∇)V.

(2.25)

• Integration. Let a curve L be defined parametrically by Xi = Xi(λ). The line integral

of a function f(Xi) along L is
∫ λ2

λ1
f(Xi(λ))dλ. Since the Euclidean length element is dl2 =

δijdX
idXj , the length of the curve is

∫
L
dl ≡

∫ λ2

λ1

√
δij(dXi/dλ)(dXj/dλ) dλ. We note that

it is invariant under reparametrization.
We introduce the vector e tangent to the curve with components dXi/dλ and the infinites-

imal vector �dl ≡ edλ (whose norm is dl). The line integral of a vector �v with components

V i(Xk) along L is
∫
L
�v.�dl ≡

∫
δijV

i(Xk(λ))(dXj/dλ)dλ.
Let us now consider surface integrals.
The surface area of an infinitesimal rectangle in the XOY plane is dS ≡ dX dY . Since

it is orthogonal to the axis OZ, it is natural to introduce the surface element as the form
(or vector) �dS = (dX�i ∧ dY �j) = (0, 0, dX dY ). The quantity dS then is the modulus of �dS,

that is, the scalar product of �dS and the unit vector orthogonal to the surface element, i.e.,
�k =�i ∧�j. The equality is easily proved using (2.24).

The generalization is straightforward. Let a surface Σ be defined parametrically as Xi =
Xi(λ, μ). We use e1 and e2 to denote the two vectors tangent to Σ and having components

∂Xi/∂λ and ∂Xi/∂μ, while �dl1 ≡ e1dλ and �dl2 ≡ e2dμ are the corresponding infinitesimal

vectors. The surface element vector is then defined as �dS = �dl1 ∧ �dl2 and its components are
dSi = eijk(∂X

j/∂λ)(∂Xk/∂μ)dλ dμ.

4We shall use various notations for the partial derivative:
∂f(X,Y,Z)

∂X

∣
∣
∣
Y,Z

≡ ∂f
∂X

≡ ∂Xf , and sometimes

will denote it simply by a comma: ∂Xf ≡ f,X .
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The flux through Σ of a field of vectors �v is
∫
Σ
(�v. �dS).

Let n = (e1 ∧ e2)/|e1 ∧ e2| be the unit vector normal to Σ, i.e., the vector satisfying
ni ∂X

i/∂λ = ni ∂X
i/∂μ = 0 and nin

i = 1. The area of the surface Σ is then given by

∫

Σ

dS ≡
∫
n.(dl1 ∧ dl2) =

∫ λ2

λ1

∫ μ2

μ1

nidSi =

∫ λ2

λ1

∫ μ2

μ1

eijkn
i ∂X

j

∂λ

∂Xk

∂μ
dλ dμ . (2.26)

Finally, let us consider a closed surface ∂V . The volume enclosed by this surface is∫
dX dY dZ ≡

∫
d3X, where the ranges of variation of X,Y, Z are determined by the equation

of the surface Φ(X,Y, Z) = 0.

The Stokes and Gauss gradient theorems

The gradient theorem. The integral of the gradient of a function along a path is independent
of the path:

∫ b

a

�∇f.�dl = f(b)− f(a) . (2.27)

The Stokes–Green–Ostrogradsky theorem (actually discovered by Ampère in 1825). If v is a
vector, Σ a two-dimensional surface, and ∂Σ the boundary of this surface, namely, a closed
path, then ∫

Σ

(∇∧ v). �dS =

∫

∂Σ

�v.�dl . (2.28)

This is easily demonstrated when Σ is a rectangle in the XOY plane.
The Gauss or divergence theorem (actually discovered by Lagrange in 1764). If v is a vector,

V is a three-dimensional volume, and ∂V is its boundary, then

∫

V

∇.v d3X =

∫

∂V

�v. �dS . (2.29)

This is easily demonstrated when V is a parallelepiped.

Choosing �v = (X/3, Y/3, Z/3) so that �∇.�v = 1, Gauss’s theorem can be used, for exam-
ple, to easily calculate the volume of V when the equation for its boundary ∂V is given in
parametric form.
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3

Curvilinear coordinates

In this chapter we give a presentation à la Descartes of curvilinear coordinates which parallels
our discussion of Cartesian coordinates in Chapter 1, and we introduce the concept of the covariant
derivative.

3.1 Curvilinear coordinates and tensors

Once we have defined a Cartesian frame and its coordinates Xi, we may wish to label
the points of Euclidean space E3 using a new system C of curvilinear coordinates xi =
xi(Xj) (also sometimes referred to as Gaussian coordinates), which are nonlinearly related to
Cartesian coordinates (for example, spherical coordinates). The partial derivatives ∂xi/∂Xj

and, inversely, ∂Xj/∂xk, form the Jacobian transformation matrices and are related as
(∂xi/∂Xj)(∂Xj/∂xk) = δik [and inversely as (∂Xi/∂xj)(∂xj/∂Xk) = δik]. If the transfor-

mation is linear, they reduce to numbers: ∂xi/∂Xj = R i
j and ∂Xj/∂xk = Rj

k (the matrix

R i
j is not necessarily a rotation matrix).

The length element dl2 between two neighboring points (whose value is postulated to be
invariant) is no longer manifestly given by the Pythagorean theorem because use of the chain
rule for the derivative of a composite function gives

dl2 ≡ δij dX
idXj = δij

∂Xi

∂xk

∂Xj

∂xl
dxk dxl ≡ ekl dx

k dxl , (3.1)

where the components ekl of the metric e and its inverse ekm (defined as ekle
km = δml ) are

now given not by the Kronecker delta, but by the following functions of the coordinates:

ekl =
∂Xi

∂xk

∂Xj

∂xl
δij , ekm =

∂xk

∂Xp

∂xm

∂Xq
δpq . (3.2)

The metric in polar coordinates

When passing from the Cartesian coordinates of the plane Xi = (X,Y ) to the polar coordi-
nates xi = (r, φ) defined as

X = r cosφ, Y = r sinφ, (3.3)

we have

err =

(
∂X

∂r

)2

+

(
∂Y

∂r

)2

= 1, erφ =
∂X

∂r

∂X

∂φ
+

∂Y

∂r

∂Y

∂φ
= 0,

eφφ =

(
∂X

∂φ

)2

+

(
∂Y

∂φ

)2

= r2,

(3.4)
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which leads to the familiar expression

dl2 = dX2 + dY 2 = dr2 + r2 dφ2. (3.5)

In Section 1.6 we defined vector fields as sets of three functions T i(Xj) transforming as
T i �→ T ′i = R i

j T
j under a change of Cartesian frame. Since the generalization of the rotation

matrix R i
j is the Jacobian matrix ∂xi/∂Xj , in this broader context we shall define a vector

field as three functions which transform under a change of coordinates Xi �→ xi as T i �→ ti

with

ti =
∂xi

∂Xj
T j ⇐⇒ T i =

∂Xi

∂xj
tj , (3.6)

where T j and ∂xi/∂Xj are evaluated at Xk = Xk(xl).

The polar components of a vector field

In going from Cartesian coordinates (X,Y ) to polar coordinates (r, φ): X = r cosφ, Y =

r sinφ and, inversely, r =
√
X2 + Y 2, tanφ = Y/X, we have tr = (∂r/∂X)TX + (∂r/∂Y )TY

and tφ = (∂φ/∂X)TX + (∂φ/∂Y )TY , that is,

tr = TX cosφ+ TY sinφ, r tφ = −TX sinφ+ TY cosφ, (3.7)

where TX and TY are evaluated at X = r cosφ, Y = r sinφ.
If lia(X

j) ≡ Xi − Xi
a is the vector field defining the separation between some point P and

a given point Pa with Cartesian components lXa = X − Xa = r cosφ − ra cosφa and lYa =
r sinφ− ra sinφa, its polar components given by (3.7) and, importantly, evaluated at P and not
at Pa, are written as

lra = r − ra cos(φ− φa), lφa =
ra
r

sin(φ− φa). (3.8)

Therefore, the components of the radius vector and the coordinates of a point can be identified
only in a Cartesian system.

More generally, by extension of (2.4), a field of p-fold contravariant and q-fold covariant
tensors is defined as a set of functions for which the transformation law under a change of
coordinate system is

t
i1...ip
j1...jq

=
∂xi1

∂Xk1
...

∂xip

∂Xkp

∂X l1

∂xj1
...
∂X lq

∂xjq
T

k1...kp

l1...lq
. (3.9)

Therefore, the metric and its inverse, whose components transform as in (3.2), are respectively
tensors which are 2-fold covariant and 2-fold contravariant.

It is useful to recall that if a tensor is zero in one coordinate system, it is zero in any
other.

The scalar product of two vectors is invariant under a change of coordinate system.
Indeed, we have

(T.U) ≡ δijT
jU i = eijt

jui = tiu
i with ti ≡ eijt

j . (3.10)

Here the ti are the components of the form derived from the vector ti by lowering an index and
tiu

i can be viewed as the contraction or trace of a singly contravariant and a singly covariant
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tensor tiu
j . We note that the functions ti are no longer numerically equal to the ti: the

location of the indices, which in Cartesian coordinates is a formality because eij = δij , here
becomes crucial. For example, the components of the form associated with the vector (3.7)
of polar components (tr, tφ) are tr = tr and tφ = r2tφ, since the metric is dl2 = dr2 + r2dφ2.

3.2 The covariant derivative

Under a change of Cartesian frame the components of a vector field T i(Xk) transform, by
definition, as T i �→ T ′i = R i

j T
j . Since the matrix R i

j and its inverse are constants, the

derivatives ∂T i/∂Xk transform like those of a Cartesian tensor which is singly contravariant
and singly covariant because ∂T ′i/∂X ′k = R i

j Rl
k (∂T

j/∂X l). This is no longer true for a

nonlinear coordinate transformation where T i �→ ti = (∂xi/∂Xj)T j , because now according
to the Leibniz rule and the chain rule for differentiation we have

∂ti

∂xk
=

∂

∂xk

(
∂xi

∂Xj
T j

)
=

∂xi

∂Xj

∂T j

∂xk
+

∂2xi

∂xk∂Xj
T j

=
∂xi

∂Xj

∂X l

∂xk

∂T j

∂X l
+

∂2xi

∂X l∂Xj

∂X l

∂xk
T j ,

(3.11)

where all quantities are evaluated atXm(xp). The first term on the right-hand side represents,
by definition, the components in the system xi of the singly contravariant, singly covariant
tensor of components ∂T i/∂Xk in S; we shall denote them as D̃kt

i:

D̃kt
i ≡ ∂xi

∂Xj

∂X l

∂xk

∂T j

∂X l
. (3.12)

These are the components of the covariant derivative with respect to xk of the field of vectors
with components ti. They can be expressed as functions of the ordinary derivatives of the ti

using (3.11), that is,

D̃kt
i = ∂kt

i − ∂2xi

∂X l∂Xj

∂X l

∂xk
T j (where we have used the notation ∂j ≡

∂

∂xj
) (3.13)

or

D̃kt
i = ∂kt

i + Γ̃i
kmtm with Γ̃i

km ≡ ∂xi

∂Xj

∂2Xj

∂xk∂xm
, (3.14)

where we have transformed the last term in (3.13) using the fact that

∂Xj

∂xm

∂xi

∂Xj
= δim =⇒ ∂Xj

∂xm

∂2xi

∂X l∂Xj
+

∂2Xj

∂xm∂X l

∂xi

∂Xj
= 0. (3.15)

The functions Γ̃i
km defined in (3.14) are the connection coefficients. They are symmetric

in their lower indices and there are n2(n+ 1)/2 of them that is, 18 in three dimensions.1

1Some remarks about notation:
In a more precise fashion (but more pedantic, when there is no possibility of confusion about the coordinate

with respect to which the derivative is being taken), the covariant derivative can be written as D̃i = D̃
∂xi .

We shall also sometimes use the semicolon notation D̃iv
j ≡ vj;i .
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The connection coefficients in polar coordinates

Let us consider the transformation from Cartesian to polar coordinates X = r cosφ, Y =
r sinφ and, inversely, r =

√
X2 + Y 2, tanφ = Y/X. The connection coefficients defined in (3.14)

all vanish except for

Γ̃r
φφ =

∂r

∂X

∂2X

∂φ2
+

∂r

∂Y

∂2Y

∂φ2
= −r and Γ̃φ

rφ =
∂φ

∂X

∂2X

∂r∂φ
+

∂φ

∂Y

∂2Y

∂r∂φ
=

1

r
. (3.16)

Having defined the covariant derivative of a vector, we can now define that of a form of
components λi in C. Indeed, if the wi are the components of a vector, then, contracting the
indices, λiw

i is just a function, and if we write D̃j(λiw
i) = ∂j(λiw

i) and use the Leibniz rule

(D̃ being a derivative) we find

D̃jλi = ∂jλi − Γ̃k
jiλk (3.17)

and, more generally,

D̃j t
i
lm = ∂j t

i
lm + Γ̃i

jk t
k
lm − Γ̃k

jl t
i
km − Γ̃k

jm tilk . (3.18)

We note the important fact that the covariant derivatives D̃ commute: D̃kD̃j t
i
lm =

D̃jD̃k t
i
lm, because in a Cartesian coordinate system we have2 ∂kjT

i
lm = ∂jkT

i
lm.

Transformation of the connection coefficients

The components ti of a vector are expressed as a function of its components t′i in a different
system of curvilinear coordinates x′i as ti = (∂xi/∂x′l) t′l. Therefore, the components of its
covariant derivative with respect to xj become

D̃jt
i ≡ ∂ti

∂xj + Γ̃i
jkt

k =
∂

∂xj

(
∂xi

∂x′l t
′l
)

+ Γ̃i
jk

∂xk

∂x′l t
′l

=
∂xi

∂x′l
∂t′l

∂xj
+

∂2xi

∂xj∂x′m t′m + Γ̃i
jk

∂xk

∂x′m t′m .

(3.19)

The tilde is used to remind us that there exist coordinate systems (the Cartesian coordinates Xi) where
the covariant derivative and the ordinary derivative are the same. Thus the 18 connection coefficients can
all be expressed in terms of only three functions, namely, the functions defining the transformation from
Cartesian to curvilinear coordinates Xi = Xi(xj).

A space in which global systems of Cartesian coordinates do not exist is curved. In this case the connection
coefficients can be arbitrary functions of the coordinates, and we will use the notation (Dk,Γ

i
jk) instead of

(D̃k, Γ̃
i
jk).

2This will no longer be true in curved space where we can no longer define global systems of Cartesian
coordinates.

It is an instructive exercise to calculate DiDjt
k − DjDit

k as a function of the Γi
jk and their derivatives.

We find DiDjt
k −DjDit

k = Rk
mijt

m, where Ri
jkl ≡ ∂kΓ

i
lj −∂lΓ

i
kj +Γi

kmΓm
lj −Γi

lmΓm
kj . The quantity Ri

jkl

is the Riemann–Christoffel curvature tensor. It vanishes identically when the quantities involved carry tildes,
that is, in ‘flat’ Euclidean space (see Book 3, Section 2.2).
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Since the D̃jt
i are the components of a singly contravariant, singly covariant tensor, using

D̃jt
i = (∂x′k/∂xj)(∂xi/∂x′l) (D̃kt

l)′ they can be expressed as a function of its components

(D̃kt
l)′ in C′ as (D̃kt

l)′ = ∂t′l/∂x′k + Γ̃′l
kmt′m, where the Γ̃′l

km are the connection coefficients in
C′. Therefore,

D̃jt
i =

∂x′k

∂xj

∂xi

∂x′l

(
∂t′l

∂x′k + Γ̃′l
kmt′m

)

=
∂xi

∂x′l
∂t′l

∂xj
+

∂x′k

∂xj

∂xi

∂x′l Γ̃
′l
kmt′m . (3.20)

Equating (3.19) and (3.20) and then multiplying by (∂xj/∂x′p)(∂x′q/∂xi), we find

Γ̃′q
pm =

∂xk

∂x′m
∂xj

∂x′p
∂x′q

∂xi
Γ̃i
jk +

∂x′q

∂xi

∂2xi

∂x′p∂x′m , (3.21)

which gives the transformation law of the connection coefficients in going from one curvilinear
coordinate system to another. We see that the connection coefficients are not the components of
a tensor because they do not transform like tensor components. This is fortunate because, since
they all vanish in a system of Cartesian coordinates, they would then all vanish in any system
of curvilinear coordinates!

3.3 Parallel transport

As we have seen in Section 2.2, the parallel transport of a vector v from one point to another
is a trivial operation in Cartesian coordinates. If V i(Xj

1) are the components of the vector at
point p1 with coordinatesXi

1, the components of the vector transported to p2 with coordinates
Xi

2 will also be V i(Xj
1): V

i
par(X

j
2) = V i(Xj

1).
When performing this operation in a system of curvilinear coordinates, it is first necessary

to choose the path between the points p1 and p2 (with coordinates xi
1 and xi

2), that is, a
trajectory given by xi = xi(λ), where λ is a parameter.

The directional derivative of the field v along the curve, that is, the tangent vector
dxi/dλ ≡ ti(λ), is

D̃vi

dλ
≡ dxj

dλ

D̃vi

∂xj
= tjD̃jv

i, (3.22)

which generalizes the definition in Cartesian coordinates. [It is understood that D̃jv
i is

evaluated at xi = xi(λ).]
The parallel transport equation will then be

tjD̃jv
i
par = 0 ⇐⇒

dvipar
dλ

+ Γ̃i
jkt

jvkpar = 0 (3.23)

with the initial condition vipar(p1) = vi(p1). This is an ordinary differential equation of first

order in λ whose integration gives vipar(λ). In Cartesian coordinates xi ≡ Xi where all the

connection coefficients vanish, we have vipar ≡ V i
par = V i(λ1), where the Xi

1 = Xi(λ1) are
the coordinates of p1, and we find that the components of the field v parallel-transported to
p2 are the same as those at p1.

Since in the case of Cartesian coordinates the parallel transport is independent of the
path from p1 to p2, the same must be true when using curvilinear coordinates. This is
demonstrated below using a concrete example.
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A constant vector field in polar coordinates

In Cartesian coordinates Xj the equation for parallel transport reduces to ∂V i
par/∂X

j = 0,

which implies that V i
par = V i(p1) is a constant field (see Fig. 3.1). In a system of polar coordin-

ates, the vector field vipar will be constant if D̃jv
i
par = 0, that is, if, using the expressions for the

connection coefficients given in (3.16),

∂rv
r
par = 0 , ∂rv

φ
par + vφpar/r = 0 , ∂φv

r
par − rvφpar = 0 , ∂φv

φ
par + vrpar/r = 0 . (3.24)

This system of differential equations is integrable (as can be checked by verifying that the second
derivatives commute: ∂rφv

r
par = ∂φrv

r
par , ∂rφv

φ
par = ∂φrv

φ
par) and its solution is

vrpar = a cos(φ+ ω), vφpar = −a

r
sin(φ+ ω), (3.25)

where a and ω are two integration constants. One can check that in the Cartesian system (X,Y )
the components of this field, given by V i

par = (∂Xi/∂xj)vjpar, are indeed constant since

V X
par = a cosω, V Y

par = −a sinω. (3.26)

The fact that the system (3.25) is integrable is crucial for obtaining the result. In curved space,
where the Christoffel symbols can be any functions of the coordinates, the system is not inte-
grable. The idea of a ‘constant field’ is no longer meaningful: parallel transport must be defined
by (3.23) and the result of the parallel transport from p1 to p2 depends on the path.

Y 

v(p) 

p
1

vpar

e1 

e2 

p
2

X 

vr 

vφ

vpar
r 

vpar(p) φ

Fig. 3.1 Parallel transport in polar coordinates.

3.4 The covariant derivative and the metric tensor

The connection coefficients of the covariant derivative have been introduced independently
of the Euclidean metric, which has components eij in C. However, the two objects can be
related to each other. This is easily seen by differentiating the metric components in (3.2)
and forming the appropriate sums and differences to obtain the connection coefficient given
in (3.14):
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Γ̃i
jk =

1

2
eil
(
∂ekl
∂xj

+
∂ejl
∂xk

− ∂ejk
∂xl

)
. (3.27)

The connection coefficients Γ̃i
jk written in this form are called Christoffel symbols and the

covariant derivative itself is called the Levi-Civita covariant derivative.

The Christoffel symbols in spherical coordinates

In polar coordinates the length element is written as dl2 = dr2 + r2dφ2, and so err = 1,
eφφ = r2, erφ = 0 and, inversely, err = 1, eφφ = 1/r2, erφ = 0. From (3.27) it is simple to obtain

the connection coefficients Γ̃i
jk already found in (3.16):

Γ̃r
φφ =

1

2
eri(∂φeφi + ∂φeiφ − ∂ieφφ) = −1

2
err∂reφφ = −r, Γ̃φ

rφ =
1

2
eφφ∂reφφ =

1

r
, (3.28)

all the others being equal to zero.
The length element in spherical coordinates is dl2=dr2+r2(dθ2+sin2 θdφ2) and from (3.27)

we find the Christoffel symbols more readily than from (3.14):

Γ̃θ
θr = Γ̃φ

φr =
1

r
, Γ̃r

θθ = −r , Γ̃r
φφ = −r sin2 θ ,

Γ̃θ
φφ = − sin θ cos θ , Γ̃φ

φθ =
cos θ

sin θ
.

(3.29)

It can also be verified explicitly using the definition (3.18) of the covariant derivative of
a tensor and (3.27) for the Γ̃i

jk that

D̃jeik ≡ 0 . (3.30)

This result can actually be obtained without calculation by noting that in a Cartesian coor-
dinate system where the covariant and ordinary derivatives are the same, the metric compo-
nents are constants. Therefore, their (covariant) derivatives are zero, and if they are zero in
this system, they are zero in any other.

3.5 Kinematics of a point particle (III)

If the trajectory of a point particle is specified in S by Xi = Xi(t) where the parameter t is
the absolute time, then it is given in C by xi = xi(t) ≡ xi(Xj(t)) so that

⎧
⎪⎪⎨

⎪⎪⎩

vi ≡ dxi

dt
=

∂xi

∂Xj
V j(t)

dvi

dt
=

∂xi

∂Xj
aj(t) +

∂2xi

∂Xj∂Xk
V j(t)V k(t),

(3.31)

where V j(t) ≡ Ẋj and aj(t) ≡ Ẍj are the components of its velocity and acceleration in S
and where the ∂xi/∂Xj , etc. are evaluated at Xk = Xk(t).

The three functions (∂xi/∂Xj) aj(t) are, by definition, the components of the acceleration
in C. We see from (3.31) that they are equal not to the ordinary time derivatives of the vi,
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but to their covariant derivatives: D̃vi/dt ≡ (∂xi/∂Xj) aj(t). Using (3.14) and (3.27), we can
rewrite this as

D̃vi

dt
≡ dvi

dt
+ Γ̃i

jkv
jvk

with Γ̃i
jk ≡ ∂xi

∂X l

∂2X l

∂xj∂xk
=

1

2
eil
(
∂ekl
∂xj

+
∂ejl
∂xk

− ∂ejk
∂xl

)
,

(3.32)

where it is understood that all quantities are evaluated at xi = xi(t).
If the velocity vi is viewed as a vector field vi(xj) evaluated on the trajectory xi = xi(t),

we can rewrite the covariant derivative of the velocity as D̃vi/dt = vjD̃jv
i and treat it as

a directional derivative, the contraction of the vector vj and the singly contravariant, singly
covariant tensor D̃jv

i, as we have seen in Section 3.3.
The equation

D̃vi

dt
≡ vjD̃jv

i = 0 (3.33)

is the equation describing the parallel transport of the vector field vi along a curve generated
by the field itself, called the auto-parallel. It is a straight line in E3.

Trajectories in polar coordinates and the auto-parallel

Let us consider the transformation from Cartesian coordinates (X,Y ) to polar coordinates
X = r cosφ, Y = r sinφ. Since a trajectory is defined by X = X(t) and Y = Y (t), (3.31) gives

ṙ =
XẊ + Y Ẏ√
X2 + Y 2

, φ̇ =
−Y Ẋ +XẎ

X2 + Y 2

rr̈ =
XẌ + Y Ÿ√
X2 + Y 2

+
(Y Ẋ −XẎ )2

(X2 + Y 2)3/2
,

φ̈ =
−Y Ẍ +XŸ

X2 + Y 2
− 2(XẊ + Y Ẏ )(−Y Ẋ +XẎ )

(X2 + Y 2)2
,

from which we obtain

r̈ − rφ̇2 =
XẌ + Y Ÿ√
X2 + Y 2

, φ̈+ 2
ṙ

r
φ̇ =

−Y Ẍ +XŸ

X2 + Y 2
.

If the acceleration (Ẍ, Ÿ ) is zero, the trajectory is rectilinear and uniform and given by the
equations X = X0 + V X

0 t, Y = Y0 + V Y
0 t. In polar coordinates this trajectory is written as

r=
√
(X0+V X

0 t)2+(Y0+V Y
0 t)2, tanφ = (Y0 + V Y

0 t)/(X0 + V X
0 t).

It can be obtained directly using (3.32). Since the trajectory is defined by r = r(t) and

φ = φ(t), the velocity components are vi = (ṙ, φ̇). The connection coefficients Γ̃i
jk all vanish

with the exception of Γ̃r
φφ = −r and Γ̃φ

rφ = 1/r (see Sections 3.2 and 3.4). The components of
the covariant derivative of the velocity then are

D̃ṙ

dt
= r̈ − rφ̇2,

D̃φ̇

dt
= φ̈+ 2

ṙ

r
φ̇. (3.34)
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The trajectory will be an auto-parallel if D̃ṙ/dt = D̃φ̇/dt = 0, that is, if r̈ − rφ̇2 = 0 and

φ̈+ 2ṙφ̇/r = 0.
The first integral of these equations is

r2φ̇ = L, ṙ2 = 2E − L2

r2
, (3.35)

where L and E > 0 are integration constants. A second integration gives the equations found
above for a straight line in polar coordinates after appropriate identification of the constants.

3.6 Differential operators and integration

• The divergence and Laplacian of a vector. By extension of its definition in Cartesian
coordinates (see Section 2.6), the divergence of a vector field v with components vi in a
system of curvilinear coordinates xi is defined as D̃iv

i, where D̃i is the associated covariant
derivative.

Using (dete) to denote the determinant of the coefficients eij of the Euclidean metric in
the coordinates xi, it is easily seen that

∂i(dete) = −(dete)ejk∂ie
jk and ∂i(dete) = (dete)ejk∂iejk , (3.36)

so that the traces of the Christoffel symbols (3.27) can be written as Γ̃i
ik = 1

2∂k ln(dete).
Thus the divergence of v can also be written as

D̃iv
i =

1√
dete

∂i

(√
dete vi

)
. (3.37)

Similarly, by extension of its definition in Cartesian coordinates, the Laplacian of a function
f is defined as D̃iD̃

if . In a coordinate system xi we then have (using the fact that D̃iejk = 0)

D̃iD̃
if = D̃i(e

ijD̃jf) = D̃i(e
ij∂jf) = ∂i(e

ij∂jf) + Γ̃i
ike

kj∂jf

=
1√
dete

∂i

(√
dete eij∂jf

)
.

(3.38)

• The Levi-Civita symbol and the volume element. In going from Cartesian coordinates Xi

to curvilinear coordinates xi, the components of the Levi-Civita symbol eijk with e123 = 1
(see Section 1.5) become

εlmn =
∂Xi

∂xl

∂Xj

∂xm

∂Xk

∂xn
eijk = Jelmn , (3.39)

where it is easily seen that J is the Jacobian of the transformation Xi �→ xi (i.e., the
determinant of the Jacobian matrix ∂Xi/∂xl). We can relate J to the metric determinant as
follows. Under a change of coordinates the metric becomes eij = (∂Xk/∂xi)(∂X l/∂xj)δkl .
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The determinant of the left-hand side is dete, while that of the right is J2 (this is simple to
verify in two dimensions). We therefore have

εijk =
√
dete eijk , εijk =

1√
dete

eijk . (3.40)

In Euclidean space and Cartesian coordinates the volume element is defined as dV =
dXdY dZ = 1

6eijk dX
idXjdXk, where eijk is the Levi-Civita symbol with e123 = 1.

In going to curvilinear coordinates Xi �→ Xi(xj), using (3.39) and (3.40) and the notation
d3x = dx dy dz we obtain

dV =
1

6
eijk

∂Xi

∂xl

∂Xj

∂xm

∂Xk

∂xn
dxldxmdxn =

1

6
εlmndx

ldxmdxn

=
1

6

√
dete elmndx

ldxmdxn =
√
dete d3x .

(3.41)

• The surface element and Gauss’s theorem. Let us consider a 2-surface Σ defined by
xi = xi(ya) where ya = {λ, μ} are two parameters [or, equivalently, defined by a constraint
of the form Φ(xi) = 0]. An element of the surface Σ generalizes (2.26) and is defined as

dSi = εijk
∂xj

∂λ

∂xk

∂μ
dλ dμ =

√
dete eijk

∂xj

∂λ

∂xk

∂μ
dλ dμ (3.42)

using (3.40) (here it is understood that all quantities are evaluated on the surface).
In the curvilinear coordinates xi that we are using, the Euclidean length element is written

as dl2 = eijdx
idxj . The length element on the surface Σ then is

dl2|Σ = eij
∂xi

∂ya
∂xj

∂yb
dya dyb = hab dy

a dyb, (3.43)

where hab ≡ eij(∂x
i/∂ya)(∂xj/∂yb) are the components of the induced metric on Σ in

the coordinates ya. We shall use deth to denote its determinant (again with all quantities
evaluated on Σ).

Now, the (covariant) unit vector ni orthogonal to Σ is defined as in Section 2.6 by

ni
∂xi

∂ya
= 0 and eijninj = 1 or by ni =

∂iΦ√
eij∂iΦ∂jΦ

, (3.44)

depending on whether the equation for Σ is given by xi = xi(ya) or by Φ(xi) = 0.
It is an instructive exercise to show that εijk(∂x

i/∂λ)(∂xk/∂μ) = ni

√
deth . Therefore,

the surface element can be written in two equivalent ways (see also Section 4.6):

dSi =
√
dete eijk

∂xj

∂λ

∂xk

∂μ
dλ dμ =

√
dethni dλ dμ. (3.45)

Now that we have the expression (3.37) for the divergence of a vector and the equations
for the volume and surface elements (3.41) and (3.45), Gauss’s theorem follows. If V is a
volume bounded by a surface ∂V , we have

∫

V

D̃iv
i dV =

∫

∂V

vidSi . (3.46)
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The area of a sphere in spheroidal coordinates

In spheroidal coordinates (r, θ, φ) related to Cartesian coordinates as

X =
√

r2 + a2 sin θ cosφ, Y =
√

r2 + a2 sin θ sinφ, Z = r cos θ

the surface of a sphere Σ of radius r0 is given by r2 + a2 sin2 θ = r20.
Show that the Euclidean length element is written as

dl2 =
r2 + a2 cos2 θ

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θ dφ2. (3.47)

Verify (3.45) for this particular case.
Verify that the area of Σ, A =

∫
dS where dS is the modulus of dSi, is A = 4πr20, as it

should be.
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4

Differential geometry

Here we present some elements of differential geometry, the ‘vector’ version of Euclidean geometry
in curvilinear coordinates, in order to give an intrinsic definition of the covariant derivative and to
establish a relation between the moving frames attached to a trajectory introduced in Section 2.5
and the moving frames of Cartan associated with curvilinear coordinates.

4.1 Tangent spaces, vectors, and tangents

As we have seen in Chapter 2, a Euclidean space E is an affine space, that is, an ensemble
of points where any pair of points, or bipoint pq, is identified with a vector of a vector
space E with basis {ei}, i = 1, 2, ...n, and where a point, the origin O, is distinguished.
Therefore, Op = Xiei, where the Xi are simultaneously the Cartesian coordinates of p and
the components of the associated vector. In addition, E is equipped with a nondegenerate
bilinear form e = δijε

i ⊗ εj , where {εi} is the basis canonically associated with the {ei} of
its dual space E∗. This metric e defines the distance between the points of E : e(dp, dp) =
δijdX

i dXj with dp = dXiei.
The basis vectors of a Cartesian frame, which are bipoints identified with the ei and

‘bound’ to the origin O, are tangent to the coordinate axes Xi. Now we can strip the origin
O of its special status by associating with each point p of E a ‘moving’ frame whose basis
vectors are tangent to the coordinate lines Xi at p. Such frames can be derived from each
other by simple translations of the origin, and their basis vectors ei(p) obtained by parallel
transport from the origin O are identified, for any p, with the vectors ei whose components
are δji in the coordinate system Xj .

As briefly sketched in Section 2.4, we now consider the derivative operator ∂/∂Xi for a
given i acting on functions of the coordinates f(Xj) at a point p with coordinates Xj . Its
action on the coordinates Xj themselves gives the components of ei because ∂X

j/∂Xi = δji .

The operator ∂/∂Xi therefore contains as much information as the vector ei, but since in
addition it operates at a given point p, it must be identified with the vector ei(p):

ei(p) ≡
∂

∂Xi
,

which is a basis vector of a vector space attached to the point p and called the tangent space
at p, E(p). Since the coordinates Xi are Cartesian, this construction is certainly redundant,
because all the ei(p) for a given i are equal for any p.

On the other hand, in the case where the location of p is specified by curvilinear coor-
dinates xi, the basis vectors of the moving frame at p, which are bipoints tangent to the
coordinate lines at p and therefore identifiable as ∂/∂xi, vary from point to point (that is,
they are no longer derived from each other by parallel transport) and they must be distin-
guished. The vectors ∂/∂xi form what is called a natural basis of E(p).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.
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Y 

e1 

e2 

X 

hφ

hφ hr

hr

r1

r2

ϕ1

ϕ2

Fig. 4.1 Euclidean space, moving frames, and tangent spaces.

In two dimensions we can visualize the tangent spaces of the Euclidean space in Cartesian
coordinates as superimposed sheets of paper whose grids coincide. In polar coordinates (see
Fig. 4.1) they can be visualized as small squares of paper (on which the geometry becomes
local or differential) whose grids (the ‘moving frames’) have an orientation which varies from
point to point. We can reorient the small squares of paper and ‘glue’ them back together,
thereby returning to the original Cartesian coordinates.

Given a system of coordinates xi, a tangent (or vector) t at p (for example, a ‘force’) is
an element of the tangent space E(p). It can be decomposed as t = ti∂/∂xi where the ti are
its natural components. It acts on differentiable functions f(xi) as

t(f) = ti
∂f

∂xi
, (4.1)

where it is understood that ∂f/∂xi is evaluated at1 p.
In going from coordinates xi to other curvilinear coordinates x′i, a tangent at p is written

as t = ti∂/∂xi = t′i∂/∂x′i and according to (3.9) we have

∂

∂xi
=

∂x′j

∂xi

∂

∂x′j and t′j =
∂x′j

∂xi
ti,

and also
∂

∂x′i =
∂xj

∂x′i
∂

∂xj
and tj =

∂xj

∂x′i t
′i,

(4.2)

where it is understood that the Jacobian matrix of the transformation ∂x′k/∂xj and its
inverse ∂xi/∂x′k such that (∂xi/∂x′k)(∂x′k/∂xj) = δij are evaluated at the point p.

There is one more point in this differential framework that needs clarification, namely, the
status of the radius vector R ≡ Op or, more generally, of a free vector la = pap. Following
the example in (3.8), we attach the vector pap to the point p and view it as a tangent
belonging to E(p). Under a general coordinate transformation it then transforms as in (4.2),

1Therefore, a vector bound to p is simultaneously a point paired with an element of the vector space,
a bipoint of an affine space, and a derivative operator belonging to the tangent space of p acting on one
function to give another. It is also a singly contravariant tensor acting on forms to give numbers.
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and its components, which are (Xi − Xi
a) in the Cartesian frame S, become lia(X

k) =
(∂xi/∂Xj)(Xj −Xj

a) in C, where the Jacobian matrix is evaluated at2 Xk.

4.2 Cotangent spaces and differential forms

Any tangent t at p acting on a function f can by ‘duality’ be associated with a form, denoted
df , an element of the cotangent space E∗(p) dual to E(p), which acts on a vector t to give
the same result as the action of t on f :

df(t) = t(f) . (4.3)

If we take as the function f the kth coordinate of the point p, f = xk, then t(xk) = tk ac-
cording to (4.1) and from the definition of t and linearity we have dxk(t) = dxk

(
ti∂/∂xi

)
=

tidxk
(
∂/∂xi

)
= tk, which implies that dxk

(
∂/∂xi

)
= δki . Therefore, the forms dxk consti-

tute a basis, the natural basis, of the cotangent space3 E∗(p).
Any form λ of E∗(p) can then be decomposed as λ = λi dx

i. In this context where the
coordinates xi are arbitrary, the forms defined in the cotangent space are referred to as
differential forms. If there exists a function f(xi) such that λi = ∂f/∂xi, that is, if λi is the
value at p of a function λi(x

j) such that ∂λi/∂x
j = ∂λj/∂x

i, then we denote it as df and
we have λ ≡ df = (∂f/∂xi) dxi (which justifies the notation used). Such differential forms,
of which the dxi are examples, are called exact.

Knowing the transformation law of basis vectors of the tangent space [see (4.2)], we
can immediately derive those of the conjugate exact differential forms dxi as well as of the
components of any form ω = ωidx

i = ω′
jdx

′j :

dx′j =
∂x′j

∂xi
dxi and ωi =

∂x′j

∂xi
ω′
j ,

and also dxj =
∂xj

∂x′i dx
′i and ω′

i =
∂xj

∂x′i ωj .

(4.4)

4.3 The metric tensor, triads, and frame fields

The introduction of the tangent space at p and its dual, both equipped with their natural
conjugate bases, makes it possible to rewrite the Euclidean metric as e = δij ε

i⊗εj = δij dX
i⊗

dXj , where the dXi ≡ εi are the basis forms associated with the Cartesian coordinates
Xi. Since we know the transformation law of the forms dXi under a nonlinear change of
coordinates, we see that the metric transforms as

e = δij dX
i ⊗ dXj = δij

∂Xi

∂xk

∂Xj

∂xl
dxk ⊗ dxl (4.5)

in accordance with (3.1).

2In this approach the origin O of the affine space loses its privileged status. We also note that in spaces
where global Cartesian coordinates do not exist (as is the case in the curved spaces of general relativity), the
position vector can no longer be defined.

3Care should be taken not to confuse the form dxi, a basis vector of the cotangent space at p, with dxi, the
coordinate increment. The form dxi acts on the vector dp = dxj∂/∂xj to give the number dxi: dxi(dp) = dxj .
If the coordinates xi ≡ Xi are Cartesian, then dXi ≡ εi is the conjugate basis of ∂/∂Xi ≡ ei.
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Natural bases and spherical coordinates

In the transformation from Cartesian coordinates Xi = (X,Y, Z) to spherical coordinates
xi = (r, θ, φ) (X = r sin θ cosφ, Y = r sin θ sinφ, and Z = r cos θ), the bases of the tangent
space and its dual transform as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂

∂r
= cosφ sin θ

∂

∂X
+ sinφ sin θ

∂

∂Y
+ cos θ

∂

∂Z
∂

∂θ
= r

(

cosφ cos θ
∂

∂X
+ sinφ cos θ

∂

∂Y
− sin θ

∂

∂Z

)

∂

∂φ
= r sin θ

(

− sinφ
∂

∂X
+ cosφ

∂

∂Y

)
(4.6)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dr = cosφ sin θ dX + sinφ sin θ dY + cos θ dZ

dθ =
1

r
(cosφ cos θ dX + sinφ cos θ dY − sin θ dZ)

dφ =
1

r sin θ
(− sinφ dX + cosφ dY ) ,

(4.7)

where ∂/∂X ≡ e1, . . . and dX ≡ ε1, . . ., because (X,Y, Z) are Cartesian coordinates. It can be
verified that these bases are indeed conjugates of each other [dr(∂/∂r) = 1, dr(∂/∂θ) = 0, etc.]
and according to (4.5) lead to

e = dr2 + r2dθ2 + r2 sin2 θ dφ2 . (4.8)

A triad, with its three elements denoted as hi, is a basis of E(p) related to the natural basis
as hi = Lj

i(x
j)∂/∂xj , where the Lj

i(x
k) are a priori arbitrary functions of the coordinates

[which must nevertheless form a matrix which is (nearly) everywhere invertible].
To this triad of tangent vectors there corresponds a triad of conjugate forms θi =

L i
j (xk)dxj with Lk

j L
i

k = δij , also called a frame field.4

A triad of basis vectors hi = Lj
i ∂/∂x

j can be orthonormal if the functions Lj
i(x

k) are
chosen such that e(hi, hj) ≡ Lk

iL
l
jekl = δij . The conjugate forms θi = L i

j (x
k)dxj are not

in general exact differential forms, but they allow the metric to be written in the ‘quasi-
Cartesian’ form

e = δij θ
i ⊗ θj . (4.9)

Any transformation θ′i = R i
j θj , where R i

j (x
k) is a point-dependent rotation matrix, pre-

serves this quasi-Cartesian form of the metric.

Moving frames and spherical coordinates

The natural basis (4.6) of spherical coordinates in which the metric is written e = dr2 +
r2dθ2 + r2 sin2 θ dφ2 is not orthonormal because, e.g., e (∂/∂θ, ∂/∂θ) = r2 	= 1, but we can
introduce the triad

4If there exist n functions x′i(xk) such that θi = dx′i, i.e., if we can write L i
j (xk) in the form L i

j (xk) =

∂x′i/∂xj , which is only possible if ∂L i
j /∂xk = ∂L i

k /∂xj , then the triad hi forms a basis which is termed

holonomic and is derived from the natural basis ∂/∂xi by the simple change of coordinates xi → x′i.
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hr =
∂

∂r
, hθ =

1

r

∂

∂θ
, hφ =

1

r sin θ

∂

∂φ
, (4.10)

which is orthonormal. The forms of the associated dual basis are

θr = dr, θθ = r dθ, θφ = r sin θ dφ (4.11)

and the metric is then written in the form (4.9).
We note the strong similarity between the triad (hr, hθ, hφ) and the basis (e′1, e

′
2, e

′
3) of the

moving frame introduced in (2.17). This is why triads are sometimes called moving frames.
Let us make this more precise. The moving frame introduced in (2.17), attached to a curve of

E3, is Cartesian and at a given time t its coordinates globally establish a grid on the leaf labeled
by t in Newtonian spacetime, N4 = E3 × R. Therefore, the ε′i of (2.20) are exact differential
forms: ε′i ≡ dX ′i (where the X ′i are Cartesian coordinates in S ′) because the transformation
dX ′i = R i

j (t) dXj depends on the parameter t and not on the coordinates Xk. On the other

hand, the triad of time-invariant forms θi in (4.11) is defined at any point, but in the tan-
gent space of the point. These θi are not exact differential forms because the transformation
θi = R i

j (Xk) dXj depends on the coordinates Xk. They become exact only on the trajectory

where Xk = Xk(t), the tangent space of the point p(t) having been identified with the leaf of
N4 labeled by5 t.

4.4 Vector fields, form fields, and tensor fields

A vector of the natural basis ∂/∂xi (with i fixed) is associated with a particular point p,
but it can also be viewed as a function of the point p. More precisely, the mapping which
associates with any point p the quantity ∂/∂xi is called the vector field ∂/∂xi. In general, a
field of tangent vectors is the mapping which associates with each point p a tangent t at p.
A typical example is the force field which appears in the law of dynamics. It is a mapping of
the affine space E to the ensemble of tangent spaces called the tangent fiber. The mapping is
continuous if the components ti(xj) of this field are continuous functions of the coordinates
xj of the points p. We can analogously define form fields and, more generally, tensor fields.
The Euclidean metric viewed as a function of the point is itself a field of bilinear forms or
2-fold covariant tensors. In this context a simple function of the points p is then referred to
as a scalar field.

All the properties of multilinear forms or tensors derived within the framework of vector
geometry (see Chapter 2) are therefore easily carried over to the more general framework
we are developing here. Let p vectors ∂/∂xi and q 1-forms dxj of the natural bases of E(p)
and E∗(p) be associated with the coordinates xi. Their tensor products define a basis of the
space of tensors of the type

(
p
q

)
which are p times contravariant and q times covariant. Then

any tensor of this type can be written as

T = t
i1...ip
j1...jq

∂i1 ⊗ ...⊗ ∂ip ⊗ dxj1 ⊗ ...⊗ dxjq . (4.12)

The functions T
i1...ip
j1...jq

(xi) are the components of the tensor field T (p) in the natural basis

associated with the coordinates xi.

5The situation is different in special and general relativity, where time becomes a coordinate and where
rigid displacements are absorbed into changes of coordinates.
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The transformation laws of basis vectors and 1-forms under a change of coordinate system
are known. We can thus derive the transformation law for the components of T already given
in (3.9):

t
′i1...ip
j1...jq

= t
k1...kp

l1...lq

∂x′i1

∂xk1
...
∂x′ip

∂xkp

∂xl1

∂x′j1 ...
∂xlq

∂x′jq , (4.13)

where all quantities are expressed as functions of xm(x′n).
Let us conclude this section with a useful construction, which expands upon the remark

at the end of Section 3.1. The existence of a metric e allows us to define a linear mapping ẽ
of E(p) in E∗(p) such that, by definition, ẽ

(
∂/∂xi

)
= eij dx

j , where eij are the components
of e in the (curvilinear) coordinates xi. The mapping ẽ therefore establishes a one-to-one
correspondence between basis vectors and forms and is isomorphic to e. Therefore, ẽ (or e)
associates with a tangent t of components ti the form ẽ(t) of components eijt

j . Reciprocally,
we can define a mapping ẽ∗ of E∗(p) in E(p) isomorphic to e which associates with a form λ
of components λi the tangent ẽ

∗(λ) of components eijλi. The metric therefore raises indices.

4.5 The covariant derivative (II)

Let us consider an ensemble of points p distinguished by their coordinates xi and their
associated tangent spaces E(p) with natural basis ∂/∂xi. The mathematical object which
allows tangent spaces to be ‘connected’ to each other and tensors to be ‘transported’ from
one point to another (independently of the existence of a metric) is a ‘connection’.

An affine connection D associates with any vector v of the tangent space E(p) at p an
operator denoted Dv acting on the tensor fields T and possessing the following properties6:

• linearity in v, that is, for all v, w ∈ E(p) and for all a, b ∈ R we have Dav+bwT =
aDvT + bDwT ;

• linearity in T , that is, for any tensors T and S of the same type we have Dv(aT + bS) =
aDvT + bDvS;

• satisfaction of the Leibniz rule, namely, any tensors T and S obey Dv(T ⊗ S) = DvT ⊗
S + T ⊗DvS;

• if C is the contraction operator, then C(DvT ) = Dv(CT );

• and, finally, compatibility with the notion of a directional derivative associated with
tangent vectors, that is, Dvf = v(f) if f is a function of E in R.

Here DvT is the covariant derivative of T with respect to v. It is a tensor field of the
same type as T .

When v and T are the vectors ∂i ≡ ∂/∂xi and ∂j of the natural basis associated with the
coordinates xi, the covariant derivativeD is operationally defined by specifying its connection
coefficients (also referred to as affinities), which are n3 functions of the xi denoted by Γk

ij

such that

D ∂

∂xi

∂

∂xj
≡ D∂i

(∂j) ≡ Di∂j = Γk
ij ∂k. (4.14)

6For a more complete discussion see, for example, Bishop and Goldberg (1980).
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We remark that the notation Di is obviously convenient when there is no possibility of
confusion about the coordinate system used, and it is rather inaccurately referred to as the
covariant derivative with respect to7 xi. More generally, we have

Dvw = viDi(w
j∂j) ≡ vi(Diw

j)∂j with Diw
j ≡ ∂iw

j + Γj
ikw

k, (4.15)

from which we recover (3.13).
The parallel transport of a vector w along a line integral of the field v described by the

equation xi = xi(λ) with vi = dxi/dλ is given by

Dvw = 0 , that is, viDiw
j = 0,

or also, using (4.15),
dwj

dλ
+ Γj

ikw
kvi = 0,

(4.16)

which is an ordinary differential equation for the wi(λ) already obtained in (3.23). Therefore,
the covariant derivative performs its duty: it transports tensor objects of the same type from
one point to another along a given path.

Since the contraction operation implies that C(∂i ⊗ dxj) ≡ ∂i ⊗ dxi = 1, we have

0 = Dj(∂i ⊗ dxi) = (Dj∂i)⊗ dxi + ∂i ⊗Djdx
i

= Γk
ji∂k ⊗ dxi + ∂k ⊗Djdx

k = ∂k ⊗ (Γk
jidx

i +Djdx
k) .

We therefore obtain the expression for the covariant derivative of a 1-form as a function of
the connection coefficients:

Djdx
k = −Γk

jidx
i. (4.17)

Moreover, we recover (3.17), namely, Dj(λkdx
k) ≡ (Djλk)dx

k with Djλk = ∂jλk − Γl
jkλl.

Knowing the derivatives of basis vectors and forms as a function of the Γi
jk, we can

derive the expression for the covariant derivative of a tensor of any type. For example, let
us consider a tensor which is singly contravariant and singly covariant, that is, a

(
1
1

)
tensor:

T = T i
j ∂i ⊗ dxj . Its covariant derivative with respect to a vector v is

DvT = viDi(T
j
k ∂j ⊗ dxk) ≡ vi(DiT

j
k ) ∂j ⊗ dxk,

where DiT
j
k = ∂iT

j
k + Γj

ilT
l
k − Γl

ikT
j
l

(4.18)

are the natural components of DiT already given in (3.18).
Now in order to find how the connection coefficients transform under a change of coor-

dinates, we note that the covariant derivative of a vector w along another vector v which
is the vector given in (4.15), namely, Dvw = vi(Diw

j)∂j , can just as well be viewed as the

7We shall also sometimes use a comma to denote partial derivatives as in ∂T/∂xi ≡ ∂iT ≡ T,i, and a
semicolon to denote covariant derivatives as in D∂i

T ≡ DiT ≡ T;i .

We note that the connection D and the connection coefficients Γi
jk are not decorated with a tilde as in

Section 3.2 et seq., because here we do not assume a priori that there exists a coordinate system in which all
the Γi

jk vanish.
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contraction of the vector v with a
(
1
1

)
tensor having components Diw

j , which can be de-
noted as Dw ≡ Diw

j∂j ⊗ dxi. Indeed, since by the definition of the contraction operation
C(k,i)∂k ⊗ dxi = 1, we have

C(v,Dw) ≡ C(k,i)(v
k∂k ⊗Diw

j∂j ⊗ dxi) = vkDkw
j∂j ≡ Dvw . (4.19)

It is then a simple exercise to find the transformation law for the Γi
jk already given in (3.21):

Γ′j
ki =

∂xr

∂x′i
∂xl

∂x′k
∂x′j

∂xp
Γp
lr +

∂2xl

∂x′k∂x′i
∂x′j

∂xl
. (4.20)

There are as many connections as there are possible choices of the functions Γi
jk, that is,

n3. If they are symmetric in i and k the connection is said to be torsion-free.
Now let us suppose that in addition to a torsion-free connection [that is, n2(n + 1)/2

functions Γi
jk], we are also provided with a metric, that is, a field of 2-fold covariant tensors

which is symmetric and nondegenerate8: g = gijdx
idxj .

We can impose the condition that the connection be compatible with the metric, that
is, that

Dvg = 0 ∀v ⇐⇒ Digjk = 0 . (4.21)

The (symmetric) connection is then called the Levi-Civita connection and the connection
coefficients, now referred to as Christoffel symbols, are related to the metric components by
(3.27):

Γi
jk =

1

2
gil(∂jgkl + ∂kglj − ∂lgjk) . (4.22)

Finally, if there exist systems of coordinates Xi where all the Γi
jk vanish, then the con-

nection is flat, the coordinates Xi are Cartesian, the metric coefficients are constants, and
the Christoffel symbols in the system xi = xi(Xj), denoted by Γ̃i

jk in this case, are expressed
in terms of only n functions according to (4.20), which was used to define them in (3.25):

Γ̃i
jk ≡ ∂xi

∂X l

∂2X l

∂xj∂xk
. (4.23)

The Riemann spaces of general relativity will be equipped with Levi-Civita connections
which are not flat.9

4.6 Vector calculus and differential operators

• Vector calculus. By extending the definitions given in Section 2.6, we can define the vector
product of two vectors v and w as the 1-form v∧w = eijkV

jW kθi in the moving frame where
the metric is written as e = δijθ

iθj (see Section 4.3), or else using (3.40)

v ∧ w = εijkv
jwkdxi, (4.24)

where vi and wj are their components in the natural basis ∂i and where εijk =
√
dete eijk

with e123 = 1, the quantity dete being the determinant of the components eij of the metric
in the coordinates xi; see Section 3.6.

8Here we call the metric g rather than e because we do not assume a priori that there exist systems of
Cartesian coordinates in which its coefficients are given by δij .

9The tools of differential geometry and tensor calculus which we have introduced in the present and
preceding chapters are useful in Newtonian mechanics, but become indispensable in both special and general
relativity.
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The scalar product of two vectors is (v.w) = eijv
iwj , and so ∂i.∂j = eij .

Similarly, the scalar product of two forms is (λ.μ) = eijλiμj and so dxi.dxj = eij .
We therefore find, for example, that the squared norm of the vector product of two vectors

can be written as follows using the properties of the Levi-Civita symbol (see Section 1.5):

(v ∧ w)2 = eilεijkεlmnv
jwkvmwn = εljkεlmnv

jwkvmwn

= (ejmekn − ejnekm)vjwkvmwn

= v2w2 − (v.w)2 .

(4.25)

• Differential operators. If df is a differential form, the gradient of f , denoted ∇f , is the
vector associated with it by using the metric e to raise an index. In the coordinates xi we have

∇f ≡
(
eij

∂f

∂xj

)
∂i . (4.26)

We can similarly define the divergence and the Laplacian according to the discussion in
Sections 2.6 and 3.6 as

∇.v = Div
i =

1√
dete

∂i(
√
dete vi), �f = DiD

if =
1√
dete

∂i(
√
dete eij∂jf) . (4.27)

Differential operators in spherical coordinates

As a function of the triad (hr, hθ, hφ) introduced in (4.10), we have

∇f =
∂f

∂r
hr +

1

r

∂f

∂θ
hθ +

1

r sin θ

∂f

∂φ
hφ

∇.v =
1

r2
∂r(r

2vr) +
1

sin θ
∂θ(sin θv

θ) + ∂φv
φ


f =
1

r2
∂r(r

2∂rf) +
1

r2 sin θ
∂θ(sin θ∂rf) +

1

r2 sin2 θ
∂2
φφf .

(4.28)

The surface element

Since a surface Σ is defined by xi = xi(λ, μ) with ni the unit vector normal to the surface
and deth the determinant of the induced metric, we have the relation given in Section 3.6:
εijk(∂x

j/∂λ)(∂xk/∂μ) = ni

√
deth.

This can be demonstrated by generalizing the results of Section 2.6. We introduce two vectors
tangent to Σ with components eiλ = ∂xi/∂λ and eiμ = ∂xi/∂μ, i.e., eλ = ∂λ and eμ = ∂μ, tangent

to the coordinate lines λ and μ on Σ. Writing the Euclidean metric as e = eijdx
i ⊗ dxj , the

metric induced on Σ will be

e|Σ = eij
∂xi

∂ya

∂xj

∂yb
dya ⊗ dyb = e2λdλ

2 + 2(eλ.eμ)dλdμ+ e2μdμ
2,

the determinant of which is deth = (eλ ∧ eμ)
2 according to (4.25). Moreover, the normal vector

is defined as (see Section 2.6) n = (eλ ∧ eμ)/|eλ ∧ eμ| with, from (4.24), (eλ ∧ eμ)i = εijke
j
λe

k
μ =

εijk(∂x
j/∂λ)(∂xk/∂μ).

We therefore find dSi = εijk(∂x
j/∂λ)(∂xk/∂μ)dλ dμ = ni

√
deth dλ dμ.
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Part II

Dynamics

Furthermore we may remark that any velocity once imparted to a moving body will be
rigidly maintained as long as the external causes of acceleration or retardation are removed,
a condition which is found only on horizontal planes. . .

Galileo Galilei, Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove Scienze, Leiden,
Elzevir, 1638; English translation by Henry Crew and Alfonso de Salvio, Discourses and

Mathematical Demonstrations Relating to Two New Sciences, New York, Macmillan, 1914

Every body perseveres in its state of rest, or of uniform motion in a right line, unless it
is compelled to change that state by forces impressed thereon.

The alteration of motion is ever proportional to the motive force impressed; and is made
in the direction of the right line in which that force is impressed.

To every action there is always opposed an equal reaction: or the mutual actions of two
bodies upon each other are always equal, and directed to contrary parts.

Sir Isaac Newton, Philosophiæ Naturalis Principia Mathematica, London, 1687; English
translation by Andrew Motte, The Mathematical Principles of Natural Philosophy,

London, 1729
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5

Equations of motion

Now that we have set up the Euclidean framework of Newtonian physics and discussed the basic
ideas of kinematics, in this chapter we turn to the more prominent aspects of Newtonian dynamics
and the principle of Galilean relativity.

5.1 The law of Newtonian dynamics

The fundamental law describing the motion of a point particle P interacting with other
particles Pa, called Newton’s second law, is a differential equation written in the absolute
Cartesian frame S as

ma = F or, in component form, m
d2Xi

dt2
= F i, (5.1)

where a (with Cartesian components ai ≡ d2Xi/dt2 ≡ Ẍi) is the acceleration of the tra-
jectory of P with equation Xi = Xi(t). The three functions of time F i are the Cartesian
components of a ‘Absolute, True, and Mathematical’ vector F representing the interaction of
P with the points Pa at time t, that is, the ‘Relative, Apparent, and Common’ force exerted
on P , the nature and effect of which we need to specify. Finally, the parameter m, a con-
stant, is an attribute of the point P , its inertial mass, which can be expressed, for example,
in kilograms (kg). It characterizes the ‘resistance’ of P to the action of the other points1 Pa.

The law of motion in curvilinear coordinates

In Section 3.5 we saw how the acceleration transforms in a change from a system of Cartesian
coordinates Xi to a system of curvilinear coordinates xi = xi(Xj):

ai �→ ∂xi

∂Xj
aj ≡ D̃vi

dt
=

dvi

dt
+ Γ̃i

jkv
jvk, where vi =

∂xi

∂Xj
V j

and Γ̃i
jk ≡ − ∂2xi

∂Xl∂Xm

∂Xl

∂xj

∂Xm

∂xk
=

∂xi

∂Xl

∂2Xl

∂xj∂xk
=

1

2
eil
(
∂ekl
∂xj

+
∂ejl
∂xk

− ∂ejk
∂xl

)

,

where ekl = δij
∂Xi

∂xk

∂Xj

∂xl
, ekm = δpq

∂xk

∂Xp

∂xm

∂Xq
.

(5.2)

1We assume, since it appears to agree with experiment, that all the masses are of the same sign, which
we take to be positive.

Actually, the origin of the inertia of a body remains one of the mysteries of physics; see, for example,
Barbour and Pfister (1995).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.
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Newton’s law (5.1) then becomes (see Sections 3.5 and 4.5)

m
D̃vi

dt
= f i or, in intrinsic form, mD̃vv = F, (5.3)

where vi = (∂xi/∂Xj)V j and f i = (∂xi/∂Xj)F j are the components of the velocity and the
force in the system C and ∂xi/∂Xj is evaluated on the trajectory of P , i.e., on Xi = Xi(t).
Finally, v = V i ei = vi∂/∂xi and F = F i ei = f i∂/∂xi. This equation has the same form (it is

invariant) in any coordinate system. It is the specification of the Christoffel symbols Γ̃i
jk that

distinguishes the coordinate system.
For example, in polar coordinates (X = r cosφ, Y = r sinφ), (5.3) is written as (see Sec-

tion 3.5)

m
D̃ṙ

dt
≡ m(r̈ − rφ̇2) = fr, m

D̃φ̇

dt
≡ m

(

φ̈+ 2
ṙφ̇

r

)

= fφ, (5.4)

where fr = FX cosφ+ FY sinφ and fφ = −FX sinφ+ FY cosφ.

5.2 Properties of forces

There are some general arguments which allow us to state certain properties of the interac-
tions which can be described by Newtonian physics.

The very fact that we decide to represent an interaction by a vector means that we are
limiting ourselves (however, this has never been found to be a restriction!) to phenomena
which do not depend on the position or orientation of the reference frame in which they are
studied.2

Since the algebra of the vector space to which the vectors representing the forces belong
is linear, we are de facto limiting ourselves to interactions which satisfy the superposition
principle, which can be stated as follows. If fa′a represents the action of the body Pa′ on Pa

in the absence of any other body, then the vector Fa representing the action of the set of
bodies Pa′ is given by the sum3 Fa =

∑
a′ fa′a.

Finally, the law of action and reaction or Newton’s third law (the importance of which
will become evident in the following chapter) states that the action of a body P2 on another
body P1, described by f21, must be equal and opposite to the action f12 of P1 on P2, which
translates into the vector condition f21 = −f12.

The force vector appearing in the law of motion (5.1) is a function of time. More precisely,
it is a functional of the trajectory of P , which means that at a given time it is a function of
the position vector R of the point P as well as, a priori, of the velocity v, the acceleration a,
the derivative of the acceleration ȧ, and so on, of P (cf. the example of the magnetic force).

2This is one aspect of the Copernican principle (see also Section 1.3), namely, the law of motion of a body
cannot depend on either the choice or the orientation of the axes of the Cartesian reference frame which is
chosen as the absolute reference frame. The ‘active’ version of this principle states that the law of motion
of a isolated system of bodies cannot depend on either the position or the orientation of the system in the
absolute frame.

3If the fa′a are identified as free vectors, this is truly a vector sum, while if, as in the usual approach,
fa′a is identified as a bound vector, that is, as a bipoint visualized as an arrow issuing from Pa, then Fa is
generally called the resultant force. We note that the bound vector fa′a is evaluated at the point Pa and not
at Pa′ .
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However, it turns out that a dependence only on R is sufficient for describing gravitation
within the Newtonian framework, and in this case F = F (P ).

5.3 The principle of Galilean relativity

A free point particle is, by definition, not subject to any force. Then according to Newton’s
law (5.1) we see that it undergoes uniform rectilinear motion in the absolute Cartesian frame.

It should be possible to use this property of free particles to find the absolute Cartesian
reference frame, independently of the existence of distant stars assumed to be at absolute rest.
In fact, the Cartesian reference frame (for example, the solar system or the laboratory walls)
in which the coordinates of free particles vary linearly with time should be the incarnation
of the absolute Cartesian frame.4

However, if we accept the idea that a free particle is free in any reference frame, then
Newton’s law is not modified under Galilean transformations because the acceleration is
represented by the same vector in any inertial frame (see Section 2.4). In other words, the
law of motion of point particles has the same form (it is invariant) in all frames undergoing
uniform rectilinear motion relative to the absolute frame: ma = 0, no matter whether S is
the absolute frame or an inertial frame. Therefore, if in an inertial Cartesian frame Sg the
particle trajectory is uniform and rectilinear with velocity v, then in any other Cartesian
frame S ′

g moving with constant velocity V0 relative to Sg, the trajectory will also be uniform
and rectilinear with velocity v′ = v − V0, which can vanish if v = V0. This is Newton’s first
law, which was actually stated by Galileo and is also called the principle of inertia.

A consequence of this law is that if a free object is at rest in one reference frame, it
is not possible to conclude that this frame is the absolute frame and that the object is at
absolute rest (and therefore identifiable with a given point of E3, or, more precisely, a fiber
of N4 = E3 ×R). It can only be concluded that the frame in question is inertial. The object
can be undergoing any uniform translation relative to the absolute reference frame and it is
impossible to measure this velocity, at least by means of free particles.

We thus conclude that this Galilean invariance of the law of dynamics makes the idea of
absolute space meaningless. We can nevertheless imagine that particles subject to interactions
might allow absolute space to be determined. However, if an interaction is represented by the
same vector F in all Galilean frames, then Newton’s law is written in the same way ma = F
in any inertial frame. But if the law is the same in the absolute Cartesian frame S and in
any inertial Cartesian frame Sg, it cannot be used to distinguish S from5 Sg.

The question then becomes the following. Is an interaction (a fundamental one like grav-
itation or electromagnetism) always represented by the same vector in any inertial frame?
For two centuries the answer, based on experiment, was ‘yes’. (Of course, in practice it is
sometimes necessary to introduce simplifying effective forces which depend on the reference
frame, such as a frictional force which is a function of the velocity of the object under study.)

This property in fact seemed to be so general that it came to be stated as a principle, the
principle of Galilean relativity: all the laws of Newtonian mechanics must be invariant under

4If the particles turn out not to be undergoing uniform translation, this would mean a priori that the
reference frame or the clocks are not good enough for making precise measurements, or that the particles are
not in fact actually free.

5This would be possible if a law fixed the initial conditions of motion in the absolute frame. However,
Newton’s theory is mute on this point.
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Galilean transformations. (However, it has now been known for over a century, see Book 2,
that this is true only when the relative velocities of the reference frames and the particles
are small compared to the speed of light.6)

Therefore, in Newtonian mechanics absolute space is a phantom on two accounts7: its
geometrical structure is independent of its matter content (the Pythagorean theorem is valid
whether or not the universe is empty), while at the same time it is impossible to ‘anchor’
it anywhere. In fact, there is no absolute space or absolute reference frame in Newtonian
mechanics. What is absolute is its dynamical equivalence class, that is, the ensemble of
inertial frames undergoing uniform rectilinear motion with respect to it, which we shall
henceforth denote as S or Sg without distinguishing between them.

5.4 Moving frames and inertial forces

On the other hand, any frame undergoing acceleration relative to the ensemble of inertial
frames can be distinguished from the latter: the motions of free particles will not be rep-
resented by uniform rectilinear trajectories, and the dynamical law will not be written as
F = ma. Since a Cartesian frame S ′ is related to an inertial frame S by a rigid displacement,
we have, in component form or the vector equivalent (see Sections 1.5 and 2.4),

⎧
⎨

⎩

ma′ = F −md̈+m
(
−2Ω ∧ v′ +Ω ∧ (R′ ∧ Ω)− Ω̇ ∧R′

)

ma′i = R i
j F

j +m
(
2 Ṙ i

j V j + R̈ i
j Xj − (R i

j d
j)˙̇
)
,

(5.5)

where R i
j (t)F

j are the components in S ′ of the vector F representing the interaction of the
particles in S. This vector F also represents the interaction in S ′ if the interaction does not
depend on the acceleration of the reference frame in which it is studied. This is the case for
the forces dealt with in Newtonian mechanics, and from now on we shall use the term vector
force without specifying the frame.8 The other terms in these expressions are referred to as
inertial forces and are sometimes termed fictitious because they vanish in an inertial frame.

Equation (5.5) gives, in particular, the acceleration in S ′ of a free particle (F = 0)
whose trajectory is rectilinear and uniform in the inertial frame S (Xi = Xi

0 + V i
0 t). This

acceleration a′ is independent of the mass m, which is natural since the particle motion is a
purely kinematical ‘effect of perspective’9 due to the motion of the reference frame and not
to the action of a force.

6Galilean invariance is guaranteed if for example the force representing the action of Pa on P depends

only on the separation and, possibly, its derivatives: f = f(la, l̇a, l̈a...), where la ≡ R−Ra.
7According to a clever image of Gilles Châtelet in Les enjeux du mobile [Châtelet (1993)].
8This is another facet of the Copernican principle: the force exerted on an object cannot depend on either

the choice of reference frame or its motion. This occurs if the vector representing the action of Pa on P
depends only on the separation: f = f(la).

9This image is due to J.-M. Lévy-Leblond.
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Using this mathematical property of non-invariance of the law of dynamics under the
group of rigid displacements, we can deduce the existence of inertial forces in non-inertial
reference frames and quantify their effects. For example, the rotation of the plane of oscillation
of the Foucault pendulum relative to the walls of the Pantheon measures the absolute rotation
of the Pantheon, which turns out to coincide with that of the Earth relative to the distant
stars. This remarkable consequence of Newtonian physics was amazing to Newton himself as
well as to Leibniz, Kant, Mach, Poincaré, Einstein, . . . .10

The Foucault pendulum

In the frame S ′ attached (for example!) to the Pantheon walls, the equation of motion of the
mass m at the end of a pendulum is a′ = F/m − 2Ω ∧ v′ to first order in Ω, i.e., if we neglect
the centrifugal force quadratic in Ω and take Ω to be constant. The Earth’s rotation vector Ω,
of modulus ω, is directed along the polar axis, from which we find (see Section 2.5 and Fig. 5.1)
Ω = ω(cosΨe′x + sinΨe′z), where e′x is the basis vector of S ′ pointing from south to north, e′z
points along the vertical upward from the point, and Ψ is the latitude at the point (Ψ = 0 at the
equator). The force F applied to the mass is the sum of the tension of the cable (which is fixed at
X ′ = Y ′ = 0, Z′ = l) and the local constant gravitational force. For small oscillations it reduces
to F/m = −(g/l)X ′ e′x − (g/l)Y ′ e′y, where X ′(t) and Y ′(t) specify the position of the mass in
the horizontal plane and g is the acceleration of gravity. The equations of motion then become

Ẍ ′ +
g

l
X ′ − 2(ω sinΨ) Ẏ ′ = 0 , Ÿ ′ +

g

l
Y ′ + 2(ω sinΨ) Ẋ ′ = 0, (5.6)

the solution of which to first order in ω is

X ′(t) = X ′
0[cos(ω t sinΨ) cos(t

√
g/l) + (

√
l/g ω sinΨ) sin(ω t sinΨ) sin(t

√
g/l)] ,

Y ′(t) = X ′
0[(
√

l/g ω sinΨ) cos(ω t sinΨ) sin(t
√

g/l)− sin(ω t sinΨ) cos(t
√

g/l)] .
(5.7)

Let us consider the times tn = 2πn
√

l/g, where 2π
√

l/g is the proper period of oscillation
of the pendulum. Then we have X ′

n = X ′
0 cos(tnω sinΨ), Y ′

n = −X ′
0 sin(tnω sinΨ), which shows

that the plane of the oscillations of the pendulum turns relative to S ′ from the north toward the
east with period

P =
2π

ω sinΨ
. (5.8)

At the poles P = 1 day, at the equator the plane of the pendulum remains fixed (within the
approximations we have made), and in Paris (Ψ = 48◦51′) P ∼ 32 hours.

10We also note that the existence of inertial forces makes it difficult to construct a rigid, rotating reference
frame of large size. In fact, it is necessary to make the objects of mass m of which the system is composed

subject to forces F = m[−Ω ∧ (R′ ∧ Ω) + Ω̇ ∧R′ + d̈] which grow with R′.
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Fig. 5.1 Deviation toward the east and the Foucault pendulum.

The deviation toward the east

The acceleration of a particle in the frame attached to the laboratory walls reduces to
a′ = a − 2Ω ∧ v′ if we neglect the centrifugal acceleration and take Ω to be constant. If a is
constant, integration at zeroth order in Ω gives v′ = at (assuming that the initial velocity is
zero). Substituting this expression for v′ into the equation for a′, we obtain the latter to first
order in Ω: a′ = a − 2Ω ∧ at, the first integral of which gives v′ = at − Ω ∧ at2 and the second
gives O′P = 1

2
at2 +H − 1

3
Ω ∧ at3, where H is the initial position vector of the particle in the

laboratory.
If we take a = −ge′z and H = he′z, using Ω = ω(cosΨe′x + sinΨe′z) (see Section 2.5) we find

O′P = X ′ie′i with X ′ = 0, Y ′ = − 1
3
gωt3 cosΨ, and Z′ = − 1

2
gt2 + h. Since the time to fall is

√
2h/g, the particle will have deviated from the vertical (we recall that we are neglecting the

centrifugal force) by an amount

Y ′ = −ω

(
8h3

9g

)1/2

cosΨ . (5.9)

The negative sign indicates deviation toward the east. Taking the gravitational acceleration
at the Earth’s surface to be g = 9.81 m/s2, ω = 2π/24 hours, h = 68 m (the height of the
Pantheon), and Ψ = 48◦51′, we find |Y ′| ≈ 8 mm, the value actually measured by Camille
Flammarion in 1903.
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Dynamics of massive systems

In this chapter we present the laws of motion of an ensemble of point masses forming a solid body
whose shape is invariant, or a fluid whose shape can vary with time.

6.1 The equations of motion of a solid

The law describing the motion of a point mass is ma = f , where a is the acceleration of
its trajectory P (t) in a Cartesian inertial frame S, m is its inertial mass, and f is a vector
representing the force on the particle. An ensemble of point masses constitutes a solid if the
distances between the points can be assumed constant. Then there exists a Cartesian frame
S ′ attached to the solid which is obtained from S by a rigid displacement in which all the
points P are at rest.

Let R = OP be the radius vector of the point P in S, d = OO′ be the vector to the
origin of the frame S ′ in which P is at rest, and R′ = O′P be the position vector of P in
S ′. Differentiating the identity R = R′ + d with respect to time twice, we find the following,
using the fact that v′ and a′ vanish (see Section 2.4):

v = ḋ+Ω ∧R′, a = d̈− Ω ∧ (R′ ∧ Ω) + Ω̇ ∧R′, with Ṙ′ ≡ Ω ∧R′, (6.1)

where Ω is the rotation vector of the solid, that is, of S ′. We choose the center of mass,
defined as

∑
mR′ = 0, (6.2)

where the sum runs over all the points P , to be the origin O′ of S ′. We note that the center
of mass does not necessarily correspond to a mass point of the solid.

Now from the dynamical law ma = f with a given in (6.1) and using (6.2) (Ω is indepen-
dent of the points P ) we find

Md̈ = F, (6.3)

where M =
∑

m and F ≡
∑

f is the vector sum of the forces applied at the various points
of the solid. This equation governs the motion of the center of mass in the inertial frame S.
We note that the vector F represents the external force applied to the solid because the sum
of the internal forces is zero (which lies at the origin of the rigidity of the solid) owing to the
equality of action and reaction.1

1This demonstrates the importance of this law.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.
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We now introduce

K ≡
∑

R′ ∧ f and J ≡
∑

mR′ ∧ v . (6.4)

The vector K represents the moment of the (external) forces applied to the solid, and J is its
angular momentum. According to the law of dynamics K =

∑
mR′∧a, so that the equation

of motion, which in S governs the rotational motion of the solid about its center of mass, is

J̇ = K. (6.5)

Indeed,

J̇ =
∑

mṘ′ ∧ v +
∑

mR′ ∧ a

or ∑
mṘ′ ∧ v =

∑
m(Ω ∧R′) ∧ (ḋ+Ω ∧R′) = 0

if
∑

mR′ = 0. Q.E.D.
We still need to find the relation between J and Ω. We have

J ≡
∑

mR′ ∧ v =
∑

mR′ ∧ (ḋ+Ω ∧R′) =
∑

m[R′2Ω−R′(R′.Ω)] (6.6)

or, in component form (see Section 2.4), J = J ′ie′i, where e
′
i are the basis vectors of the frame

attached to the solid and

J ′
i = Iij ω

′j with Iij ≡
∑

m(δij X
′kX ′

k −X ′
iX

′
j). (6.7)

The axes X ′i can be chosen such that the inertia tensor Iij is diagonal. The three elements
on the diagonal I1, I2, and I3 are the principal moments of inertia. If they are all the same,
the solid in question is a spherical top; if I1 = I2 and I3 = 0 the solid is a rotor, and if
I1 = I2 �= I3 it is a symmetric top.

The moments of inertia of a homogeneous ellipsoid

Let us consider an ellipsoid bounded by the surface (X2
1/a

2
1) + (X2

2/a
2
2) + (X2

3/a
2
3) = 1.

Making the change of variable Xi = aixi, the principal moments of inertia become those of a
unit sphere (for which the volume element in spherical coordinates is given in Section 3.6) of
density . Using 3

∫
x2
i dx1dx2dx3 =

∫
r4dr sin θdφ = 4πr5/5 and the fact that the volume of the

ellipsoid is V = 4πa1a2a3/3, we have, if the ellipsoid is homogeneous (that is,  is constant),

I1 = 

∫

(X2
2 +X2

3 )dX1dX2dX3 = a1a2a3

∫

(a2
2x

2
2 + a2

3x
2
3)dx1dx2dx3 =

M

5
(a2

2 + a2
3) (6.8)

and similar expressions for I2 and I3, where M = V is the total mass of the ellipsoid.
If the Earth is described as a homogeneous oblate spheroid of equatorial radius a1 = a2 ≡

re = 6378 km and polar radius a3 ≡ rp = 6357 km, we find (I3 − I1)/I3 = (r2e − r2p)/2r
2
e � 3.3×

10−3. Measurements (by observation of satellite trajectories and the precession of the equinoxes)
give I1 = 0.330 2M⊕r

2
e , I3 = 0.331 2M⊕r

2
e , or (I3 − I1)/I3 = 3.0 × 10−3 (the difference can be

attributed to the fact that the Earth is not homogeneous).
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The Euler equations of motion of a solid

The equation of motion of a solid J̇ = K in the basis e′i of a frame attached to the solid can
be written as (see Section 2.4)

J̇=
d

dt
(J ′ie′i)= J̇ ′ie′i + J ′iė′i= J̇ ′ie′i + J ′iΩ∧ e′i= J̇ ′ie′i + J ′iω′je′j ∧ e′i=(J̇ ′i − eijkJ

′jω′k)e′i. (6.9)

Since J ′1 = I1ω
′1 and so on, where the Ii are the principal moments of inertia of the solid, the

equations of motion can in the end be written as

I1
dω′1

dt
− ω′2ω′3(I2 − I3) = K′1, (6.10)

with the other two obtained by cyclic permutation.

6.2 Examples of motions of a solid

Let us consider the case K = 0 (no torque). We see from (6.5)–(6.7) that the rotation vector
Ω of a spherical top or a rotor (parallel to the angular momentum J) remains at a fixed
direction in S no matter what sort of motion its center of mass undergoes. Such an object is
called a gyroscope.

Now let us assume that the solid is sufficiently compact so that the spatial variations of
the external forces f applied at the points making it up are negligible. We then can write
f = mgg, where g is a constant vector (a gravitational field, for example) and mg is the
coupling of a given point of the solid to this field (for example, the gravitational mass). We
then have K ≡

∑
R′ ∧ f = (

∑
mgR

′) ∧ g. If it turns out that mg = m, then the ‘center of
gravity’ and the center of mass coincide, and K = 0, so that although it is acted on by an
external force, the rotation vector of a gyroscope remains at a fixed direction in S.

Symmetric tops and the polhode

The angular momentum of a free solid is constant and it is always possible to choose an
inertial frame such that J = je3. Moreover, J is related to the angular velocity Ω = ω′ie′i of the
symmetric top as J = I1(ω

′1e′1 + ω′2e′2) + I3 ω
′3e′3, where e′i are the basis vectors of the frame

attached to the solid and I1 and I3 are its moments of inertia. Writing e3 = R j
3 e′j and ω′i as

functions of the Euler angles (see Sections 1.3 and 1.5), we find

j sinΨ sinΘ = I1(Φ̇ sinΨ sinΘ + Θ̇ cosΨ)

j cosΨ sinΘ= I1(Φ̇ cosΨ sinΘ− Θ̇ sinΨ)

j cosΘ= I3(Φ̇ cosΘ + Ψ̇) .

(6.11)

For Θ 	= 0 the first two equations can be written as I1Θ̇ = 0, j = I1Φ̇. Therefore, the symmetry
axis of the top maintains a constant angle Θ relative to the angular momentum J and the line
of nodes turns at the angular velocity of regular precession Φ̇ = j/I1. The last equation gives

the velocity of the rotation of the top about its symmetry axis, ω′3 ≡ Φ̇ cosΘ + Ψ̇ = j cosΘ/I3,
as well as the proper rotational velocity

−Ψ̇ = ω′3 I3 − I1
I1

. (6.12)
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These results can also be derived from the Euler equations (6.10). The equation for ω′
3 again

gives ω′3 equal to a constant, and those for ω′
2 and ω′

1 are equivalent to dω′1/dt+ω0 ω
′2 = 0 and

dω′2/dt − ω0 ω
′1 = 0 with ω0 = ω′3(I3 − I1)/I1, which have the solution ω′1 = A cos(ω0t + φ)

and ω′2 = A sin(ω0t + φ), where A and φ are two integration constants. Likewise, the vector
Ω, and therefore also the vector J , turns about the axis of the top e′3 at the angular speed ω0,
which is equal to −Ψ̇ (see Fig. 6.1).

e3

J

e ′
3

–
.

.
Ω

Φ

Θ

Ψ

Fig. 6.1 Precession of a symmetric top.

The circle described on the surface of the Earth by the tip of the vector corresponding to rota-
tion about its axis of inertia (that is, by the point where the centrifugal acceleration vanishes), or
the polhode (path of the pole), which was predicted by Euler in 1765, was first measured in 1891.
Its radius is about ten meters. If the Earth is treated as a homogeneous ellipsoid of revolution,
then from (6.8) and the fact that 2π/ω′3 = 1 day, we find P ≡ (2π/ω′3)(I3/(I3 − I1)) ≈ 304 days.
Using the measured values I1 = 0.330 2M⊕r

2
e and I3 = 0.331 2M⊕r

2
e , we obtain P ≈ 331 days.

The period which is actually measured (the ‘Chandler wobble’) is about 432 days, with the dif-
ference from the predicted value being largely attributable to the Earth’s elasticity (Newcomb).

6.3 The Euler equations of fluid motion

A perfect fluid is characterized by its (inertial) mass density (t, xi), its pressure p(t, xi)
which phenomenologically describes its internal collisions, and a velocity field v(t, xi) giving
its velocity at xi at time t. The streamlines are integral curves of the velocity field; the
streamlines and trajectories of the fluid elements only coincide if the flow is stationary, that
is, if ∂vi/∂t = 0.

Suppose that we are working in a Cartesian inertial frame (see Section 2.6 for the defini-
tions of the differential operators used).

The continuity equation or mass conservation equation

∂

∂t
+∇. (v) = 0 (6.13)

expresses the fact that the variation of the mass inside a given volume is equal to the quantity
of matter which enters the volume minus the quantity which leaves.

Specifically, let us consider a parallelepiped V at rest in this frame. The mass it con-
tains is m =

∫
V
(t,Xi)d3X, where d3X ≡ dX1dX2dX3. Its variation during a time interval
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dt is dm = dt
∫
V
(∂/∂t) dX1dX2dX3 and is equal to the amount which leaves the vol-

ume, that is, −dt
∫
S
(V 1)dX2dX3 minus two similar terms. Using the divergence theorem

(see Section 2.6) this is −dt
∫
V
∂1(V

1)dX1dX2dX3 − ... = −dt
∫
V
∂i(V

i)d3X. Therefore,∫
V
(∂/∂t+∇.(v)) d3X = 0 for any size of the parallelepiped V , so that the integrand must

be equal to zero. Q.E.D.
The Euler equation is Newton’s equation F = mdv/dt for a fluid element of mass m:

dv

dt
≡ ∂v

∂t
+ (v.∇)v =

1


(f −∇p). (6.14)

Indeed, the force exerted on the small parallelepiped τ bounded by S and containing mass
m (sufficiently small that its velocity can be defined unambiguously) is, by the definition of
the pressure, −

∫
S
p dS = −

∫
τ
∇p d3X = −(∇p) τ according to the divergence theorem. The

quantity  is the mass density (m = τ), and f is the density of the force field acting on the
fluid. This force may be external, or internal, that is, due to forces of the rest of the fluid on the
element in question which are not included in the pressure (a gravitational force, for example).

Equations (6.13) and (6.14) for the motion of a fluid have the two following simple con-
sequences.2

Using the continuity equation (6.13) and the divergence theorem, it is easy to prove the
following useful relation valid for any function g(t,Xi):

d

dt

∫
g d3X =

∫

dg

dt
d3X. (6.15)

For g = 1 we find the statement that the total mass is constant: M ≡
∫
 d3X.

For g = v = Ṙ we find, using the Euler equation (6.14) and applying the divergence
theorem a second time,

d2

dt2

∫
R d3X =

∫
f d3X ≡ Fext , (6.16)

that is, the equation of motion of the fluid as a whole.

The Eulerian and Lagrangian derivatives

Let us consider, in some Cartesian frame, a tensor field G(t,Xi) (which may be a scalar,
a vector, and so on). Its Eulerian derivative ∂G/∂t is its rate of variation at a given point in
space. The differential dG = ∂iG dXi+(∂G/∂t)dt represents its variation under an infinitesimal
change of t and Xi. If we require that dXi arise from the displacement of the fluid, we then
have dXi = V idt, where the V i are the Cartesian components of the velocity field v(t,Xi) at
the instant and at the point in question. Therefore,

dG

dt
=

∂G

∂t
+ V i ∂G

∂Xi
=

∂G

∂t
+ v.∇G. (6.17)

This Lagrangian derivative dG/dt (also called the particle or convective derivative) represents
the variation of G along the trajectory of a fluid element.

If G = , the mass density of the fluid, then d/dt = ∂/∂t + v.∇ = −∇.v owing to the
continuity equation. A flow is incompressible if d/dt = 0, and its velocity field then has zero
divergence: ∇.v = 0.

2We shall postpone the study of wave propagation to Section 17.3.
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Finally, an equation of state relates the pressure and the density. For a barotropic fluid
it is simply

p = p () . (6.18)

As an example, for a polytrope we have p ∝ γ , where γ is its adiabatic index.
The continuity equation and the Euler equation are written in tensor notation as

∂

∂t
+ D̃i(v

i) = 0,
∂vi

∂t
+ vjD̃jv

i =
1


(f i − eij∂jp), (6.19)

where the eij are the coefficients of the inverse Euclidean metric in the coordinates xi and
D̃ is the associated covariant derivative (see Section 3.2).

Newton’s bucket

In an accelerated frame S ′ the Euler equation can be written as (see Section 5.4)

∂v′

∂t
+ v′.∇v′ =

1


(f −∇p)− 2Ω ∧ v′ +Ω ∧ (R′ ∧ Ω)− Ω̇ ∧R′ − d̈ . (6.20)

Let us consider a fluid (water, for example) at rest in a reference frame undergoing uniform
rotation (for example, a bucket turning about the vertical). The external force f is that of
terrestrial gravity f = g, where g is a constant vector. The Euler equation reduces to 0 =
(f −∇p)/+Ω2X ′, where X ′ is the distance to the rotation axis. Let [X ′ = X ′(λ), Z ′ = Z′(λ)]

be the equations of the water surface Σ. Its tangent vector is (Ẋ ′, Ż′), where here the dot
denotes differentiation with respect to the parameter λ. The components of the gravitational
and centrifugal accelerations are (0,−g) and (Ω2X ′, 0). Their sum must be orthogonal to Σ,

and so Ω2X ′Ẋ ′ − gŻ′ = 0, from which we derive the equation for Σ: Z′ = X ′2Ω2/(2g). It is a
parabola (see Fig. 6.2).

X 

Z 

Z ′

Ω
g  +  Ω2 X ′g 

X ′Ω2

X ′

Fig. 6.2 Newton’s bucket.

Therefore, even though it is at rest relative to the bucket walls, the surface of the water is
not horizontal. Its curvature measures the absolute rotation of the walls, which amazed Newton
himself and was exhaustively discussed by Mach (who wondered if Σ would remain concave if
the bucket were several leagues thick. . . ).
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7

Conservation laws

In this chapter we define the conserved quantities associated with an isolated dynamical system, that
is, the quantities which remain constant during the motion of the system. The law of momentum
conservation follows directly from Newton’s third law. The law of angular momentum conservation
holds if the forces acting on the elements of the system depend only on the separation of the
elements. Finally, the conservation of total energy requires in addition that the forces be derivable
from a potential.

7.1 Momentum and the center of mass

The superposition principle for forces allows Newton’s law of motion for a body Pa acted on
by other bodies Pa′ in an inertial Cartesian frame S to be written as

maaa = Fa with Fa =
∑

a′ �=a

fa′a . (7.1)

For example, in the case of three bodies m1a1 = f21 + f31, m2a2 = f32 + f12, and m3a3 =
f13 + f23, and so

∑
a maaa ≡

∑
a madva/dt = 0 owing to Newton’s third law faa′ = −fa′a.

The vector corresponding to the total momentum P defined as

P =
∑

a

mava (7.2)

is therefore constant.1

Integrating again with respect to time, we find that the motion of the center of mass C
(or the center of inertia, or also the barycenter) of a set of point masses Pa whose radius
vector OC ≡ ρ is defined as

ρ =

∑
a maRa

M
with M =

∑

a

ma , (7.3)

where Ra ≡ OPa are the radius vectors of the points Pa, is uniform and rectilinear in S:

ρ =
P
M

t+ ρ0 (7.4)

with ρ0 a constant.

1It is understood that the sum runs over all the points representing the matter system in question. If only
a subset of these points is summed over, it describes a subsystem which is not isolated, but subject to an
external force (due to the other bodies) and dP/dt =

∑
Fext. The equations of motion of such a subsystem

when it is a solid have been given in Section 6.1.
We note that if the vectors mava are attached to the trajectories of the particles a, then P is their resultant,

obtained after they are parallel-transported to a reference point.
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The center-of-mass frame is the frame Scm undergoing uniform translation with respect to
S with its origin coinciding with the center of mass C. In this frame CPa ≡ Ra cm = Ra − ρ,
and the total momentum is zero:

∑

a

maRa cm = 0 =⇒ Pcm ≡
∑

a

mava cm = 0 . (7.5)

We note that the fact that the total momentum is constant in any Galilean frame can be
proved using only the equality of action and reaction in any frame (faa′ = −fa′a).

Furthermore, under a change of frame by a transformation from the group of rigid dis-
placements (R = R′ + d, v = v′ + ḋ+Ω ∧R′, see (1.7)), the total momentum transforms as
follows if we set P ′ ≡

∑
mv′ and Mρ′ =

∑
mR′:

P = P ′ +M(ḋ+Ω ∧ ρ′) . (7.6)

We therefore see that the total momentum is zero in any rotating frame if its origin coincides
with the center of mass.

A final remark: it is of course possible to express the total momentum in a system of
curvilinear coordinates xi, where the values of its components (∂xi/∂Xj)Pj are no longer
constant but depend on the point. If we start from the law of dynamics written in a system
of curvilinear coordinates, that is, maD̃va

va = Fa, then we can obtain the total momentum
conservation law only after the parallel transport of all the vectors to the same reference point.
The simplest way to proceed is of course to return to a system of Cartesian coordinates.2

Particle collisions and inertial mass measurement

The numerical value to be assigned to the inertial mass of a given body can in principle be
obtained by performing experiments involving collisions of the body with a test mass serving as
a standard. One measures the change of velocity of the two bodies in an inertial frame and uses
the momentum conservation law:

(mv +mrefvref)1 = (mv +mrefvref)2 =⇒ m(v2 − v1) = mref(vref2 − vref1). (7.7)

This method is not readily applicable to elementary particles or stars, whose masses are estimated
by comparing the predicted trajectories to the observed ones (for example, in a cyclotron or in
the solar system).

7.2 Angular momentum

Let us again start from Newton’s second law written in a Cartesian inertial frame S, maaa =∑
a′ �=a fa′a, and form the vector product with the position vector Ra of the point Pa. Newton’s

third law then implies that

d

dt

(
∑

a

Ra ∧mava

)

=
∑

a,a′ with a<a′

la′a ∧ fa′a, (7.8)

2In the curved spaces of general relativity where Cartesian coordinate systems do not exist, the parallel
transport of vectors from one point to another will depend on the path followed, and the definition of the
total momentum of a matter system will have to be formulated within a different framework.
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where la′a ≡ Ra − Ra′ (this is very easy to see in the case of three bodies). The right-hand
side of (7.8) represents the torque of the forces applied to the system. We note that since
the resultant of the force vectors is zero, the torque is independent of the choice of origin
O of the inertial frame which is used. If it is zero (as is the case if fa′a is proportional to
the separation vector la′a), then the angular momentum MO of the system relative to O,
defined as

MO =
∑

a

Ra ∧mava, (7.9)

is constant.
The Cartesian components of MO are therefore constants and can be written (omitting

the indices a and O) as Mi =
∑

meijkX
jV k or MX =

∑
m(Y Ż − Ẏ Z), and so on. They

can of course be expressed in a system of curvilinear coordinates; for example, in spherical
coordinates

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

MX = −
∑

ma r
2
a(θ̇a sinφa + φ̇a sin θa cos θa cosφa)

MY =
∑

ma r
2
a(θ̇a cosφa − φ̇a sin θa cos θa sinφa)

MZ =
∑

ma r
2
aφ̇a sin

2 θa .

(7.10)

If we view the angular momentum M as a covariant vector (i.e., a form), then its components
in a system of curvilinear coordinates xi depend on the coordinates of the reference point at
which it is evaluated and are given by M′

i = (∂Xj/∂xi)Mj , which are no longer constants.

Under a change of frame by a rigid displacement (R = R′ + d, v = v′ + ḋ + Ω ∧ R′) the
angular momentum transforms as follows, setting M′

O′ =
∑

R′ ∧ mv′, P ′ ≡
∑

mv′, and
Mρ′ =

∑
mR′:

MO = M′
O′ + d ∧ P ′ +M(d ∧ ḋ+ ρ′ ∧ ḋ+ d ∧ (Ω ∧ ρ′)) +

∑
mR′ ∧ (Ω ∧R′) . (7.11)

Therefore, for example, in the center-of-mass frame where ḋ = 0, Ω = 0, P ′ = 0, and∑
mR′ = 0, it is independent of the point relative to which it is calculated (it was denoted

as J in Section 6.1).

7.3 Energy

Finally, let us take the scalar product of Newton’s equation ma aa =
∑

a′ �=a fa′a and the
velocity va of the point Pa. Newton’s third law then implies that

d

dt
T =

∑

a<a′

fa′a.(va − va′), where T ≡
∑

a

1

2
mav

2
a (7.12)

is the total kinetic energy of the system. In the general case the integral over time of the right-
hand side depends on the trajectories followed by the system points. It will be independent of
them if the integrand is a total derivative. This is the case if fa′a is derived from a potential
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energy wa′a which is a function of only the separation la′a = Ra −Ra′ of the points Pa and
Pa′ (and possibly the time), that is, if

fa′a = −∇awa′a or, in component form, fi a′a = −∂wa′a

∂Xi
a

. (7.13)

(We note that such a class of force vectors automatically satisfies Newton’s third law.) The
total potential energy of the system is defined as

W =
∑

a<a′

wa′a, which implies Fa = −∇aW. (7.14)

Since wa′a is a function of (Ra −Ra′) (and possibly the time), we have

dW

dt
=
∑

a<a′

dwa′a

dt
=
∑

a<a′

(
∇awa′a.(va − va′) +

∂wa′a

∂t

)

= −
∑

a<a′

fa′a.(va − va′) +
∂W

∂t
= −dT

dt
+

∂W

∂t
.

(7.15)

If in addition the potential energy does not depend explicitly on the time (in which case the
forces are said to be conservative), we have ∂W/∂t = 0 and the total energy of the system
E , the sum of the kinetic and potential energies

E = T +W, (7.16)

is constant in the selected inertial frame.
The potential energy W is invariant under a change of frame by a rigid displacement

(R = R′ + d, v = v′ + ḋ + Ω ∧ R′) if it depends only on the relative separations of the
particles. As far as the kinetic energy is concerned, setting T ′ =

∑
1
2mv′2,M′

O′ =
∑

R′∧mv′,
P ′ ≡

∑
mv′, and Mρ′ =

∑
mR′, it transforms as

T = T ′ +
1

2
Mḋ2 + ḋ.P ′ +Ω.M′

O′ +Mḋ.(Ω ∧ ρ′) +
1

2

∑
m(Ω ∧R′)2 . (7.17)

We therefore see that the kinetic energies differ only by a constant in going from one inertial
frame to another. In the case of a pure rotation (d = 0) the expression can again be simplified,
using (7.11) and the fact that Ω.(R ∧ (Ω ∧R)) = (Ω ∧R)2:

T = T ′ − 1

2

∑
m(Ω ∧R′)2 +Ω.MO . (7.18)

The kinetic and potential energies are scalars and therefore have the same value in any
system of curvilinear coordinates, which indicates that (in contrast to the momentum and
angular momentum conservation laws) it is easy to find the law of total energy conservation
starting from Newton’s equation written in any system of curvilinear coordinates. In fact,
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forming the scalar product with vi ≡ eijv
j and using f i to denote the components of the

force in the coordinates xi (see, for example, Section 5.1), we have

vi

(
dvi

dt
+ Γ̃i

jkv
jvk
)

=
vif

i

m
with

⎧
⎪⎪⎨

⎪⎪⎩

viv
jvk Γ̃i

jk =
1

2
vivjvk

∂eij
∂xk

1

2

d

dt
(viv

i) = vi
dvi

dt
+

1

2
vivjvk

∂eij
∂xk

, (7.19)

and so
(

1
2mviv

i
).

= vif
i. We then proceed as above to obtain E ≡ T + W = const if W

depends only on the relative distances.

Velocity-dependent potential energy

If the potential energy depends not only on the positions but also on the relative velocities
of the system elements, wa′a = w(Ra − Ra′ , va − va′) (here we do not consider a possible t
dependence), we will have

d

dt

∑

a<a′

wa′a =
∑

a<a′

(
∂wa′a

∂Ra
.(va − va′) +

∂wa′a

∂va
.(v̇a − v̇a′)

)

, (7.20)

where we have written ∇awa′a ≡ ∂wa′a/∂Ra and the vector with components ∂wa′a/∂V
i as

∂wa′a/∂va. From the Leibniz rule we then find

d

dt

∑

a<a′

(

wa′a − ∂wa′a

∂va
.(va − va′)

)

=
∑

a<a′

(
∂wa′a

∂Ra
− d

dt

∂wa′a

∂va

)

.(va − va′). (7.21)

Therefore, if the force vector fa′a is derived from a potential energy as

fa′a = −
(
∂wa′a

∂Ra
− d

dt

∂wa′a

∂va

)

, (7.22)

from the definition of T in (7.20) we have (since the third law is satisfied)

T +
∑

a<a′

(

wa′a − ∂wa′a

∂va
.(va − va′)

)

= const . (7.23)

It should be noted that the force defined in (7.22) depends on the relative positions, velocities,
and accelerations of the points of the system (unless waa′ is linear in the velocities). Similarly,
if the potential energy depends on the relative positions, velocities, and accelerations, the force
is obtained from the expression

fa′a = −
(
∂wa′a

∂Ra
− d

dt

∂wa′a

∂va
+

d2

dt2
∂wa′a

∂aa

)

(7.24)

and the dynamical law is then in general a fourth-order differential equation.
Forces of the type (7.22) or (7.24), which depend only on the relative positions, velocities,

accelerations, and so on, are invariant under Galilean transformations, and, more generally, under
Milne transformations (any acceleration of the origin without rotation of the axes), but are not
invariant under rotation. Only forces depending only on the relative positions, and derived from
potential energies which also depend only on the relative positions, are invariant under the group
of rigid displacements.
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Bernoulli’s equation

Let us multiply the Euler equation for the motion of a fluid, ∂v/∂t+ (v.∇)v = (f −∇p)/,
by the velocity field. Using the relation (v.∇)v = 1

2
∇v2 + (∇∧ v) ∧ v, we find

v.

(
∂v

∂t
+

1

2
∇v2

)

=
v


.(f −∇p) . (7.25)

If part of the flow is stationary, that is, if ∂v/∂t = 0, and if f = −∇U where the potential
U depends only on R (as will be the case in gravitation), then v.∇ = d /dt and, along the
trajectory of a fluid element, that is, along a streamline, since the fluid is stationary we have

1

2
v2 + U +

∫
dp


= const . (7.26)

This expression, called Bernoulli’s equation, is the law of energy conservation along a streamline,
which extends throughout the fluid if the fluid in addition is irrotational (that is, if ∇∧ v = 0).

7.4 Virial theorems

Virial theorems relate the time-averaged values of kinetic and potential energies.
By definition, the time average of a function f(t) is

f̄ =
1

2τ

∫ τ

−τ

dt f(t), (7.27)

where τ is one period or tends to infinity depending on the situation. If f(t) = dF (t)/dt,
then f̄ = 0 if F (t) is bounded or periodic.

In an inertial frame the kinetic energy of a system is, by definition, T = 1
2

∑
a mav

2
a,

where ma and va are the masses and velocities of its elements. This can be rewritten as

T =
∑

a

(
1
2maRava

)̇
− 1

2

∑
a maRaaa, where the Ra are the radius vectors of the elements

(and va = Ṙa, aa = v̇a). Consequently, if the motion of the system is bounded, from Newton’s
second and third laws we have

T = −1

2

∑

a

maRa.aa

= −1

2

∑

a

∑

a′ �=a

Ra.fa′a =
1

2

∑

a<a′

(Ra −Ra′).fa′a .
(7.28)

If now fa′a is derivable from a potential energy wa′a as fa′a = −∇awa′a and if wa′a is a
homogeneous function of degree k of the distance ra′a = |Ra − Ra′ | between the particles,
i.e., if wa′a = (const) rka′a, then (Ra −Ra′).fa′a = k wa′a and so

2T = kW, (7.29)

where W =
∑

a<a′ wa′a is the total potential energy of the system. If k = −1 (the case of the

gravitational force) we have 2T +W = 0. Equation (7.29) is called the scalar virial theorem
(Clausius, 1870).
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Tensorial virial theorem

Let us consider the moment of inertia tensor of a system3: Ĩij =
∑

mXiXj , where the
Xi are the Cartesian coordinates of the points making up the system in an inertial frame. We
differentiate twice with respect to time. From the fundamental law of motion F = ma we have
(where the V i are the components of the velocity)

¨̃I
ij

= 2
∑

a

maV
i
aV

j
a +

∑

a

(F i
aX

j
a + F j

aX
i
a). (7.30)

Using the superposition principle (Fa =
∑

a′ �=a fa′a) and Newton’s third law (faa′ = −fa′a),

and denoting the components of the separation vector as lia′a = Xi
a −Xi

a′ , we have

¨̃I
ij

= 2
∑

a

maV
i
aV

j
a −

∑

a<a′

(lia′af
j
a′a + lja′af

i
a′a). (7.31)

If now fa′a is derivable from a potential energy wa′a as fa′a = −∇awa′a and if wa′a is a
homogeneous function of degree k of the distance ra′a = |la′a| between the particles, that is, if
wa′a = const rka′a, then

¨̃I
ij

= 2
∑

a

maV
i
aV

j
a − 2k

∑

a<a′

wa′a

r2a′a
lia′al

j
a′a. (7.32)

By analogy with the definitions of the kinetic and potential energies, we can define the kinetic
energy tensor T ij and the potential energy tensor W ij as

T ij ≡
∑

a

1

2
maV

i
aV

j
a , W ij ≡

∑

a<a′

wa′a

r2a′a
lia′al

j
a′a, (7.33)

so that (7.32) becomes
1

2
¨̃I
ij

= 2T ij − kW ij . (7.34)

This is the tensorial virial theorem. If the motion is stationary (that is, if ˙̃I
ij

= 0), or taking the
average for bounded motion, we have

2T ij = kW ij , (7.35)

where the trace is the scalar virial theorem given in (7.29). For gravity k = −1.
Let us conclude with the remark that in our treatment of the forces we have neglected

those due to internal collisions, that is, we have ignored the pressure term −∇p present in the
Euler equation (see Section 6.3). The pressure can be included by adding to (7.31) the term
−
∫

V
∂ipXjd

3X, where the Xi are the coordinates of a fluid element and the integral runs over
the entire volume occupied by the fluid. Integrating by parts and using the divergence theorem,
we find −

∫

V
∂ipXjd

3X = δij
∫

V
p d3X because the pressure vanishes at the surface of the fluid.

Therefore, the virial theorem (7.34) is generalized to fluids as

3This tensor is related to the one introduced in Section 6.1 as Iij = Ĩ δij − Ĩij .
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1

2
¨̃I
ij

= 2T ij − kW ij + δijΠ , where Π ≡
∫

V

p d3X (7.36)

is the internal energy and

Iij ≡
∫

V

XiXj , T ij ≡ 1

2

∫

V

V iV j d3X, W ij ≡ 1

2

∫

V

wij d3X

with

wij =

∫

V

(Xi −X ′i)(Xj −X ′j)

|X −X ′|2 w d3X ′,

where w = const|X −X ′|k.



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 73 — #85

8

Lagrangian mechanics

According to Newton’s first law, the trajectory representing the motion of a free particle between
two points p1 and p2 is a straight line, that is, the shortest path joining p1 and p2. In other words,
out of all the possible paths between p1 and p2, the trajectory effectively followed by a free particle
is the one that minimizes the length.

However, even though the use of the principle of extremal length of the paths between two points
gives the straight line joining the points, this does not mean that the straight-line path is traveled
with constant velocity in an inertial frame. Moreover, the trajectory describing the motion of a
particle subject to a force is not uniform and rectilinear and therefore does not minimize the length
of the path joining the points.

A great accomplishment of the mechanicians of the seventeenth (Fermat) and eighteenth (Jean
Bernoulli, D’Alembert, Maupertuis, Euler, Lagrange, and others) centuries was to show that the
Newtonian law of motion of a particle subject to a gradient force derived from a ‘potential energy’
can in fact always be obtained from an extremal principle, or ‘principle of least action’.

8.1 The Euler–Lagrange equations

The Lagrangian formalism is constructed as follows.1

Let us first place ourselves in an inertial frame.
The action S[Ps(t)] =

∫ t2
t1
L[Ps(t)] dt associated with a particle which departs from the

point p1 = P (t1) at the instant t1 and arrives at p2 = P (t2) at t2 is a functional of the
paths Ps(t), parametrized by s, joining p1 and p2 (we shall take Ps=0(t) ≡ P (t) to be the
trajectory effectively followed by the particle). Here L[Ps(t)] is the Lagrangian associated with
the particle. If xi = xi(t, s) are the equations of these paths in some system of curvilinear
coordinates, the Lagrangian at a given time t0 will depend on three functions of the path
xi(t0, s) and, also, a priori, on all their time derivatives at t0: ẋ

i(t, s)|0, ẍi(t, s)|0, and so on,
where the dot denotes differentiation with respect to the time t. These are the data required
for constructing the entire path Ps(t) starting from the point Ps(t0). The action therefore
depends on the entire history of the path s. However, to obtain in the end Newton’s equation
of motion which is of second order in the time, it is sufficient, as will be seen a posteriori, to
require that the Lagrangian be a function of the three xi(t, s) and their first time derivatives
only. If the system is composed of N particles (a) it possesses 3N degrees of freedom which
constitute its configuration space, and its Lagrangian depends on the 3N fonctions xi

a(t, s)
and their 3N time derivatives. It is usual to denote these collectively as q(t, s) and q̇(t, s),
and to refer to them as the generalized coordinates and generalized velocities of the system.
The action is then written as S =

∫ t2
t1
L(q, q̇) dt. It is a function of the parameter s.

1For a more complete discussion see, for example, Basdevant (2005), Landau and Lifshitz (1976), or
Lanczos (1970). For the mathematical aspects see Bourguignon (1995) and Arnold (1997).
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The principle of least action stipulates that the action be an extremum for the actual
motion:

δS ≡ d

ds
S
∣∣∣
0
ds = 0,

with S =

∫ t2

t1

L(q, q̇) dt, where q = q(t, s) and q̇(t, s) ≡ ∂q

∂t
,

(8.1)

and where δS is the variation of the action in going from the path with s = 0 to a path
an infinitesimal distance away xi(t, 0) �→ xi(t, ds). Let us calculate δS by introducing the

notation δq ≡ ∂xi
a

∂s |0 ds and δq̇ ≡ ∂2xi
a

∂s∂t |0 ds:

δS =

∫ t2

t1

δL dt =

∫ t2

t1

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt

=

(
∂L

∂q̇
δq

) ∣∣∣∣

t2

t1

+

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq dt,

(8.2)

where we have used the commutativity of the second derivatives [δq̇ = (δq)˙ ] and performed
an integration by parts, and where it is understood that all quantities are evaluated at s = 0.
Since the variations of the paths vanish at t1 and t2 but otherwise are arbitrary, δS is zero
if the integrand is zero. Therefore, the trajectory effectively followed by the system must
satisfy the 3N Euler–Lagrange equations:

δL

δq
≡ d

dt

∂L

∂q̇
− ∂L

∂q
= 0 . (8.3)

These are ordinary second-order differential equations for the 3N functions q(t, s = 0) ≡ q(t)
only if L is linear in q̇. The function δL/δq is called the variational derivative2 with respect
to q of L(q, q̇).

We note that these equations remain valid if the Lagrangian depends explicitly on time
[L = L(q, q̇, t)], and that the Lagrangians are defined up to a total derivative with respect to
time. If

L′(q, q̇, t) = L(q, q̇, t) + df(q, t)/dt,

the actions S and S′ differ by only a constant which vanishes when they are varied.

8.2 The laws of motion (II)

We still need to specify the generalized coordinates as well as the expression for the La-
grangian for each physical problem studied.

First let us consider a free particle in an inertial Cartesian frame S (see Fig. 8.1). Then
q = Xi(t, s) and q̇ ≡ V i(t, s). If the action is chosen to be the path length, S[Ps(t)] =∫ t2
t1

√
δijV iV j dt, the Euler–Lagrange equations (8.3) again tell us that the trajectory effec-

tively followed is a straight line, but they do not tell us the velocity along the trajectory.

2If L is a functional of q, q̇, and q̈, its variational derivative is δL
δq

= − d2

dt2
∂L
∂q̈

+ d
dt

∂L
∂q̇

− ∂L
∂q

and is in

general fourth-order. Minimizing the action then gives δL
δq

= 0 with the condition that not only the generalized

coordinates q but also the generalized velocities q̇ be fixed at t1 and t2.
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2
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t1 

q(t, s2) 
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q(t, 0) 

q 

q
1

δ

Fig. 8.1 Paths in spacetime.

The reason for this indeterminacy is that the length of a path is the same whether it is
parametrized by the time t or by some function of t. To obtain the uniform rectilinear motion
of a free particle it is necessary to get rid of this reparametrization invariance and extremize
a different functional of the paths, for example, S[Ps(t)] =

1
2

∫ t2
t1
(δijV

iV j) dt. This is not a

random choice. Indeed, since the corresponding Lagrangian (L = 1
2δijV

iV j) is quadratic in
the velocity, its variational derivative is just the acceleration a of the particle, which is in-
variant under Galilean transformations, so that the equation of motion satisfies the principle
of relativity.3

Now, while remaining in an inertial frame S but using a system of curvilinear coordinates
C, let us consider N interacting particles (a). We have q = xi

a(t, s) and q̇ = via(t, s). Inspired
by the preceding arguments, we choose as our Lagrangian

L(xi, vi) =
1

2

∑
meij v

ivj −W (xi) (8.4)

[with the indices (a) understood], the difference of the particle kinetic and potential energies
in S, where ma is the inertial mass of the particle (a) and eij are the components of the
Euclidean metric in C.

We then have ∂L/∂xi = 1
2v

jvk∂iejk − ∂iW and ∂L/∂vi = eijv
j , which implies that

(∂L/∂vi)˙ = eij v̇
j + vjvk∂keij . Consequently,

d

dt

∂L

∂vi
− ∂L

∂xi
= eij v̇

j +
1

2
vjvk(∂keij + ∂jeik − ∂iejk) + ∂iW. (8.5)

Therefore, the Euler–Lagrange equations (8.3), after raising an index and using the definition
of the Christoffel symbols, give the equations of motion of a particle (a) of the system in the
form

3If, for example, we take the Lagrangian to be L(v) = v4, the Euler–Lagrange equation always implies
v = const, but the variational derivative (4v2v)̇ will not be invariant under a Galilean transformation.
Another aspect of the same property is that if the Lagrangian is quadratic in the velocity, then L(v) = v2

and L′(v) = (v − V0)2, where V0 is a constant, differ only by a total derivative with respect to time [L′ =
L+ (V 2

0 t− 2V0.R)̇ ]. They therefore have the same variational derivative (that is, v̇), which incorporates the
requirement that the velocity of a free particle can be defined only up to a constant relative to the absolute
frame.
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dvi

dt
+ Γi

jk v
jvk =

1

m
F i with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Γi
jk ≡ 1

2
eil
(
∂ekl
∂xj

+
∂ejl
∂xk

− ∂ejk
∂xl

)

F i ≡ −eij
∂W

∂xj

, (8.6)

where it is understood that all quantities are evaluated at xi =xi
(a)(t, s=0)≡xi(t) and where

the eij are the components of the inverse metric in the coordinates xi. We therefore again
find the equations of motion given in Section 5.1, and on the left-hand side we recognize the
covariant derivative of the velocity.

The formulation of a problem in mechanics therefore amounts to specifying the potential
energy W (xi

a). In order for this potential energy not to spoil the Galilean invariance of
the Euler–Lagrange equations, it is sufficient that it depend only on the relative positions,
velocities, accelerations, etc. of the particles making up the system. However, in order for the
forces derived from it to be invariant under the group of rigid displacements, it is necessary
that it depend only on the relative positions; see Section 7.3.

Acceleration and the covariant derivative

Let us consider the Lagrangian L[P (t)] = L(xi(t), vi(t)). The quantity

ϑ =

(
d

dt

∂L

∂vi
− ∂L

∂xi

)

dxi (8.7)

(where the coefficients are the variational derivatives of L with respect to the xi) is a differential
form. This can be proved by using the transformation law for the basis forms under the change

of coordinates xi → x′i (see Section 4.2) as well as the fact that since v′j = ∂x′j

∂xi v
i, then

∂L
∂vi = ∂L

∂v′j
∂x′j

∂xi and ∂L
∂xi = ∂L

∂x′j
∂x′j

∂xi + ∂L
∂v′j

∂2x′j

∂xi∂xk v
k.

If we choose Lkin = 1
2
eijv

ivj , the form ϑ is called the quantity of acceleration, and the vector

associated with it by raising an index is just the covariant derivative of the velocity D̃vv:

D̃vv = eij
(

d

dt

∂Lkin

∂vi
− ∂Lkin

∂xi

)
∂

∂xj
=

(
dvi

dt
+ Γi

jk v
jvk
)

∂

∂xi
. (8.8)

Therefore, the principle of least action also gives a precise geometric status to D̃vv.

The principle of least action can also be used to easily find the equations of motion
of a particle in a moving reference frame. The passage from one inertial Cartesian frame
to another moving frame is effected by a rigid displacement such that the new generalized
coordinates are related to the old ones as X ′i(t, s) = R i

j (t)(X
j(t, s)− dj(t)) and the radius

vectors as R′ = R − d. A gradient is an invariant vector under such a transformation and,
after elementary rearrangements (see below), the Euler–Lagrange equations (8.3), where the
generalized coordinates are the X ′i, lead to the equations of motion already encountered in
Section 5.3, but now with the force being a gradient F = −∇W :
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a′i = R i
j

(
− 1

m

∂W

∂X ′k δ
jk − d̈j

)
− 2eijkω

′jV ′k − eijkω̇
′jX ′k

+eijkω
′j eklmX ′lω′m

a′ = − 1

m
∇W − d̈− 2Ω ∧ v′ +Ω ∧ (R′ ∧ Ω)− Ω̇ ∧R′ .

(8.9)

The Euler–Lagrange equations in an accelerated frame

Let us show how the equations of motion in an accelerated frame are obtained in the La-
grangian formalism.

Since the rotation matrix satisfies δijR i
k (t)R j

l (t) = δkl, the kinetic part of the Lagrangian

in S is written as (see Section 1.5) Lkin = 1
2
δijV

iV j = 1
2
δijf

if j with f i = R i
k V

k = V ′i −
Ṙ i

k X
k + ḋ′i and Xk = δklδmnR n

l (X ′m + d′m), so that ∂Lkin/∂V
′m = δjm(V ′j − Ṙ j

k Xk + ḋ′j)

and ∂Lkin/∂X
′m = δjmṘ j

k V k. Therefore,

d

dt

∂Lkin

∂V ′m − ∂Lkin

∂X ′m = δjm(V̇ ′j − 2Ṙ j
k V k − R̈ j

k Xk + d̈′j) , (8.10)

which, after introducing the instantaneous rotation of the frame, leads to (8.9) (see Section 1.5).
To obtain the vector form of the Euler–Lagrange equation, we write the kinetic part of the

Lagrangian in S as 2Lkin = v2 = (v′+ ḋ+Ω∧R′)2, where the squared quantities are interpreted
not as scalar products [v2 ≡ (v.v)] but as duality brackets v2 ≡ v̄(v), where v̄ is the form
associated with the vector v by lowering an index (a trivial operation in this case because v̄ = V̄iε

i

with V̄i = δijV
j numerically equal to V i). Therefore, ∂Lkin/∂R

′ ≡
(
∂Lkin/∂X

′i) ε′i = −Ω̄ ∧ v̄

and ∂Lkin/∂v
′ ≡

(
∂Lkin/∂V

′i) ε′i = v̄, which (using the fact that ε̇′i = Ω̄ ∧ ε′i by the definition

of the vector Ω) implies that (∂Lkin/∂v
′)˙ =

(
∂Lkin/∂V

′i)̇ ε′i + Ω̄ ∧ v̄ = ˙̄v. Then the variational

derivative with respect to R′ becomes

(
d

dt

∂Lkin

∂V ′i − ∂Lkin

∂X ′i

)

ε′i = ˙̄v − Ω̄ ∧ v̄ + Ω̄ ∧ v̄ = ˙̄v . (8.11)

Now we need only to go from forms to vectors and write v̇ ≡ a as a function of R′, v′, and a′

using a = a′ + d̈+ 2Ω ∧ v′ − Ω ∧ (R′ ∧ Ω) + Ω̇ ∧R′ to recover (8.9).

The principle of least action can therefore be used to obtain the equations of motion not
only in any coordinate system, but also in any frame. However, except in inertial frames (for
which Ω = 0 and d̈ = 0), it does not allow them to be written in a unique form which is
valid in any moving frame. On the other hand, the theory of special relativity, where the
time is no longer a parameter but becomes a fourth coordinate, yields a genuine unification
of changes of coordinate system and changes of frame.

Constraints and Lagrange multipliers

Let us consider a particle subject to a constraint, that is, to a force which we shall not make
explicit and whose effect on the particle is to fix the evolution of one of its degrees of freedom.
Such a constraint is written as f(xi, t) = 0. (For example, X2 + Y 2 = 1 means that the particle
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must move on the surface of a cylinder.) Now to determine the motion of the particle subject to
this constraint in another force field we can of course solve the equation f(xi, t) = 0 and extract,
for example, x1 = x1(x2, x3), so that the Lagrangian of the particle now depends on only two
degrees of freedom (it is a useful exercise to solve the problem of free motion on a cylinder in
this manner). A more elegant method is to introduce the Lagrangian

L′(xi, vi, λ, t) = L(xi, vi, t) + λf(xi, t) , (8.12)

where the parameter λ is called a Lagrange multiplier, and set to zero the variational derivatives
with respect to the three xi and λ:

d

dt

∂L

∂ẋi
− ∂L

∂xi
− λ

∂f

∂xi
= 0 , f(xi, t) = 0 . (8.13)

(The example of motion on a cylinder will convince the reader of the superiority of the Lagrange
method in this case.)

Incompressible fluids

The kinetic energy of a fluid element of mass m and small volume τ is 1
2
v2τ , where  is

the mass density and v is the velocity of the element (these are unambiguously defined if τ is
sufficiently small).

A flow is incompressible if  is constant along the trajectory of the fluid element. Since
m =  τ is constant, τ is thereby constrained to be constant also. The Lagrangian describing
the fluid element is then 1

2
v2τ − p(τ − τ0), where p is a Lagrange multiplier and τ0 is the small

initial volume to which the element is confined. The variation of this Lagrangian when the path
of the element is varied is δ( 1

2
v2τ − p(τ − τ0)) = τ v.δv + 1

2
v2δ(τ) − p δτ = τ v.δv − p δτ

because τ = m is constant.
Now the calculation of the variation of τ when all the particles making up the element undergo

an average displacement from Xi to Xi + δXi is mathematically identical to the calculation of
this variation when passing from the Cartesian coordinates Xi to the curvilinear coordinates
xi = Xi + ξi, where ξi(xj , t) ≡ δXi is a field of infinitesimal vectors. In the coordinates xi the

volume element is
√
dete d3x, where dete is the determinant of the components of the Euclidean

metric in the coordinates xi (see Section 3.6). To calculate dete as a function of ξi, we use the
fact that the metric is a 2-fold covariant tensor and therefore transforms as (see Section 3.6)

eij =
∂Xk

∂xi

∂Xl

∂xj
δkl = (δki − ∂iξ

k)(δδj − ∂jξ
δ)δkδ = δij − ∂iξj − ∂jξi (8.14)

to first order in ξi. From this we deduce that dete = 1 − 2∂iξ
i (always to first order) and so

δτ = −∂iξ
i τ .

The variation of the Lagrangian describing a fluid element then becomes ( v.δv + p ∂iξ
i)τ ,

so that the variation of the Lagrangian describing the entire fluid—the sum of these elementary
Lagrangians—is

δL =

∫

V

(
 v.δv + p ∂i(δX

i)
)
dV =

∫

V

(
 ViδV

i − ∂ip δX
i
)
dV, (8.15)

where the integral runs over the entire volume occupied by the fluid and we have replaced a sum
over τ by an integral over V and transformed the last term using the divergence theorem and
the fact that δXi vanishes on the surface of the fluid. Since V i = dXi/dt, a final integration by
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parts now gives the equation of motion of the incompressible fluid in the form


dv

dt
= −∇p, (8.16)

which is the Euler equation of a fluid if p is interpreted as the pressure.4

8.3 Conservation laws (II)

The ‘principle of Galilean relativity’ stipulates that a mechanical interaction must be rep-
resented by the same vector in all the frames of the group of rigid displacements (see Sec-
tion 5.3). This is an aspect of the ‘Copernican principle’, according to which interactions
cannot depend on the reference frame in which they are described. The ‘active’ version of
this principle is that the interactions governing the dynamics of an isolated system must be
independent of the system location and spatial orientation (see Section 5.2).

Moreover, we have seen in Chapter 7 that the total momentum of an isolated system
is conserved if the forces acting on it satisfy Newton’s third law (equality of action and
reaction). We have also seen that its total angular momentum is conserved if in addition
the inter-particle forces are proportional to the particle position vectors, and, finally, that
the total energy is conserved if these forces are derivable from a potential which depends on
the particle separations and is independent of time. Now, a quantity which depends only on
relative separations is invariant under translation and rotation. It is therefore clear that the
Copernican principle and the existence of first integrals of the equations of motion are closely
related. Noether succeeded in explaining this link within the framework of the Lagrangian
formalism.

Let S =
∫
dtL(xi

a, ẋ
i
a, t) be the action, in an inertial frame, of a system of N particles a,

where xi = xi
a(t, s), i = 1, 2, 3, is the equation of a possible path of the particle a parametrized

by s and where ẋi
a ≡ ∂xi

a/∂t. In Section 8.1 we have seen how this action varies when the
paths are varied, that is, when s �→ s + ds [cf. (8.2)]. The change of S when the system is
displaced globally is obtained in the same way. Indeed, such an operation is described by the
transformation xi

a(t, s) �→ x
′i
a (t, s) = xi

a(t, s) + ξi, where the ξi are the components, in the
coordinates xi, of a field of infinitesimal vectors so that

δξS =

∫ t2

t1

dt
∑

a

(
∂L

∂xi
a

− d

dt

∂L

∂ẋi
a

)
ξi +

(
∑

a

∂L

∂ẋi
a

ξi

)∣∣∣∣

t2

t1

. (8.17)

If the Euler–Lagrange equations of motion are satisfied, the first term vanishes and the
variation of the action reduces to

δξS =

(
∑

a

∂L

∂ẋi
a

ξi

)∣∣∣
∣

t2

t1

. (8.18)

In Cartesian coordinates xi = {X,Y, Z} a translation along the X axis is defined by X ′
a =

Xa + ξ, Y ′
a = Ya, Z

′
a = Za, where ξ is constant. If the action of the system, and therefore

4The derivation of the Euler equation using variational principles has a long history. The approach we
have followed here is apparently that of Lagrange; cf. Lanczos (1986).
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its Lagrangian and its dynamics, is invariant under this translation, i.e., δξS = 0, then∑
a ∂L/∂Ẋa ≡ PX is a constant. Translations along the Y and Z axes are treated the

same way. Then from the requirement of invariance of the action under general translations
X

′i
a = Xi

a + ξi we deduce the existence of three conserved quantities

∑

a

∂L

∂V i
a

= Pi . (8.19)

Since the Lagrangian of a system is given in Cartesian coordinates by (see Section 8.2)

L =
1

2

∑

a

maδijV
i
aV

j
a −W (Xi

a) , (8.20)

we see that the quantities in (8.19) are just the components of the total momentum (7.2):

P =
∑

a

mava . (8.21)

The latter is therefore constant if the Lagrangian (that is, the potential energyW ) is invariant
under translations. In Section 7.1 we saw that P is constant if the forces satisfy Newton’s
third law. Requiring the equality of action and reaction is therefore equivalent to requiring
translational invariance of the potential energy from which the forces are derived.

In spherical coordinates xi = {r, θ, φ} a rotation about the OZ axis is defined by r′ = r,
θ′ = θ, φ′ = φ + ξ, where ξ is constant. The action is invariant under such a displacement
if [cf. (8.18)]

∑
a ∂L/∂φ̇a = MZ , where MZ is a constant. The Lagrangian is written in

spherical coordinates as (cf. (8.6) and Section 3.1)

L =
1

2

∑

a

ma(ṙ
2
a + r2aθ̇

2
a + r2a sin

2 θa φ̇
2
a)−W (ra, θa, φa, t) , (8.22)

and so

MZ =
∑

a

mar
2
a sin

2 θa φ̇a (8.23)

is just the Z component of the angular momentum of the system defined in (7.10). We note
that (8.23) can also be derived from (8.20) for the Lagrangian in Cartesian coordinates.
Indeed, the spherical components of the vector field ξisph are (0, 0, ξ), and so their Cartesian

components are ξiCart = (∂Xi/∂xj)ξjsph or ξiCart = ξ(−Y,X, 0). Requiring that (8.18) vanish

then gives
∑

m(−V XY + V Y X) = const, which is just MZ in Cartesian coordinates.
We proceed in the same way for rotations about the X axis [for which ξiCart = ξ(0, Z,−Y )]

and the Y axis [ξiCart = ξ(Z, 0,−X)], and we find that requiring invariance of the action under
general rotations leads to conservation of the total angular momentum MO relative to the
origin of the frame, with

MO =
∑

a

ma Ra ∧ va . (8.24)
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Isometries of the Euclidean metric

Let eij(p) be the values of the metric coefficients at a point p with coordinates xk in some

system of curvilinear coordinates. At a neighboring point q with coordinates xk + ξk these
coefficients are, to first order in ξ, eij(p) + ξk∂keij . Now let us perform a change of coordinate

xk = x′k + ξk such that in the new system q has the same coordinates as p in the old one. In
the new coordinates the metric coefficients at q will be (to first order in ξ)

e′kl(q) =
∂xi

∂x′k
∂xj

∂x′l eij(q) = (δik + ∂kξ
i)(δjl + ∂lξ

j)(eij(p) + ξk∂keij)

= ekl(p) + ekp∂lξ
p + elp∂kξ

p + ξp∂pekl .

The difference e′kl(q)− ekl(p) is called the Lie derivative of the metric.
The displacement is an isometry and the vector ξi is a Killing vector if the Lie derivative of

the metric vanishes: e′lm(q) = elm(p) (this means that the change ξk∂keij due to the displacement
can be compensated for by a change of coordinates). In order for this to be possible, ξi must
satisfy the Killing equations:

ekp∂lξ
p + elp∂kξ

p + ξp∂pekl = 0 ⇐⇒ D̃iξj + D̃jξi = 0 . (8.25)

(The equivalence is easily shown by explicit calculation of the covariant derivative; see Sec-
tion 3.2.)

It is of course simplest to find the Killing vectors of the Euclidean metric by using Cartesian
coordinates, so that the Killing equations reduce to ∂iξj + ∂jξi = 0, the general solution of
which is

ξi = di + ωi
jX

j with ωij = −ωji , (8.26)

where di is a constant vector and ωij ≡ δikω
k
j is an antisymmetric matrix with constant coef-

ficients. The Euclidean metric in three dimensions therefore possesses six Killing vectors, three
translational ones proportional to ξi = (1, 0, 0), ξi = (0, 1, 0), and ξi = (0, 0, 1), and three
rotational ones proportional to ξi = (−Y,X, 0), ξi = (0, Z,−Y ), and ξi = (Z, 0,−X).

The fact that the Euclidean metric possesses three translational Killing vectors expresses the
homogeneity of Euclidean space, while the fact that it possesses three rotational ones expresses
the isotropy of Euclidean space.

From the Killing equations it follows that D̃iD̃jξk = 0 (because the Euclidean covariant
derivatives commute). To determine a Killing field everywhere, it is therefore sufficient to know
the value of the field as well as its first derivatives at a point, which corresponds to six ini-
tial conditions (since the nine first derivatives obey the six Killing equations). Consequently,
the maximum number of Killing vectors that a metric can possess is six (and, more generally,
n(n+ 1)/2 in n dimensions): Euclidean space is maximally symmetric.

Finally, let us calculate the time derivative of a Lagrangian L(q, q̇, t):

dL

dt
=

∂L

∂t
+

∂L

∂q
q̇ +

∂L

∂q̇
q̈ =

∂L

∂t
+

∂L

∂q
q̇ +

d

dt

(
∂L

∂q̇
q̇

)
− d

dt

(
∂L

∂q̇

)
q̇

=
∂L

∂t
+

d

dt

(
∂L

∂q̇
q̇

)

if the equations of motion are satisfied. Therefore, if we require that the Lagrangian of
a system have no explicit time dependence, that is, that ∂L/∂t = 0 (which amounts to
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requiring that a dynamical experiment on a closed system be reproducible), we then obtain
a final conservation law, the law of energy conservation:

E =
∑

a

∂L

∂vi(a)
vi(a) − L. (8.27)

Since the Lagrangian is given by (8.4), we again find that E is the sum of the kinetic and
potential energies, cf. (7.16):

E =
∑

a

1

2
mav

2
a +W. (8.28)

Let us make a concluding remark. The Euler–Lagrange equations can be written as

dp
(a)
i

dt
=

∂L

∂xi
(a)

, where p
(a)
i =

∂L

∂vi(a)
(8.29)

is the conjugate momentum of the xi
(a). Therefore, if in a system of well chosen coordinates

the Lagrangian does not depend on a generalized coordinate xi
(a) (which is then referred to

as a cyclic coordinate), the corresponding conjugate momentum is constant, and supplies a
first integral of the motion.
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Hamiltonian mechanics

The complexity of the Newtonian equations of motion for N interacting bodies, in celestial mechanics
in particular, led to the development in the late 18th and early 19th centuries (by Poisson, Hamilton,
Jacobi, . . .) of a formalism which reduces these equations to first-order differential equations. In this
chapter we give a brief overview of this formalism, which is known as Hamiltonian mechanics.1

9.1 Hamilton’s equations

Lagrangian mechanics describes the evolution of a system of N particles subject to forces
which are gradients of a potential energy. It does this using a Lagrangian L which is a function
of the 3N generalized coordinates qi(t) and their time derivatives q̇i specifying the particle
positions and velocities. The equations of motion are the 3N second-order Euler–Lagrange
equations (see Section 8.1)

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 . (9.1)

Let us introduce the quantity pi, called the conjugate momentum of qi and defined as

pi ≡
∂L

∂q̇i
. (9.2)

If L = 1
2mq̇2 −W (q, t) and q ≡ X is a Cartesian coordinate, then p reduces to the particle

momentum. If the expressions in (9.2) are invertible, that is, if we can extract q̇i = q̇i(qj , pj)
from them, the equations of motion (9.1) can be rewritten as a system of 6N differential
equations of first order in time:

ṗi = fi(q
j , pj , t) , q̇i = gi(qj , pj , t) , (9.3)

where the gi are obtained by inverting (9.2) and fi ≡ ∂L/∂qi, the q̇j being replaced by the gj .
In 1835 Hamilton found more explicit expressions for fi and gi. To show how he did this,

let us perform some operations on the differential of the Lagrangian L(q, q̇, t) (omitting the
indices i):

dL =
∂L

∂q̇
dq̇ +

∂L

∂q
dq +

∂L

∂t
dt = p dq̇ +

∂L

∂q
dq +

∂L

∂t
dt

⇐⇒ d(p q̇ − L) = q̇ dp− ∂L

∂q
dq − ∂L

∂t
dt ,

(9.4)

1A more complete discussion of Hamiltonian mechanics can be found in the references cited at the begin-
ning of the preceding chapter.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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where we have used the definition of p and the Leibniz rule. When the equations of motion
(9.1)–(9.2) are satisfied, we have ∂L/∂q = ṗ and (9.4) becomes (restoring the indices i with
summation over repeated indices understood)

dH = q̇i dpi − ṗi dq
i − ∂L

∂t
dt , where H ≡ piq̇

i − L (9.5)

is the Hamiltonian of the system. Since the q̇i are expressed as a function of the qj and pj
by inverting (9.2), the Hamiltonian is a function of the 6N ‘coordinates’ {qi, pj} forming the
phase space.

The passage from L to H is a Legendre transformation.

Legendre transformations

Let us consider a function F (xi, λi) of the variables xi and parameters λi. We introduce new
variables yi defined as

yi =
∂F

∂xi
. (9.6)

After inversion, i.e., finding xi = xi(yj , λj) (which we assume to be possible), we define a new
function G = G(yi, λi) as

G =
∑

i

xiyi − F . (9.7)

Next let us consider the change of G produced by infinitesimal variations of the yi and λi. Using
the definition of G, it can be written as

dG =
∑

i

∂G

∂yi
dyi +

∑

i

∂G

∂λi
dλi =

∑

i

(xidyi + yidxi)− dF

=
∑

i

xidyi −
∑

i

∂F

∂λi
dλi +

∑

i

(

yi −
∂F

∂xi

)

dxi .
(9.8)

The last term of (9.8) vanishes owing to the definition (9.6) of the new variables yi. And so (9.8)
states that

∂G

∂yi
= xi ,

∂G

∂λi
= − ∂F

∂λi
. (9.9)

Therefore, Hamilton’s equations of motion, a rewriting of the Euler–Lagrange equations,
can be read off from (9.5):

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
,

∂H

∂t
= −∂L

∂t
. (9.10)

The functions −∂H/∂qi and ∂H/∂pi are then the functions fi and gi of (9.3). We note that

dH

dt
=

∂H

∂t
+

3N∑

i=1

(
∂H

∂qi
q̇i +

∂H

∂pi
ṗi

)
=

∂H

∂t
(9.11)

if the equations of motion (9.10) are satisfied.
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The Hamiltonian of a system of particles

In an inertial frame the Lagrangian of a system of N particles is given by the difference of
the kinetic and potential energies (see Section 8.2):

L(xi
a, ẋ

i
a) =

N∑

a=1

1

2
ma eij ẋ

i
aẋ

j
a −W (xi

a), (9.12)

where the eij are the metric components in the coordinates xi. The conjugate momenta and the
Hamiltonian are therefore given by

pai = maeij ẋ
j
a, H =

N∑

a=1

p2a
2ma

+W (xi
a), (9.13)

where p2 = eijpipj . Hamilton’s equations then read

ẋi
a =

1

ma
eijpj , ṗai = −∂W

∂xi
a

, (9.14)

which is of course nothing but a rewriting of the Euler–Lagrange equations (8.5). When the
equations of motion are satisfied, the Hamiltonian is just the energy of the system and (9.11)
allows us to recover the fact that the energy is conserved throughout the motion when the
Hamiltonian does not depend explicitly on time.

9.2 Canonical transformations

Given a Lagrangian and having constructed the corresponding Hamiltonian, Hamilton’s equa-
tions (9.10) amount to simply a rewriting of the Euler–Lagrange equations (9.1).

The feature that makes the Hamiltonian formulation superior is that the dimension of
the (qi, pi) phase space is double that of the qi configuration space, so that in addition to
point transformations qi → qi(Qj , t), it is possible to perform more general transformations
qi → qi(Qj , Pj , t), pi → pi(Q

i, Pj , t) in order to simplify solving the equations of motion.
Among all the possible transformations, those which preserve the form of Hamilton’s

equations naturally have a special status: they are the canonical transformations. In order
to find the conditions they must satisfy, let us consider the actions S and S′ of the system
written respectively in the variables (q, p) and (Q,P ). Since (again omitting the indices i)

S ≡
∫
Ldt =

∫
(p q̇ −H)dt =

∫
(p dq −H dt) (9.15)

by definition of the Hamiltonian [cf. (9.5)], it is first of all necessary that S′ be written as
S′ ≡

∫
(P dQ−H ′ dt) so that Hamilton’s equations preserve their form, and, in addition, that

S′ differs from S by only a constant, since S describes the same dynamical system. We must
therefore have

p dq −H dt = P dQ−H ′ dt+ dF or dF = p dq − P dQ+ (H ′ −H)dt, (9.16)
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where F = F (q,Q, t) is an arbitrary function [indeed,
∫
dF = F (q(t2), Q(t2), t2) −

F (q(t1), Q(t1), t1) is just a constant]. Then, having chosen a generating function F (q,Q, t),
we see from (9.16) that the transformation will be canonical if

p =
∂F

∂q
, P = −∂F

∂Q
, and H ′ = H +

∂F

∂t
. (9.17)

The explicit form of the transformation is then obtained by inverting P =−∂F (q,Q, t)/∂Q to
obtain q= q(Q,P, t). Inserting the latter into p= ∂F (q,Q, t)/∂q gives p = p(Q,P, t). There-
fore, the Hamiltonian H ′ can be written explicitly in terms of the variables (Q,P, t). Since
the invariance of Hamilton’s equations is guaranteed, the equations of motion become

Q̇i =
∂H ′

∂Pi
, Ṗi = −∂H ′

∂Qi
. (9.18)

Example of a canonical transformation

Let us consider the Lagrangian of the harmonic oscillator L(q, q̇) = 1
2
q̇2 − 1

2
q2, where q(t)

is the position of the oscillator on, for example, the X axis of an inertial frame. The Euler–
Lagrange equations (∂L/∂q̇)˙ = ∂L/∂q are q̈ = q, the solution of which is sinusoidal motion
q = q0 sin(t− t0).

The conjugate momentum associated with q is p = ∂L/∂q̇ = q̇ and the Hamiltonian is
H ≡ p q̇ − L = 1

2
p2 + 1

2
q2.

We consider the generating function F (q,Q) = 1
2
q2 cosQ/ sinQ. Equations (9.17) then tell

us that p = q cosQ/ sinQ and P = 1
2
q2/ sin2 Q, from which we find that the associated canonical

transformation is
q =

√
2P sinQ and p =

√
2P cosQ. (9.19)

Since the function F does not depend explicitly on time, we find that the Hamiltonian of the
harmonic oscillator reduces to

H ′ = H =
1

2
p2 +

1

2
q2 = P. (9.20)

Hamilton’s equations Q̇ = ∂H ′/∂P and Ṗ = −∂H ′/∂Q reduce to Q̇ = 1 and Ṗ = 0, which
have the simple solution Q = t−Q0 and P = P0. Returning to the initial variables (q, p) given
in (9.19), we again find that the oscillator undergoes sinusoidal motion: q =

√
2P0 sin(t − Q0)

and p =
√
2P0 cos(Q−Q0).

Finally, we can check the calculation by verifying that p is indeed equal to q̇.
This example gives a hint of how effective canonical transformations can be for simplifying

the equations of motion.

Let us return to (9.16). From the Leibniz rule we have P dQ = d(P Q)−QdP , and so we
can rewrite this equation as

df = p dq +QdP + (H ′ −H)dt , (9.21)

where f ≡ F+PQ is a new generating function which now depends on the q and P . Therefore,
the canonical transformation is defined as

p =
∂f

∂q
, Q =

∂f

∂P
, and H ′ = H +

∂f

∂t
. (9.22)
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9.3 The Hamilton–Jacobi equation

As we have seen in Section 9.2, the canonical transformations qi = qi(Qj , Pj , t), Pi =
pi(Q

j , Pj , t), determined, for example, from a given generating function f(qi, Pi, t), can sim-
plify the expression for a Hamiltonian H = H(qj , pj , t) as well as make it easier to solve the
equations of motion.

One might therefore ask if it is possible to choose f such that the new Hamiltonian
H ′(Qi, Pi, t) vanishes, so that the equations of motion in the new coordinates will be trivial:

H ′(Qi, Pi, t) = 0 =⇒ Q̇i = 0 , Ṗi = 0 . (9.23)

The answer is ‘yes’ as seen from (9.22), which can be written in the more explicit form

H ′ = H(qi, pi, t) +
∂f(qi, Pi, t)

∂t
,

with pi =
∂f(qi, Pi, t)

∂qi
and Qi =

∂f(qi, Pi, t)

∂Pi
.

(9.24)

Given the expression for pi as a function of f , we see that in order for H ′ to vanish it is
necessary and sufficient that the function f(qi, Pi, t) satisfy the so-called Hamilton–Jacobi
equation:

H

(
qi,

∂f

∂qi
, t

)
+

∂f

∂t
= 0 . (9.25)

This is a partial differential equation for f of first order in the 3N variables qi and the time t.
Its complete solution contains as many integration constants as independent variables, that
is, 3N + 1. One of them is simply additive because only derivatives of f appear. The other
3N can be identified as the Pi which, according to the equations of motion (9.23), are indeed
constants.

Once the function f(qi, Pi, t) is known, the last expression in (9.24), where the Qi are
also constants according to the equations of motion (9.23), gives by inversion the general
solution of the initial equations of motion, that is, the 3N positions qi(t) as a function of the
6N constants Qi and Pj .

The Hamilton–Jacobi method: an example

Let us again consider the example of the harmonic oscillator with the Lagrangian L =
1
2
q̇2 − 1

2
q2 and the associated Hamiltonian H = 1

2
p2 + 1

2
q2 (see Section 9.2). The Hamilton–

Jacobi equation (9.25) in this case becomes

1

2
q2 +

1

2

(
∂f

∂q

)2

+
∂f

∂t
= 0 , (9.26)

which is easy to solve. We proceed by separation of variables and seek a solution of the form
f = −Pt+ S0(q), where P is a constant. Then S0(q) satisfies an ordinary differential equation

(
dS0

dq

)2

= 2P − q2, (9.27)
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which can be solved by quadrature. We obtain, for P > 0 and ignoring an additive constant,

f = −Pt+ P

(

u+
1

2
sin 2u

)

with sinu =
q√
2P

. (9.28)

The last expression in (9.24),Q = ∂f/∂P whereQ is another constant, then again gives harmonic

motion [noting that cosu(∂u/∂P ) = −q/(2P )3/2]:

q =
√
2P sin(t+Q) . (9.29)

We see from this example that the canonically conjugate variables (Q,P ) are identified with
the pair (−t0, E), where E is the oscillator energy and t0 is the initial time.

The generating function f , the solution of the Hamilton–Jacobi equation (9.25), can be
related to the action of the system S =

∫
L(q, q̇, t)dt. In order to do this we return to the

variational principle (see Section 8.1) and write

δS =

∫ t

t0

δL dt =

(
∂L

∂q̇
δq

) ∣∣∣∣

t

t0

+

∫ t

t0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq , (9.30)

again omitting the 3N indices i. To obtain the Euler–Lagrange equations of motion we
consider all possible paths starting from q0 at t0 and ending at q at t. The actual (i.e.,
observable) particle trajectories are those which extremize S: δS = 0.

Let us now consider particles leaving from q0 at t0 with arbitrary initial velocities (but
which are nearly equal to each other). The integral then vanishes because the particles obey
the equations of motion. We are left with the first term, whose lower limit is zero but whose
upper limit is nonzero because at time t the particles are spread out and their positions differ
by δq. The action thus becomes a function of the trajectories q and the time t, S = S(q, t).
From (9.30) we then have

∂S

∂q
=

∂L

∂q̇
≡ p . (9.31)

Moreover, S =
∫
Ldt. We therefore obtain on the one hand dS = Ldt, while on the other

dS = (∂S/∂q)dq+(∂S/∂t)dt. Equating these gives (∂S/∂t)dt = −(∂S/∂q)dq+Ldt, or, using
(9.31) and the definition of the Hamiltonian dH = p dq − Ldt,

∂S

∂t
+H

(
q,

∂S

∂q
, t

)
= 0, (9.32)

which is just the Hamilton–Jacobi equation (9.25). Therefore, the action S of the system,
evaluated on the actual trajectories all starting from a given point of the configuration
space, satisfies the same equation as the generating function f which associates with it a
zero Hamiltonian.

9.4 Poisson brackets

Let us consider two arbitrary functions f and g of 6N variables (qi, pi). Their Poisson bracket
is defined as
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{f, g} =
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
(9.33)

(summation over the indices i is understood). This implies

{f, qi} =
∂f

∂pi
, {f, pi} = − ∂f

∂qi
, (9.34)

and

{qi, qj} = 0 , {pi, pj} = 0 , {pi, qj} = δji . (9.35)

It can also be verified that the Poisson brackets possess the following properties:

{f, g} = −{g, f}
{f1f2, g} = f1{f2, g}+ f2{f1, g}

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0,

(9.36)

where the last expression (the only one whose proof is somewhat tedious) is called the Jacobi
identity.

Moreover, if the variables qi and pi as well as f and g have an explicit time dependence
f = f(qi(t), pi(t), t), g = g(qi(t), pi(t), t), it can easily be shown that

d{f, g}
dt

=

{
df

dt
, g

}
+

{
f,

dg

dt

}
. (9.37)

Now let us identify the variables (qi, pi) as the positions and conjugate momenta of a system of
N interacting particles. Hamilton’s equations (9.10) governing their motion can be rewritten
in a very symmetric form using (9.34):

q̇i = {H, qi} , ṗi = {H, pi} . (9.38)

The total time derivative of a function f(qi(t), pi(t), t) then reduces to

df

dt
=

∂f

∂t
+

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
=

∂f

∂t
+ {H, f} . (9.39)

Therefore, given a Hamiltonian H(qi, pi), if we find a function f(qi, pi) whose Poisson bracket
with H vanishes, then f is a constant of the motion, that is, a first integral of Hamilton’s
equations. If now f and g are two constants of the motion, then from (9.37) their bracket
{f, g} is also a constant of the motion. This is the Poisson theorem. It can serve as a powerful
tool for integrating the equations of motion (though the new constant of the motion is not
always independent of the preceding ones).
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An important property of the Poisson brackets is that they are invariant under a canonical
transformation. More precisely, if qi �→ qi(Qj , Pj , t) and pi �→ pi(Q

j , Pj , t), then, as we shall
show below,

{Qi, Qj}(p,q) ≡
∂Qi

∂pk

∂Qj

∂qk
− ∂Qi

∂qk
∂Qj

∂pk
= 0 = {Qi, Qj}(P,Q)

{Pi, Pj}(p,q) ≡ ∂Pi

∂pk

∂Pj

∂qk
− ∂Pi

∂qk
∂Pj

∂pk
= 0 = {Pi, Pj}(P,Q)

{Pi, Q
j}(p,q) ≡ ∂Pi

∂pk

∂Qj

∂qk
− ∂Pi

∂qk
∂Qj

∂pk
= δij = {Pi, Q

j}(P,Q) .

(9.40)

Invariance of the Poisson brackets

Let us introduce the column vector η formed from the 3N variables qi and the 3N conjugate

momenta pi, η =
(
qi

pi

)
. Hamilton’s equations can then be written in the symplectic form

η̇ = J
∂H

∂η
, where

∂H

∂η
is the column vector

( ∂H
∂qi

∂H
∂pi

)

and J ≡
(

0 I

−I 0

)

(9.41)

(J is a 6N × 6N block matrix).
We now make a change of coordinates in the phase space qi �→ qi(Qj , Pj) and pi �→ pi(Q

j , Pj),

that is, in matrix form, ζ = ζ(η) with ζ =
(
Qi

Pi

)
. (Here for simplicity we limit ourselves to the

case of a transformation which does not depend explicitly on time.) Differentiating with respect
to time, we find

ζ̇ = Mη̇, where M ≡

⎛

⎝

∂Qi

∂qj
∂Qi

∂pj

∂Pi
∂qj

∂Pi
∂pj

⎞

⎠ (9.42)

is the 6N × 6N Jacobian matrix of the transformation.
If Hamilton’s equations are satisfied, η̇ is given by (9.41), and (9.42) becomes ζ̇ = MJ(∂H/∂η).

However, because
∂H

∂qi
=

∂H

∂Qj

∂Qj

∂qi
+

∂H

∂Pj

∂Pj

∂pi

and so on, we have (∂H/∂η) = M̃(∂H/∂ζ), where M̃ is the transpose of M . The equations of
motion therefore become

ζ̇ = MJM̃
∂H

∂ζ
. (9.43)

The transformation η �→ ζ = ζ(η) will be canonical if (9.43) has the same form as (9.41), that
is, if the Jacobian matrix M is such that

MJM̃ = J . (9.44)

Given the expressions for M and J , (9.44) is the matrix version of the invariance condition for
the Poisson brackets (9.40). Q.E.D.
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The Poisson bracket and canonical transformation

Let us return to the example of the harmonic oscillator studied in Sections 9.2 and 9.3. We
consider the Hamiltonian H(Q,P ) = P and ask whether or not it is possible to write it in the

form H(q, p) = 1
2
p2 + 1

2
q2. We see that it is possible if we set q =

√
2P sinQ and p =

√
2P cosQ.

Now we need to check that this is indeed a canonical transformation.
We can seek the corresponding generating function F (q,Q) using [see (9.17)] p = ∂F/∂q and

P = −∂F/∂Q, so that here we have q cosQ/ sinQ = ∂F/∂q and q2/(2 sin2 Q) = −∂F/∂Q, which
is easily integrated to give F = q2 cosQ/(2 sinQ), in accordance with the expression found in
Section 9.2.

However, we can avoid resorting to integration by using the invariance of the Poisson brackets.
In this approach it is necessary to calculate only the derivatives ∂p/∂Q, ∂p/∂P , and so on, and
it is a routine exercise to show that we do indeed have {q, q}P,Q = 0, {p, p}P,Q = 0, and
{p, q}P,Q = 1.
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Kinetic theory

The motion of N particles is governed by 6N equations of motion of first order in time, written
either in Hamiltonian form or in terms of Poisson brackets. Clearly, as the number of particles grows
it becomes necessary to resort to a statistical description. Here we present the equations governing
the evolution of the particle distribution and relate the macroscopic thermodynamical quantities to
the distribution function.

10.1 Liouville’s theorem and equation

The phase space is the 6N -dimensional space in which each point Q distinguished by 6N
coordinates {qi, pi} (3N positions and 3N momenta) represents a state. A trajectory Q(t)
in this space represents the motion of a system of N particles. This trajectory is determined
by specifying an initial state Q(t0) and a Hamiltonian H(qi, pi) which governs the dynamics
of the system. A different trajectory corresponds to different initial conditions. Since Hamil-
ton’s equations are first-order equations, the trajectories never intersect. An ensemble of
trajectories constitutes a flow, the features of whose evolution we wish to determine.

Let us consider the evolution of an elementary volume of this flow, defined simply as the
product (summation over the 3N indices i is understood)

dΓ = dqidpi (10.1)

at time t. At time t+ dt the point Q(t) of the flow (qi, pi) has evolved to (q′i, p′i) = (qi, pi) +
(q̇i, ṗi)dt = (qi, pi) + (∂H/∂pi, ∂H/∂qi)dt, and the elementary volume at time t + dt is
dΓ′ = dq′idp′i. Liouville showed that this volume is conserved during the time evolution:

dΓ = dΓ′. (10.2)

The proof of this statement is based on the fact that the calculation of dΓ′ starting from
dΓ amounts to calculating the Jacobian of the change of variable (qi, pi) → (q′i, p′i). Using
Hamilton’s equations, one can then show that this Jacobian is 1.1 This conclusion arises
solely from the structure of Hamilton’s equations and does not depend on the explicit form
of the Hamiltonian. However, it should be noted that this property does not hold in the
configuration space (qi, q̇i), except of course if the qi are the Cartesian coordinates of the
particles (because then the canonical velocities and momenta are proportional: p = mv).

Now let us introduce a distribution function f (N)(qi, pi, t) such that f (N)(qi, pi, t)dΓ
is the probability that at time t the state of the system will be in a volume dΓ about
(qi, pi). This positive function is normalized:

1Because the Jacobian is expressed in terms of the Poisson brackets of the p and q, which is equal to 1.
For a detailed discussion see, for example, Landau and Lifshitz (1976).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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∫
f (N)(qi, pi, t)dΓ = 1 . (10.3)

To see how f (N) evolves in time, we use the fact that if the system is at (qi, pi) at time t, it
will be at (q′i, p′i) at time t+ dt, that is,

f (N)(qi, pi, t) dΓ = f (N)(qi + q̇idt, pi + ṗidt, t+ dt) dΓ′. (10.4)

Using Hamilton’s equations and the Liouville theorem (10.2) following from them, we can
write this condition as

∂f (N)

∂t
+

3N∑

i=1

(
∂H

∂pi

∂f (N)

∂qi
− ∂H

∂qi
∂f (N)

∂pi

)
= 0 , (10.5)

or, by the definition of the Poisson brackets,

df (N)

dt
=

∂f (N)

∂t
+
{
H, f (N)

}
= 0 . (10.6)

This equation stating the conservation of the probability density is the Liouville equation.

10.2 The Boltzmann–Vlasov equation

The Hamiltonian of a system of N particles is [see (9.13)]

H =
∑

a

p2a
2ma

+W (xi) .

Let us take the case where the potential energy is written as W =
∑

waa′ (with implicit
summation over a and a′ from 1 to N , a < a′) with faa′ = −∇awaa′ being the interaction
force between particles a and a′. We also assume that this force depends only on the relative
positions laa′ = Ra′ −Ra, i.e., that waa′ depends only on the relative separation |Ra′ −Ra| =
raa′ .

To simplify our arguments we shall from now on use an inertial frame and Cartesian
coordinates, so that pia ≡ maV

i
a = madX

i
a/dt (here i = {1, 2, 3}).

The Liouville equation (10.5) then takes the following form in terms of the vectors pa and
Ra with components pia and Xi

a:

∂f (N)

∂t
+

N∑

a=1

(
pa
ma

.
∂f (N)

∂Ra
− ∂Wa

∂Ra
.
∂f (N)

∂pa

)
= 0 with Wa ≡

∑

a′ �=a

waa′ . (10.7)

Here the term (∂Wa/∂Ra).(∂f
(N)/∂pa) is understood as (∂Wa/∂X

i
a)(∂f

(N)/∂pai ). We now
introduce the function for the one-particle probability density, defined as

f (1)(u1, t) =

∫
f (N)(u1, . . . , uN , t)d6u2 . . . d

6uN ,

where ua ≡ {Ra, pa} and d6ua ≡ d3Xad
3pa .

(10.8)

The quantity f (1)(u1, t)d
6u1 represents the probability of finding the particle a = 1 in a

volume d6u1 about u1 for any positions and momenta (or velocities) of the other N − 1
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particles, i.e., for any trajectories in the phase space. The evolution equation for f (1) can be
obtained from (10.7). If we assume that f (N) tends to 0 when pa and Ra go to infinity, then∫
(∂f (N)/∂Ra)d

3Xa = 0 and
∫
(∂f (N)/∂pa)d

3pa = 0 for a = 2 . . . N , so that

∂f (1)

∂t
+

p1
m1

.
df (1)

∂R1
=

∫
∂W1

∂R1
.
∂f (N)

∂p1
d6u2 . . . d

6uN . (10.9)

Let us now assume that the particles are indistinguishable, which means they have the same
mass ma ≡ m. This implies that f (N) is invariant under permutation of the ua. Consequently,
the right-hand side of (10.9) reduces to

∫
∂W1

∂R1
.
∂f (N)

∂p1
d6u2 . . . d

6uN = (N − 1)

∫
∂w12

∂R1
.
∂f (N)

∂p1
d6u2 . . . d

6uN

≡ (N − 1)

∫
∂w12

∂R1
.
∂f (2)

∂p1
d6u2 ,

(10.10)

where the function f (2)(u1, u2, t), obtained by integrating f (N) over u3 . . . uN , is the two-
particle distribution function, that is, f (2)d6u1d

6u2 represents the probability of finding one
particle in the volume d6u1 about u1 and another particle in the volume d6u2 about u2 for
any positions and momenta of the other N − 2 particles. Therefore,

∂f (1)

∂t
+

p1
m

.
∂f (1)

∂R1
= (N − 1)

∫
∂w12

∂R1
.
∂f (2)

∂p1
d6u2 . (10.11)

Since we are assuming that the particles are indistinguishable, f (1) is related to the so-called
distribution function f(R, p, t) as

f(R, p, t) = Nf (1)(R1, p1, t) such that

∫
f(R, p, t)d3X d3p = N . (10.12)

Here f(R, p, t)d6u is the number of particles located at Xi and Xi + dXi whose velocity
components are located between V i and V i + dV i.

Equation (10.11) involves f (2). We can find the evolution equation of f (2) in a similar
manner, and it clearly will involve the three-particle distribution function f (3). In this way
we obtain a hierarchy of equations called the BBGKY hierarchy,2 which is no easier to solve
than the original Liouville equation. However, it is possible to obtain approximate solutions
of (10.11) by truncating the hierarchy on the basis of physical arguments.

Let us begin by decomposing f (2) as (this is always possible)

f (2)(u1, u2, t) = f (1)(u1, t)f
(1)(u2, t) + g(u1, u2, t), (10.13)

where g is the two-particle correlation function measuring the excess of the probability of
finding one particle at u2 knowing that there is one at u1, relative to the probability that

2For Bogoliubov, Born, Green, Kirkwood, and Yvon. More details can be found in, for example, Binney
and Tremaine (2008).
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would be expected for a system of independent particles. Equation (10.11) is then written in
terms of f as

∂f(u1, t)

∂t
+

p1
m

.
∂f(u1, t)

∂R1

=
(N − 1)

N

∂f(u1, t)

∂p1
.

∂

∂R1

∫
w12f(u2, t)d

6u2 +N(N − 1)

∫
∂w12

∂R1
.
∂g

∂p1
d6u2 .

(10.14)

Explicitly, we have

∫
w12f(u2, t)d

6u2 =

∫
w12

(∫
f(R2, p2, t)d

3p2

)
d3X2 =

∫
w12 n(R2, t)d

3X2 , (10.15)

where, by the definition of the distribution function f ,

n(R, t) ≡
∫
f(R, p, t) d3p

is the particle density about the point R. Therefore, assuming that N � 1 and dropping the
index 1, we have

∂f

∂t
+

p

m
.
∂f

∂R
− ∂f

∂p
.
∂W

∂R
= N2C(u, t) , (10.16)

where

W (R1) ≡
∫

w12 n(R2, t)d
3X2 and C(u1, t) ≡

∫
∂w12

∂R1
.
∂g

∂p1
d6u2 .

The quantity C(u, t) characterizes the interdependence of the particles. We have therefore
gone from the Liouville equation (10.5) for a function of 6N variables to an equation gov-
erning the evolution of the distribution function f (in six variables) assuming only that the
interaction between the particles depends on their separations alone, that the particles are
indistinguishable, and that there is a large number of them.

In order to solve (10.16) we must model the ‘collision’ term C(u, t). If the time between
two collisions is large compared to the dynamical time, which can be assumed, for example,
when dealing with the gravitational dynamics of a galaxy or a globular cluster, we can take
C = 0 and the equation becomes

∂f

∂t
+

p

m
.
∂f

∂R
− ∂f

∂p
.
∂W

∂R
= 0 or

∂f

∂t
=

{
f,

p2

2m
+W

}
. (10.17)

This is called the collisionless Boltzmann equation (or the Vlasov equation). It is considerably
easier to solve than the Liouville equation.

Equations (10.16) and (10.17) involve the potential energy of all the particles. We are
therefore using a mean-field approximation.

10.3 The Jeans equations

Let us consider an ensemble of identical particles described, in an inertial frame and Cartesian
coordinates (where pi = mV i), by the distribution function f(R, p, t), whose evolution is
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governed by the Boltzmann–Vlasov equation (10.17). The Jeans equations are the equations
obtained by taking various averages over velocities. The kth-order moment of the equation is

∂

∂t

∫
f V j1 . . . V jkd3V +

∂

∂Xi

∫
fV i V j1 . . . V jkd3V

− 1

m

∂W

∂Xi
δik
∫

∂f

∂V k
V j1 . . . V jkd3V = 0,

(10.18)

where the integral runs over the velocities d3V = dV 1dV 2dV 3.
At order k = 0 the first and second terms respectively involve

n(r, t) = m3

∫
f(r, p, t)d3V, V̄ i(r, t) ≡ m3

n

∫
f(r, p, t)V id3V, (10.19)

which represent the numerical density and the average velocity of the flow. If f(r, p, t) tends
to zero for large V i, the divergence theorem implies that the last term vanishes. We then find

∂n(r, t)

∂t
+∇. [n(r, t) v̄(r, t)] = 0 , (10.20)

where v̄ is the field of vectors with Cartesian components V̄ i. This continuity equation
corresponds to conservation of the number of particles in the flow.

To calculate the moment of order k = 1, we note that the third term in (10.18) involves

m3

∫
∂f

∂V k
V jd3V = −m3

∫
∂V j

∂V k
fd3V = −δjk n(r, t), (10.21)

after an integration by parts and assuming again that f(r, p, t) tends to zero for large V i.
We then find

∂

∂t

[
n(r, t)V̄ j(r, t)

]
+

∂

∂Xi

[
n(r, t)V jV i(r, t)

]
+ n(r, t)δji

1

m

∂W

∂Xi
= 0, (10.22)

with

V jV i(r, t) =
m3

n

∫
f(r, p, t)V iV jd3V. (10.23)

This term can be decomposed as V jV i = V̄ iV̄ j + σij , with σij characterizing the velocity
spread about the average v̄. Inserting this decomposition into (10.22) and subtracting the
continuity equation (10.20) multiplied by V̄ j , we find

∂V̄ j(r, t)

∂t
+ V̄ i ∂V̄

j

∂Xi
= −δji

1

m

∂W

∂Xi
− 1

n

∂

∂Xi

[
n(r, t)σij(r, t)

]
. (10.24)

The term nσij can be interpreted as the anisotropic pressure tensor, and so this equation is
equivalent to the Euler equation of fluid mechanics (see Section 6.3).
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10.4 The Maxwell distribution and the thermodynamical limit

The expressions derived in the preceding sections are independent of the form of the distribu-
tion function. In the case of a gas of free particles, that is, a gas described by the Boltzmann
equation (10.17) without any external potential, the distribution function can be derived
from first principles.

In a stationary situation the Boltzmann equation (10.17) implies that ∇f = 0, so that
f is a function of only the velocity f = f(v). The particle density in a volume d3v of phase
space is

f(v)d3v = fx(vx)fy(vy)fz(vz) dvxdvydvz (10.25)

if the variables vx, vy, and vz are independent. The isotropy of space implies that f(v) is a
function only of |v|. Then (10.25) implies that

fx(vx)fy(vy)fz(vz) = ϕ(|v|2).

This equation can be solved by differentiating with respect to one of the components, vx
for example, which gives f ′

x(vx)fy(vy)fz(vz) = 2vxdϕ/d|v|2 so that (dfx/dvx)/(2vxfx) =
(dϕ/d|v|2)/ϕ(|v|2). Each side is therefore equal to a constant A and by convention we take
A = − 1

2mβ, where β has the dimension of an inverse energy. This equation can be integrated
to give ln fx = Av2x +B. Since fx and ϕ are normalized, we deduce that

fx(vx) =

√
mβ

2π
e−

1
2βmv2

x ⇒ ϕ(v2) =

(
mβ

2π

)3/2

e−
1
2βmv2

. (10.26)

This is the Maxwell distribution.
The Maxwell distribution can be used to calculate the average kinetic energy of a particle:

ek = 1
2m〈v2〉 = 3

2β
−1, where we have used 〈v2x〉 =

∫
dvx v

2
xfx(vx) = 1/(mβ). For a gas

containing N particles, the internal energy U is then given by

U ≡ Nek =
3

2
Nβ−1 =⇒ ρ ≡ U

V
=

3N

2V
β−1 . (10.27)

The pressure of this gas is calculated from the force exerted on the container walls by particle
collisions. A particle bouncing off a wall exerts a force fdt = 2m(v.n)n, where n is the normal
to the wall. Summing over all the particles colliding with a surface S during time dt gives
F dt = 2m(v.n)[S(v.n)dt](N/V )f(v)d3v. Integrating over the (positive) velocities, we find
that the pressure p ≡ 〈F 〉/S is given by

p =
2mN

V

1

2

∫
(v.n)2f(v)d3v =

mN

V

1

3
〈v2〉 = N

V
β−1. (10.28)

Combining this with (10.27), we obtain the equation of state of the fluid:

pV =
2

3
U, p =

2

3
ρ . (10.29)

The constant β is interpreted by relating (10.28) to the thermodynamical equation of
state of a perfect monatomic gas. Indeed, the gas we have discussed here is identical to a
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perfect gas, which has the equation of state pV = NkBT , where T is the thermodynamical
temperature and kB is the Boltzmann constant (we can also write pV = nRT , where n is
the number of moles and R = kBNA, NA being Avogadro’s number). We then see that β is
related to T as

β−1 = kBT. (10.30)

In thermodynamics, (10.27) is sometimes generalized to U = 2Nek/(3w) = N/(wβ),
where the coefficient w, not necessarily equal to 2/3, is assumed to take into account any
additional degrees of freedom (like rotation, etc.). The equation of state (10.29) for a perfect
gas is then generalized to

pV = wU, p = wρ . (10.31)

The equation of state p = wρ will prove useful for modeling the structure of stars and large
objects as well as cosmological fluids.
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Gravitation

Having observed this I came to the conclusion that in a medium totally devoid of resistance
all bodies would fall with the same speed.

Galileo Galilei, Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove Scienze, Leiden,
Elzevir, 1638; English translation by Henry Crew and Alfonso de Salvio, Discourses and

Mathematical Demonstrations Relating to Two New Sciences, New York, Macmillan, 1914

There is a power of gravity tending to all bodies, proportional to the several quantities
of matter which they contain.

This force is ever proportional to the body whose force it is; and differs nothing from the
inactivity of the mass, but in our manner of conceiving it.

The force of gravity towards the several equal particles of any body is reciprocally as the
square of the distance of places from the particles. . .

Sir Isaac Newton, Philosophiæ Naturalis Principia Mathematica, London, 1687; English
translation by Andrew Motte, The Mathematical Principles of Natural Philosophy,

London, 1729
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The law of gravitation

We have described the geometrical framework representing Newtonian space and time in Part I and
the laws of Newtonian dynamics in Part II of this book. Now we embark on the study of Newton’s
law of gravitation.

11.1 Gravitational mass and inertial mass

The inertial mass1 mI of a point particle is the parameter characterizing the particle which
appears in Newton’s law of motion:

F = mIa , (11.1)

where a is the acceleration of the particle trajectory and F is a vector representing the force
on the particle; see Section 5.1. The inertial mass is a measure of the ‘resistance’ of the
point particle to an applied force. The numerical value of the inertial mass of a body can in
principle be obtained from collision experiments (see Section 7.1) by assigning to a reference
body a unit inertial mass of one kilogram or, more rigorously, one ‘inertial kilogram’.

Since the ‘power of gravity’ is an experimental fact, the gravitational mass mG is another
parameter which is naturally associated with massive objects subject to or producing a
‘gravitational force’.

This concept therefore has a dual nature.
• The passive gravitational mass characterizes the response of a body to the gravita-

tional action of external objects. More precisely, it defines the weight of a body, that is, the
gravitational force F acting on the body as

F = mGg , (11.2)

where g is the acceleration of gravity characterizing the external gravitational action inde-
pendently of the body subject to it: g = (F/mG)a for any body a. Therefore, if the weight
F of the body is known, we can in principle deduce both g and the gravitational mass mG

by assigning a unit mass of one ‘gravitational kilogram’ to a reference body.

1The terms inertial mass and gravitational mass were first used by H. Bondi.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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The principle of weight measurement

It is possible in principle to determine the numerical value of an object’s weight (without
knowing the law of gravitation) by means of Newton’s second law F = mIa by measuring in
an inertial reference frame the acceleration acquired by the body in an external gravitational
field, where it is assumed that the inertial mass of the body is known by some other means. It
is also possible to determine the weight by weighing the body in statics experiments using, for
example, the tension on a spring. (In an inertial frame it is not necessary to know the inertial
mass.)

• The active gravitational mass characterizes the object which creates a gravitational
field. It can therefore be called the ‘gravitational charge’.

The gravitational force of a body A on another body B, FAB , is proportional to
mactive

G,A mpassive
G,B . However, Newton’s third law of equal action and reaction FAB = −FBA

implies that mactive
G,A mpassive

G,B = mactive
G,B mpassive

G,A , so that for any body mactive
G /mpassive

G is a con-
stant which can be set equal to 1. Therefore, passive and active gravitational masses are
identical and we shall no longer distinguish between them. (Similarly, in electrostatics we do
not distinguish the passive and active electric charges appearing in Coulomb’s law.)

On the other hand, there is nothing in the structure of Newtonian physics that requires
electric or gravitational ‘charges’ to be equal to inertial masses. For example, the ratio of the
electric charge and the inertial mass varies from body to body and can even be zero (for a
‘neutral’ body).

11.2 Equality of gravitational and inertial mass

It is an experimental fact, established by Galileo (in his experiments on inclined planes
rather than the probably apocryphal experiment in the Leaning Tower of Pisa), that in the
absence of friction, all objects, no matter what their inertial mass, or the nature of their
constituents, or the internal energy or cohesive forces of their constituents, fall in the same
way in an external gravitational field (in contrast to, for example, the behavior in an electric
field of two individual charges of opposite sign and of their neutral ensemble). The ratio of
the gravitational and inertial masses is therefore the same for any object, and we can take it
to be unity:

mI = mG ≡ m. (11.3)

The parameter characterizing any possible deviation from this universality of free fall is
defined as

η ≡ 2
|a1 − a2|
|a1 + a2|

, (11.4)

where a1 and a2 are the accelerations of two bodies in free fall in an external gravitational
field. Given that F = mIa by Newton’s second law and F = mGg by the definition of weight
and gravity, we have a = (mG/mI)g and (11.4) can be rewritten as

η = 2
|m1

G/m
1
I −m2

G/m
2
I |

m1
G/m

1
I +m2

G/m
2
I

. (11.5)
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Present-day experiments, which are among the most precise in physics, give η < 10−12.
Therefore, to this precision we can take the gravitational and inertial masses to be identical
and express them both using a common unit, the kilogram.

It is important to note that this equality of gravitational and inertial mass holds a priori
only for bodies in an external gravitational field so that their proper gravity can be ignored.

Experiments involving pendulums

The equation of motion of a body suspended at the end of a cable of length L and oscillating
in a gravitational field g is, in the limit of small angular displacements θ,

θ̈ + ω2θ = 0, where ω ≡ ω0

√
mG

mI
and ω0 ≡

√
g

L
. (11.6)

Comparing the oscillations of two different bodies A and B suspended by cables of the same
length, we find

η ≈ 2
|ωB − ωA|

ω0
. (11.7)

This method was invented by Galileo, who estimated that η = 0 with an accuracy of 1%. Newton
repeated the experiment and by taking into account air resistance obtained an accuracy of 10−3.
In 1827 Bessel reached an accuracy of 10−5.

Experiments involving torsion balances

In 1922 Eötvös used a torsion balance essentially consisting of a rod connecting two different
bodies A and B and suspended by a cable. In a rotating reference frame in which the Earth is at
rest, the suspended bodies are subject to two forces, namely, the Earth’s gravitational attraction
mGg pointing toward the center of the Earth and the centrifugal force mIc tending to make the
pendulum move away from the Earth’s rotational axis. If η is nonzero, the cable experiences a
couple of amplitude

C �
(

mAmB

mA +mB

)

I

g.(l ∧ c)

|g + c| η , (11.8)

where l ≡ AB is the separation vector. When the balance is turned by 180◦, l changes sign, thus
allowing measurement of η. Eötvös and his collaborators Pekár and Fekete obtained η = 0 with
an accuracy of 10−8.

The experiment was repeated by Dicke and his collaborators Krotkov and Roll in 1966 at
Princeton with g the acceleration due to the solar gravitational field and c that due to the orbital
rotation of the Earth (so that it was c which changed sign every 12 hours). They obtained an
accuracy of 10−11. In 1972 Braginski and Panov in Moscow reached 10−12.

Finally, the Eöt-Wash experiment performed at the University of Washington in 2000 ob-
tained an accuracy2 of 13.2× 10−13.

2For more details, see, for example, Uzan and Lehoucq (2005).
The outer space experiment MICROSCOPE, launched in 2016, reached an accuracy of 10−15, see

P. Touboul et al. (2017). The planned mission STEP (Satellite Test of the Equivalence Principle) is expected
to reach an accuracy of 10−18.
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11.3 Newton’s gravitational force and field

Newton3 postulated that the gravitational force exerted on a point particle P by an ensemble
of particles Pa is represented by a vector F (t) written in the absolute Cartesian frame S as

F = −mG

∑

a

GmGa

r3a
la, (11.9)

where la = PaP is the separation vector between Pa and P (the force is attractive) with
components lia = Xi(t)−Xi

a(t), where Xi
a(t) and Xi(t) are the coordinates of Pa and P ; ra

is the distance r2a = δij lial
j
a = e(la, la); G is Newton’s constant; and, finally, mG and mGa

are the (gravitational) masses of P and Pa.
In any other frame or coordinate system the distance ra is given by the same function of

time. In going from S to an accelerated frame S ′ or from a system of Cartesian coordinates
Xi to curvilinear coordinates xi, the components of the separation vector la transform as
(omitting the subscript a)

l′i = R i
j l

j , l′i =
∂xi

∂Xj
lj , (11.10)

where ∂xi/∂Xj is evaluated on the trajectory of P (in this case the vector la is bound to
P ). Moreover, it turns out that the gravitational force can be represented by the same vector
in any frame. It is therefore written in the form (11.9) in any frame, inertial or noninertial,
Cartesian or non-Cartesian.

The gravitational force can be defined as a field, in which case the vector la, bound to
P , is viewed as a function of the point P of coordinates Xi, and not as a functional of the
trajectory of a point mass P (t). It can therefore be derived from a gravitational potential U
(defined up to an additive constant) as

F = −mG ∇U with U ≡ −
∑

a

GmGa

ra
, (11.11)

where ∇U is the gradient of the function U with components (∇U)i = eij(∂U/∂xj) in any
system of curvilinear coordinates; see Section 4.6.

To summarize, the equations of motion of a particle of inertial mass mI and gravitational
mass mG in the gravitational potential (11.11) are written in vector form as (see Sections 5.1
and 5.4)

3The contribution of Robert Hooke to establishing the law of gravitation has been under debate since

the 17th century, but, as stated by Émilie de Breteuil, marquise du Châtelet, in her Explication abrégée
du système du monde, et explication des principaux phénomènes astronomiques tirée des Principes de M.
Newton [Abbreviated explanation of the System of the World, and explanation of the principal astronomical
phenomena taken from the Principia of Mr. Newton] (edited by Alexis Clairaut in 1759): “It should not be
thought that this idea casually mentioned in Hook’s (sic) book diminishes the glory of Newton (...). The
example of Hook and that of Kepler serve to show how great a distance there is between a glimpse of the
truth and a demonstrated truth, and how little the grandest illuminations of the spirit serve the sciences
when they cease to be guided by Geometry.”
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

mIa = −mG∇U in any inertial frame

mID̃vv = −mG∇U in any system of curvilinear coordinates

mIa
′ = −mG∇U +mI

(
−2Ω ∧ v′ +Ω ∧ (R′ ∧ Ω)− Ω̇ ∧R′ − d̈

)

in any frame ,

(11.12)

where the equality mI = mG ≡ m is imposed by experiment; see Section 11.2.
The principal consequence of the equality of the gravitational and inertial masses is that

the equation of motion of a point mass P in a gravitational field is independent of its mass.
Let us write it in an accelerated frame belonging to the Milne group (see Section 1.4), that
is, a frame without rotation Ω = 0, X ′ = X, Y ′ = Y , Z ′ = Z − d(t), and set d̈ = g. Then
(11.12) becomes

a′ = −∇U − g = −∇(U + g Z) = −∇(U + g Z ′) . (11.13)

We can then ‘efface’ the gravitational field acting on P by attributing its motion to a rotation-
less accelerated reference frame in free fall such that g = −∇U , where ∇U is evaluated on
the trajectory of P . In this frame a′ = 0 and the motion of P is that of a free particle (the
effacement of the field occurs only for P and the particles close enough to P where ∇U can
be considered constant). Conversely, a gravitational field can be created artificially (i.e., in
the absence of any gravitational mass) by going to a frame undergoing an acceleration g
identified with the gradient of a gravitational potential. Finally, we note that the rotational
motion of a solid in a constant gravitational field is also free motion because the torque K
exerted on the solid is zero; see Section 6.2.

This (local) equivalence between the gravitational force and inertial forces, which is ac-
cidental in Newtonian physics, will be elevated to a postulate in general relativity called the
equivalence principle (more precisely, the postulated equality of gravitational and inertial
mass along with the universality of free fall that it implies will be referred to as the weak
equivalence principle).

Measurement of mass and of Newton’s constant

In the laboratory frame (see Section 2.5), let us consider an object of gravitational mass
m suspended at the end of a pendulum and subjected to its own weight −mgeZ and to the
attractive force (GmM/d2)eX of another gravitational mass M located a distance deX away.
The pendulum is displaced by an angle α given by

tanα ≈ α =
GM

gd2
. (11.14)

In a first series of experiments the angles α and αref are compared for two masses M and Mref ,
which makes it possible in principle to find the value of the gravitational mass M from4 M =
Mrefα/αref .

4In contrast to the methods mentioned in Section 11.1, this method of measuring gravitational masses
requires knowing that the gravitational force depends only on the separation of the bodies.
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The acceleration of terrestrial gravity g is given by (11.9) as g = −
∑

Gmala/r
3
a, with the

sum running over all the mass points making up the Earth. However, Newton’s theorem (see
Section 11.4) provides the simple result

g = −GM⊕
r2⊕

, (11.15)

where M⊕ and r⊕ are the gravitational mass and the radius of the Earth. Therefore,

α ≈ M

M⊕

r2⊕
d2

. (11.16)

By measuring α and knowing d and r⊕, we can deduce the gravitational mass of the Earth as a
function of M . This method was proposed by Maskelyne in 1772 to measure the Earth’s mass.

This idea was taken up by Cavendish in 1798 for an experiment using a torsion balance to
compare the gravitational attraction due to the Earth to that due to reference masses. He found
the average density of the Earth to be 5.31 g/cm3, close to the value 5.52 accepted today.

These results can in principle be used to find G in the following way. Once we know the
gravitational mass (from the first series of experiments) and the inertial mass (from collision
experiments) of a body, g can be obtained by measuring the acceleration a acquired in the
Earth’s field: g = mIa/mG = 9.81 m/s2. Then, knowing the Earth’s radius and mass from the
Cavendish experiment, we arrive at G = −gr2⊕/M⊕.

Cavendish obtained G = 6.71 × 10−11 m3/(kg s2), a value close to that accepted today. In
1889 Boys reached an accuracy of 0.1 % by miniaturizing the experiment.

Measurements ofG using torsion balances continue to be carried out today. The measurement
accuracy is limited in particular by the inelasticity of the cable. The value accepted since 2002 is5

G = 6.674 08× 10−11 m3/(kg s2) (11.17)

with a relative uncertainty of 4.7× 10−5.

11.4 The Poisson equation and the gravitational Lagrangian

When matter is described as a continuous medium of (gravitational) mass density , the
potential U in (11.11) becomes

U(P ) = −G

∫
(t, P ′)

r
P ′P

dV ′, (11.18)

where rP ′P = |P ′P | = |R − R′| is the distance between the point where U is evaluated
and the point P ′ of the extended body creating the field. The volume element is dV =
dX1dX2dX3 in Cartesian coordinates and dV =

√
dete dx1dx2dx3 in curvilinear coordinates

xi, and dete is the determinant of the metric coefficients (so that in spherical coordinates
e = dr2 + r2(dθ2 + sin2 θdφ2) and therefore

√
dete = r2 sin θ; see Section 3.6).

5The values of constants can be found at the site http://physics.nist.gov/cuu/Constants/.

http://physics.nist.gov/cuu/Constants
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Spherical symmetry: Newton’s theorem

It is a simple exercise6 to show that if the P ′ mass distribution is spherically symmetric,
then the Newtonian potential U at a point P is equal to that created by a point of the same
total mass located at the center of the distribution.

Indeed, if we place the body at the origin of the frame, by symmetry we can place the
point P at (0, 0, r). The Cartesian components of the position vector of a point P ′ in spherical
coordinates are (r′ sin θ cosφ, r′ sin θ sinφ, r′ cos θ). Then the potential at P is

U(r) = −G

∫
(r′, t)√

r′2 + r2 − 2rr′ cos θ
r′2 sin θ dr′dθdφ, (11.19)

which is easily integrated to give

U(r) = −GM

r
if r > r0, (11.20)

where M = 4π
∫ r0
0

r′2dr′ is the total mass of the body and r0 is its radius.
This is a remarkable theorem.
It shows that the gravitational force F = −m∇U at the surface of a spherical body, the

Earth for example, is the same as it would be if all the mass were concentrated at the center.
Moreover, it shows that the gravitational mass of a composite body [the coefficient M which

appears in the expression for the potential (11.20)] is equal to the inertial mass
∫
r2sin θ drdθdφ,

because inertial = grav owing to the ‘weak’ equivalence principle. The equality of the gravita-
tional and inertial masses therefore holds not only for a test body placed in an external field,
but also for bodies whose proper gravity cannot be ignored.7

Finally, it shows that the internal motion of the constituents of a spherically symmetric mass
distribution does not affect the external gravitational field.

Since U = −GMin(r)
r

−4πG
∫ r0
r

(r′)r′dr′ if r < r0, we similarly find that the potential inside
a spherical cavity where  = 0 is constant, so that the field inside the cavity vanishes.

Laplace and Poisson derived from (11.18) a differential relation between U and :

�U = 4πG , (11.21)

where � is the Laplacian operator (see Section 4.6; in tensor notation8 �U ≡
eijD̃i∂jU).

We note that the local form (11.21) of the equation for U admits solutions other than
(11.18) which incorporates the choice of a boundary condition. If, for example,  depends

6. . . which, however, delayed the publication of the Principia by 25 years because in order to prove it,
Newton first had to invent (in competition with Leibniz) integral calculus. We note that it is impossible,
except in special cases, to uniformly distribute a finite number of points on a sphere, and so the idea of
a point distribution having spherical symmetry actually makes sense only in the continuum limit. See, for
example, Saff and Kuijlaars (1997).

7The fact that the equality of gravitational and inertial mass holds not only for a test body but also for
bodies whose contribution to the gravitational field cannot be neglected is specific to the 1/r behavior of
the Newtonian potential (11.18). In general relativity this is referred to as the strong equivalence principle.
Present-day theories of gravitation which satisfy this principle are Einstein’s general relativity, the Nordström
theory constructed within the framework of special relativity, and Newton’s theory (see also Section 12.4).

8Those familiar with the Dirac delta distribution δ3(xi) ≡ δ(x)δ(y)δ(z), where
∫
δ(x)dx = 1 and �(1/r) =

−4πδ3(xi) with � denoting the Laplacian, will notice that the Poisson equation (11.21) is readily derived
from (11.11) because

∑
maδ3(xi − xi

a) = 	.
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only on time (the case of a uniform matter distribution throughout space), then (11.18) [and
also (11.19) in this case] is not defined, whereas (11.21) has the solution U = 2

3πG r2. As
we shall see in Chapter 16, this will play a role in Newtonian cosmology.

The gravitational force between two particles can be written as fa′a = −∇awa′a where
wa′a = −Gmama′/ra′a is (see Section 7.3) the potential energy (or the gravitational energy)
of the pair Pa, Pa′ (it is also ma times the potential U = −Gma′/ra′a created at Pa by Pa′).
Therefore, the gravitational potential energy of an ensemble of particles is

W = −
∑

a,a′ with a<a′

Gmama′

ra′a
=

1

2

∑

a

maUa with Ua = −
∑

a�=a′

Gma′

ra′a
, (11.22)

which when generalized to a continuous distribution becomes

W =
1

2

∫
UdV with �U = 4πG . (11.23)

We can use the Poisson equation to eliminate  from the expression for W ; indeed, we have

4πG

∫
UdV =

∫
U�UdV =

∫
∇(U.∇U)dV −

∫
(∇U)2dV

= −
∫
(∇U)2dV ,

where we have used the divergence theorem and the fact that, since U ∝ 1/r at infinity (as
long as there is no matter there), the surface integral vanishes. Therefore,

W =
1

2

∫
UdV = − 1

8πG

∫
(∇U)2dV . (11.24)

Now that we have the expression for the potential energy of a gravitational system, we
can define its Lagrangian as L = T −W , where T is its kinetic energy, that is, in an inertial
frame,

L =
1

2

∑

a

mav
2
a +
∑

a<a′

Gmama′

ra′a
(11.25)

for a system of point particles. We can check that the Euler–Lagrange equations (∂L/∂va)
˙ =

∇aL derived from this are indeed equivalent to the equations of motion (11.12) (with
mI = mG).

Owing to (11.24), the Lagrangian of a continuous matter distribution can a priori be
written in various ways, because W can be written as

W =

∫
dV

(
(1 + c)

2
U +

c

8πG
(∇U)2

)
,

where c is an arbitrary constant. However, the value to choose is c = 1, which gives

L =

∫
dV

(
1

2
v2 − U − 1

8πG
(∇U)2

)
. (11.26)

It is indeed this Lagrangian which gives the Euler equation for a fluid subject to an external
gravitational field (see Sections 6.3 and 8.2) when the path followed by the fluid elements is
varied while holding the potential U fixed.
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This Lagrangian has the additional virtue that the Poisson equation (11.21) can be derived
from it by varying the configuration of the gravitational potential U . If U �→ U + δU , then

(∇U)2 �→ (∇U)2 + 2∇U .∇δU = (∇U)2 + 2∇(∇U.δU)− 2�UδU .

After using the divergence theorem we find

δL = −
∫
dV

(
− 1

4πG
�U

)
δU , (11.27)

so that the principle of least action (δL = 0 for any variation δU of the configuration) again
gives the Poisson equation.

Newtonian gravity: unanswered questions

The main faults of the Newtonian equation of motion for massive bodies in a gravitational
field were pointed out very early, by Newton himself and his contemporaries. For example:

1. The gravitational force acting on a body at time t depends on the positions of the other
bodies at the same time. Therefore, the interaction between far-separated objects is instanta-
neous. This worried Newton, who could not find an explanation for it (hence his well known
statement ‘hypotheses non fingo’).

2. The gravitational force is long-range and universal (all massive bodies experience it). It is
therefore impossible to isolate a body from the attraction of other gravitational bodies, except
by moving them off to infinity. A body can never be considered to be completely free, but the
construction of inertial reference frames is based on the notion of a free particle.

3. The acceleration of a body is defined relative to the origin of the reference frame used.
Leibniz refused to treat an immaterial point as special and believed the laws of motion should
involve only the relative separations of bodies. By subtracting two by two the N equations
governing the motion of N gravitational objects, one indeed ends up with (N − 1) independent

equations involving only the separation vectors laa′ and their second derivatives l̈aa′ = l̈iaa′e′i in
any frame belonging to the Milne group of arbitrary (i.e., not necessarily uniform) translations.
The observation of the relative motions of gravitational bodies therefore does not permit the
determination of the translational motion of the reference frame relative to the absolute frame,
and it is always possible to find one frame in which one of the gravitational bodies is at rest.
Then gravity effectively disappears for this body.

General relativity will address these objections. The speed of propagation of the gravitational
interaction will be finite (equal to the speed of light), and all bodies will be ‘free’ in a gravitational
field, their trajectories extremizing the distance between the points of a space which is not
Euclidean but ‘curved’ by gravitation.
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The Kepler problem

In 1618 Kepler established three laws governing the motion of a planet around the Sun:

• the motion is planar and the trajectories are ellipses;

• the area swept out by the radius vector per unit time is constant;

• the cube of the semi-major axis a is proportional to the square of the period P , a3 = (const)P 2.

Newton explained the underlying dynamics in 1665.

12.1 The reduced equations of motion

In accordance with Newton’s theorem and the equality of gravitational and inertial mass,
the equations of motion of two spherically symmetric gravitational bodies A and B are, in
an inertial Cartesian frame,

aA = −GmB

r3BA

lBA and aB = −GmA

r3AB

lAB . (12.1)

If RA and RB are the radius vectors of the centers of the bodies A and B, the separation
vector is defined as lAB ≡ AB ≡ RB−RA = −lBA and its length is rAB = rBA. Decomposing
the radius vectors as RA = Xi

A(t)ei and RB = Xi
B(t)ei, the components of the accelerations

aA ≡ d2RA/dt
2 and aB = d2RB/dt

2 become aiA = Ẍi
A and aiB = Ẍi

B , where the dot denotes
differentiation with respect to the universal time t.

These equations imply that the center of mass having position vector ρ with coordinates ρi,

ρi ≡ mAX
i
A +mBX

i
B

M
, where M ≡ mA +mB , (12.2)

undergoes uniform translational motion (indeed, the entire system is not subject to any force,
and so the barycentric frame is Galilean), ρ̈ = ρ̈iei = 0. Setting lAB ≡ l and rAB ≡ r, (12.1)
also implies that

d2l

dt2
= −GM

r3
l . (12.3)

Therefore, the two-body problem reduces to the motion of an effective point Q of arbitrary
mass in the gravitational field of a mass M located at the origin of the frame. Once l(t) is
known, the radius vectors of the two bodies are given by1

1Solar system observations are sufficiently accurate that it is necessary to take into account the motion of
the Sun about the center of mass of the system. Newton postulated that this center of mass is at absolute
rest and embodies the origin of the absolute reference frame. Leibniz considered only (12.3), valid in any
frame of the Milne group undergoing arbitrary translation relative to the absolute frame, to be admissible
and ignored the equation giving the motion of the center of mass, which is immaterial and unobservable.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.
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RA − ρ = − mB

mA +mB
l , RB − ρ =

mA

mA +mB
l . (12.4)

A brute-force method of solving (12.3) is to expand it in the Cartesian components of l: li(t) =
{X(t), Y (t), Z(t)}. Then by setting X(t) = r(t) sin θ(t) cosφ(t), Y (t) = r(t) sin θ(t) sinφ(t),
and Z(t) = r(t) cos θ(t), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r̈ − r(θ̇2 + sin2 θ φ̇2) = −GM

r2

θ̈ + 2
ṙ

r
θ̇ − φ̇2 cos θ sin θ = 0

φ̈+ 2 θ̇ φ̇
cos θ

sin θ
+ 2

ṙ

r
φ̇ = 0 .

(12.5)

Another, faster, method is to introduce a moving frame attached to the trajectory of
Q, defined in Section 2.5, such that l = re′1. We find that l̇ = ṙe′1 + rė′1, that is, l̇ =
ṙ e′1 + r θ̇ e′2 + r φ̇ sin θ e′3. A second differentiation then leads to (12.5).

A third method is to write the vector equation (12.3) in spherical coordinates and is a good
exercise on the use of the covariant derivative. Setting Xi = {X,Y, Z} and xi = {r, θ, φ}
with X = r sin θ cosφ, Y = r sin θ sinφ, and Z = r cos θ, the calculation of the covariant
derivative (D̃vv with v = l̇) again gives (12.5). The calculation is rather tedious if (3.14) for
the connection coefficients is used, and much more rapid if, instead, (3.27) is used, once the
metric in spherical coordinates (e = dr2 + r2dθ2 + r2 sin2 θdφ2) has been obtained.

12.2 The ellipses of Kepler

Inspection of the system (12.5) shows that the motion is planar. We can always choose the
frame such that initially θ = π/2 and θ̇ = 0; then the second equation in (12.5) states that
θ = π/2 at all times. The plane is specified by two angles, i and Ω (the angles of nutation and
precession, denoted as Θ and Φ in Section 1.3). In the polar coordinates r, φ of the orbital
plane, where φ is the angle between l and the X axis, (12.5) then becomes

φ̈+ 2
ṙ

r
φ̇ = 0 , r̈ − rφ̇2 = −GM

r2
, (12.6)

the first integrals of which are easily found to be

dφ

dt
=

L

r2
,

(dr
dt

)2
= 2E +

2GM

r
− L2

r2
, (12.7)

where the two integration constants L and E are called the angular momentum and energy
per unit mass of Q. Since r2φ̇ is the areal velocity, Kepler’s second law reads as the law of
angular momentum conservation.

To obtain the trajectory, we take the ratio of (dr/dt)2 and (dφ/dt)2, set u = 1/r, and
differentiate (the Binet method), which gives

d2u

dφ2
+ u =

1

p
with p ≡ L2

GM
, (12.8)
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whose solution are the conic sections with equation

r =
p

1 + e cos(φ− ω)
with e2 ≡ 1 +

2EL2

G2M2
, (12.9)

where the relation between e and E is obtained by requiring that the trajectory satisfy (12.7).
For E < 0 this is the equation of an ellipse of eccentricity e and focal parameter p, whose
major axis, of length 2a [p = a(1− e2)], makes an angle ω with the X axis (ω is the proper
rotation angle denoted Ψ in Section 1.3). This is Kepler’s first law.

For E < 0 and L �= 0 the time dependence of the trajectory is obtained in parametric
form as2

⎧
⎪⎨

⎪⎩

r = a(1− e cos η)

tan
(φ− ω)

2
=

√
1 + e

1− e
tan

η

2

with

√
GM

a3
(t− T ) = η − e sin η. (12.10)

Therefore, the orbital period is P = 2π
√

a3/GM and its square is proportional to the cube
of the major axis. This is Kepler’s third law.3

The motion depends on the six integration constants ca = (i,Ω, a, e, ω, T ), as required.4

The geometry of an ellipse

Figure 12.1 illustrates the principal characteristics of an ellipse:

• P , the point closest to the focus F , corresponds to φ− ω ≡ ν = 0;

• A, the point farthest from F , is reached for ν = π;

• the semi-latus rectum p characterizes the size of the ellipse;

• the eccentricity e characterizes how flat the ellipse is;

• the semi-major axis a and the semi-minor axis b are related to p and e as

a =
p

(1− e2)
, b =

p√
1− e2

; (12.11)

2This is done by rewriting the second equation in (12.7) as ṙ2 = − 2E
(r/a)2

[
r
a
− (1− e)

] [
(1 + e)− r

a

]
and

then making the change of function r = a(1− e cos η) [which immediately gives t(η)]. The equation for φ is

then derived from (12.9): cos(φ− ω) = cos η−e
1−e cos η

, which is equivalent to the second equation in (12.10).
3This magnificent dynamical derivation of Kepler’s laws by Newton in 1665 was not in fact fully satis-

factory, because it involves the assumption that the gravitational bodies are point-like objects. However, the
ratio of the Sun’s radius to the Earth’s orbital radius is not negligible (it is of order 5× 10−3). Newton was
thus endeavored to prove that the attraction of a spherical body is identical to that of a point of equal mass
located at the center of the sphere, which, as mentioned above in Section 11.4, delayed the publication of the
Principia until 1687.

4Of course, it is necessary to add to these the six constants characterizing the uniform motion of the center
of mass. In the Cartesian center-of-mass frame the time dependence of the components of the radius vector
l is (see Section 1.3, where Φ → Ω, Ψ → ω, and Θ → i)

X = R1
1 X

′ +R1
2 Y

′ , Y = R2
1 X

′ +R2
2 Y

′ , Z = R3
1 X

′ +R3
2 Y

′,

with X′ = r cos(φ− ω) = a(cos η − e), Y ′ ≡ a
√
1− e2 sin η, and

√
GM
a3 (t− T ) = η − e sin η.
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• the area enclosed by the ellipse is S = πab ;

• the distances from A and P to the focus F , rA and rP , are related to p and e as

p =
2rP rA
rA + rP

, e =
rA − rP
rA + rP

;

• the circle of radius a and center O is called the apsidal circle and OF = ae ;

• the definitions of the points B, B′, and H can be read from the figure; with a bit of
trigonometry we find that HB/HB′ =

√
1− e2. These relations allow ν and η to be related.

Using FH = r cos ν, HB = r sin ν, OH = a cos η, and HB′ = a sin η, we find (recalling that
ν ≡ φ− ω)

r cos ν = a(cos η − e) , r sin ν = a
√

1− e2 sin η , and r = a(1− e cos η) . (12.12)

The relation between the angles ν and η then is

tan
ν

2
=

√
1 + e

1− e
tan

η

2
. (12.13)

A P O F 

B 

ην

B ′ 

H 

b 

a 

rA rB 

p 

a 

Fig. 12.1 The geometry of an ellipse.

Orbital parameters

Equations (12.9) and (12.10) can be used to describe the motion of a planet in the solar
system (neglecting the attraction of other bodies) (see Fig. 12.2). Then mB is the mass of the
Sun andmA is the planet mass. In the terminology of astronomy, P and A, respectively the points
closest and farthest from the focus, are the perihelion and the aphelion (or, in less ‘heliocentric’
terms, the periastron and the apastron), and
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• the angle i is the inclination of the orbital plane relative to the ecliptic (the plane of the
Earth’s orbit);

• the angle Ω is the angle between the intersection of these two planes and the vernal equinox
(the Sun–Earth axis at the spring equinox);

• the angle ω is the longitude of the periastron;

• the angle ν ≡ (φ− ω) is the true anomaly;

• η is the eccentric anomaly;

• T is the time the body is at periastron;

• n =
√

GM/a3 is the mean angular motion;

• finally, � ≡ n(t− T ) is the mean anomaly.

P 

X 

Y 

Z 

i 

r 

Ω

ω

ν

Fig. 12.2 Orbital parameters.

12.3 The Kepler problem in the Lagrangian formalism

If Xi
A, X

i
B , V

i
A = Ẋi

A, and V i
B = Ẋi

B are the Cartesian coordinates and velocities of two
bodies of mass mA and mB and r is their separation, the gravitational Lagrangian of the
system in an inertial frame is [see (11.25)]

L(Xi
A, X

i
B , V

i
A, V

i
B) =

1

2
mA δijV

i
AV

j
B +

1

2
mB δijV

i
BV

j
B +

GmAmB

r
, (12.14)

and its variation gives (12.1). It can also be written in terms of the center-of-mass coordinates
with components li = Xi

B −Xi
A and the velocities as
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L(ρi, li, ρ̇i, l̇i) = Lcm + Lr with

⎧
⎪⎨

⎪⎩

Lcm(ρ
i, ρ̇i) =

1

2
M δij ρ̇

iρ̇j

Lr(l
i, l̇i) =

1

2
μ δij l̇

i l̇j +
GμM

r
,

(12.15)

where M = mA + mB and where μ = mAmB/M is the reduced mass of the system and
Lr is the reduced Lagrangian. The Euler–Lagrange equations then show that the two-body
problem reduces to the composition of uniform translation of the center of mass and the
motion l̈i = −GMli/r3, governed by (12.3), of a point Q of mass μ in the field of a mass M
located at the origin of the reference frame.

In Section 12.1 we discussed three methods of obtaining the equation of motion (12.5).
A fourth method is to write the reduced Lagrangian Lr ≡ T −W in spherical coordinates

[cf. (8.22)]:

Lr(r, θ, φ, ṙ, θ̇, φ̇) =
1

2
μ(ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2) +

GμM

r
. (12.16)

The Euler–Lagrange equations then lead to (12.5), but with the advantage that the third of
these equations now becomes (r2 sin2θ φ̇)˙ = 0, which immediately provides a first integral,
since the momentum conjugate to φ is conserved because φ is cyclic.

A (final) method of integrating the equation of motion makes better use of the conserva-
tion laws of the system. Since the potential depends only on the distance to the center of the
frame, the angular momentum of the point Q, M/μ = l ∧ l̇, is conserved (see Section 7.2).
The vector l then is always perpendicular to the constant vector M, and so the motion occurs
in the plane perpendicular to M specified by the two angles i and Ω (i is the angle between
the vector M and the OZ axis, and Ω is the angle of intersection of the orbital plane and the
OX axis). The frame can then be changed so that this plane has the new equation θ′ = π/2.
We thus recover the result that the motion is planar. Since the component Mz ≡ μL written
in spherical coordinates is constant [cf. (7.10)], we have r2φ̇ = L. Finally, since the potential
does not depend explicitly on time the energy E ≡ μE = T +W = 1

2μ(ṙ
2 + r2φ̇2)−GμM/r

of the point Q is conserved (see Section 8.3). To sum up, the laws of angular momentum and
energy conservation show without any integration that the motion is planar and also give
the two first integrals (12.7).

The remarkable fact that the orbits E < 0 are closed curves is due to the 1/rn−1 de-
pendence with n = 2 of the Newtonian potential (see Section 12.4). This feature can be
interpreted as a consequence of an additional conservation law specific to the Newtonian
potential. In fact, it is easily verified that if l̈ = −GMl/rn+1 with n = 2, the Laplace vector
h is conserved5:

(l ∧ l̇) ∧ l̇ +
GM

r
l ≡ −GM h = const . (12.17)

The explicit expressions for the components of this vector are easily obtained using the
‘Kepler frame’ (see Section 2.5, with θ = π/2). Setting l = re′1, we have l̇ = ṙe′1 + rφ̇e′3, and
so, using the first integrals in (12.7), GMh = Lṙ e′3 + e′1

(
GM − L2/r

)
. Returning to the ei

5This is also called the Runge–Lenz vector (Runge, 1919) in electrostatics, where the Coulomb potential
has the same 1/r behavior.
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frame (e′1 = cosφ e1 + sinφ e2, e
′
3 = − sinφ e1 + cosφ e2) and decomposing the vector h as

h = e(cosω e1 + sinω e2), we find

GM e cosω = −Lṙ sinφ+

(
GM − L2

r

)
cosφ

GM e sinω = Lṙ cosφ+

(
GM − L2

r

)
sinφ

(12.18)

or

GMe cos(φ− ω) = GM − L2

r
, e2 = 1 +

2EL2

G2M2
. (12.19)

The first equation is that of the Kepler ellipse, obtained without any integration, and the
second defines the modulus e of the vector h as the eccentricity.

The Laplace vector

Poincaré showed that a generic dynamical system eventually fills its entire phase space, that
is, it eventually passes through all the spatial points and takes on all the velocities allowed by
the total momentum, energy, and angular momentum conservation laws. In the case of a particle
bound by a central potential, this means that ultimately the particle passes through all the points
on the annulus in the plane of its trajectory contained between the apastron and the periastron.
If the motion is periodic, this annulus reduces to a curve (an ellipse in the present case), which
means that the dimension of the hypersurface of the phase space in which the motion occurs
decreases from 2 to 1. This implies that there is an additional constraint on the motion, that
is, an additional conservation law, which in the case at hand is the conservation of the Laplace
(Runge–Lenz) vector.

The existence of this additional symmetry has remarkable consequences. It causes the
Hamilton–Jacobi equation of the Newtonian potential to be separable not only in spherical
coordinates but also in parabolic coordinates.6 Moreover, as shown by Fock in 1935, the wave
functions of the hydrogen atom are related to the spherical harmonics in four dimensions, that
is, they are related to the group of rotations in four dimensions whose generators have been
shown by Bargmann to be the angular momentum M and the Laplace vector.7

12.4 Central forces

Let us consider a body of mass m subject to a central force, that is, a force depending only
on the distance r from the origin of an inertial frame and derivable from a potential energy
W (r). The equation of motion of the body then is

ml̈ = F with F = −∇W = −dW

dr

l

r
. (12.20)

The specific angular momentum L ≡ l∧ l̇ is conserved, L̇ = 0, so that the motion is restricted
to the plane perpendicular to L. In the polar coordinates r, φ of this plane, the reduced
Lagrangian takes the form

6See, for example, Landau and Lifshitz (1976).
7For more on this see, for example, McIntosh (1971).
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Lr =
m

2
(ṙ2 + r2φ̇2)−W. (12.21)

(Since the coordinate φ is cyclic, it does not appear explicitly here.) The Lagrange equations
∂Lr/∂q = (∂Lr/∂q̇)̇ are

(r2φ̇)̇ = 0 , m(r̈ − rφ̇2) = −dW

dr
. (12.22)

The first integral for φ is obtained immediately and corresponds to the conservation of the
specific angular momentum L, and the first integral for r corresponds to conservation of the
specific energy E:

L = r2φ̇ , E =
1

2
(ṙ2 + r2φ̇2) + V =

1

2
ṙ2 +

L2

2r2
+ V , with V =

W

m
. (12.23)

Integration by quadrature gives

t =

∫
dr

√
2(E − V )− L2/r2

, φ =

∫
(L/r2)dr

√
2(E − V )− L2/r2

. (12.24)

The motion is that of a particle evolving in one dimension in the effective potential
Veff = V + L2/2r2, where the second term represents the centrifugal energy. The turning
points ṙ = 0 satisfy E = L2/2r2 +V . They delimit the domain of the allowed motion. If this
domain is of the form rmax ≥ r ≥ rmin, the trajectory is restricted to an annulus of inner
radius rmin and outer radius rmax. For the trajectory to be periodic it is necessary that

Δφ = 2

∫ rmax

rmin

(L/r2)dr
√

2(E − V )− L2/r2
= 2π

n

p
, (12.25)

where n and p are both integers. In 1873 J. Bertrand showed that only two families of
potential lead to periodic trajectories: the Newtonian potential V ∝ 1/r, and the Hooke
potential of the harmonic oscillator V ∝ r2.

Central forces in the Hamiltonian formalism

The problem of motion in a central force field can be studied within the framework of
the Hamiltonian formalism (see Section 9.1). We extract the conjugate momenta from the La-

grangian (12.21) pφ = mr2φ̇ and pr = mṙ, so that the Hamiltonian H(q, p) =
∑

pq̇−L becomes

H =
1

2m

(

p2r +
p2φ
r2

)

+W (r) . (12.26)

The Hamilton equations (q̇ = ∂H/∂p, ṗ = −∂H/∂q) then are

ṙ =
pr
m

, ṗr =
p2φ
mr3

− dW

dr
, and φ̇ =

pφ
mr2

, ṗφ = 0 , (12.27)

B
o
o
k
1



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 118 — #130

118 Book 1. Part III: Gravitation

which is equivalent to (12.22). Turning now to the Hamilton–Jacobi equation (9.32), it can be
written as

1

2m

((
∂S

∂r

)2

+
1

r2

(
∂S

∂φ

)2
)

+W (r) +
∂S

∂t
= 0 (12.28)

and solved by separation of variables and quadrature: we set S/m = −Et + Lφ + S0(r), the

substitution of which into (12.28) gives S0 =
∫
dr
√

2(E − V (r))− L2/r2 (we have set W = mV ).
The resulting trajectory equations ∂S/∂E = −mt0 and ∂S/∂L = mφ0 are indeed equivalent
to (12.24).

Central forces and Newton’s theorem

As we have seen in Section 11.4, Newton showed that the gravitational potential (and the
force derived from it) created by a body possessing spherical symmetry is the same as if the
body were a point mass. In addition, he showed that the gravitational mass of the body is equal
to its inertial mass, thereby generalizing, to the case of bodies whose proper gravity cannot be
ignored, the experimentally verified equality of the gravitational and inertial masses of their
elementary constituents.

This property does not hold for central forces different from the Newton force.
Let us consider the potential U(P ) = −

∑
a Gmaf(|PaP |), where f is some function of the

distance |PaP | between the point P and the point Pa at which the ‘elementary’ particle (a) of
gravitational mass ma equal to its inertial mass is located. Passing to the continuum limit, we
have U(R) = −G

∫
(R′, t)f(|R − R′|)dV ′, where R is the radius vector of the point P , R′ is

that of a point of the body, and  is the gravitational/inertial mass density.
If the mass distribution is spherically symmetric, U can be calculated by placing P on the

Oz axis such that R = (0, 0, r). In spherical coordinates where R′ = (r′ sin θ cosφ, r′ sin θ sinφ,

r′ cos θ), we will have |R−R′| =
√
r2 + r′2 − 2rr′ cos θ, so that the potential becomes (r0 being

the radius of the body)

U(r) = −2πG

∫ r0

0

dr′r′2(r′, t) I

with I =

∫ π

0

dθ sin θf(
√

r2 + r′2 − 2rr′ cos θ ) =
F (r + r′)− F (|r − r′|)

rr′
.

Let us set y =
√
r2 + r′2 − 2rr′ cos θ and F (y) =

∫
dy yf(y).

We see first of all that the potential for r > r0 will be proportional to f(r) and therefore
the same as if the body were a point if F (r + r′) − F (r − r′) does not depend on r. Since
F ′(y) = yf(y), we must have (r + r′)f(r + r′) = (r − r′)f(r − r′) for all r′. Therefore, it is
necessary that f(y) = 1/y, that is, the potential must be Newton’s potential.

If now f(y) = 1/y, then F (y) = y so that I = 2/r, which implies that U(r) = −GM/r,
where the gravitational mass M , given by M = 4π

∫ r0
0

dr′r′2(r′, t), is equal to the inertial mass
of the body. We then again find Newton’s theorem.

Therefore the ‘strong equivalence principle’ (that is, the equality of the gravitational and
inertial masses of all bodies) and the effacement property (that is, in this context, the possibility
of treating a spherically symmetric massive body as a point mass) are closely related and specific
to Newton’s 1/r2 law of gravity.
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The N-body problem

In 1886 Karl Weierstrass submitted the following question to the scientific community on the occasion
of a mathematical competition to mark the sixtieth birthday of King Oscar II of Sweden:

Given a system of arbitrarily many mass points that attract each other according to Newton’s
laws, try to find, under the assumption that no two points ever collide, a representation of the
coordinates of each point as a series in a variable which is some known function of time and for all
of whose values the series converges uniformly.

The jury (which included Weierstrass, Cayley, Hermite, and Chebyshev) awarded the prize to
Henri Poincaré not for solving the problem—he showed that the equations of motion for more than
two gravitational bodies are not in general integrable—but for coming up with the first ideas of what
later became known as chaos theory.

13.1 The Laplace effect

The equality of the gravitational mass m and the inertial mass mI is very well tested experi-
mentally, as we saw in Section 11.2. Newton’s law of gravitation implies that it also holds for
celestial bodies of considerably larger mass, whose proper gravity cannot be neglected (see
Sections 11.4 and 12.4). In 1825 Laplace proposed to test the law by studying the coupled
Earth–Moon system in the gravitational field of the Sun.

The equations of motion of the Sun (S), the Earth (E), and the Moon (M), considered as
point objects, can be written in an inertial frame in obvious notation as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

mI
SR̈S = −GmSmE

lES

r3ES

−GmSmM
lMS

r3MS

,

mI
ER̈E = −GmEmS

lSE
r3SE

−GmEmM
lME

r3ME

,

mI
MR̈M = −GmMmS

lSM
r3SM

−GmMmE
lEM

r3EM

.

(13.1)

Setting l ≡ lEM ≡ RM −RE and r ≡ rEM, the acceleration of the Moon relative to the Earth
then is

l̈ = −G

(
mM

mI
M

mE +
mE

mI
E

mM

)
l

r3
+GmS

(
mE

mI
E

lSE
r3SE

− mM

mI
M

lSM
r3SM

)
. (13.2)

If we write m/mI = 1 + ε, this can be rewritten as

l̈ = −Gm∗
l

r3
+GmS

(
lSE
r3SE

− lSM
r3SM

)
+GmS

(
εE

lSE
r3SE

− εM
lSM
r3SM

)
, (13.3)
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where we have introduced the effective mass of the Earth–Moon pair:

m∗ = mE(1 + εM) +mM(1 + εE).

Equation (13.3) is exact. The first, principal, term describes the Earth–Moon gravitational
attraction. The second gives rise to tidal effects, which add linearly to the other effects;
we shall ignore them. Finally, in the third term the difference between lSE and lSM can be
neglected, so that the equation of motion to be solved is reduced to the form

l̈ = −Gm∗
l

r3
+ δa

lSE
rSE

with δa ≡ GmS

r2SE
(εE − εM) . (13.4)

To solve this equation we proceed as for the two-body problem. Vector multiplication by
l and the introduction of the specific angular momentum L ≡ l ∧ l̇ gives

L̇ = δa l ∧ lSE
rSE

. (13.5)

After scalar multiplication by l we have (using l.l̈ = rr̈ − L2/r2)

r̈ = −Gm∗
r2

+
L2

r3
+ δa

l

r
.
lSE
rSE

. (13.6)

In order to make rapid progress, let us make the crude approximation that the orbits of
the Earth about the Sun and the Moon about the Earth are circular and lie in the same
plane. Then in the frame of the plane centered on the Earth (eX , eY ) we have the following
in lowest order:

l = r(eX cosωMt+ eY sinωMt) , lES = rES(eX cosωEt+ eY sinωEt) , (13.7)

where ωM and ωE are the angular frequencies of the Moon’s orbit about the Earth and the
Sun’s orbit about the Earth. Equations (13.5) and (13.6) can then be simplified to give

L̇ = −δa r sinΩt, r̈ = −Gm∗
r2

+
L2

r3
+ δa cosΩt, (13.8)

where we have set Ω = ωM − ωE.
We now proceed by iteration: r = r0 + δr and L = L0 + δL, and we recall that the laws

of the two-body problem give ω2
M = Gm∗/r

3
0 = L2

0/r
4
0. The first equation in (13.8) then can

be integrated directly to give

δL =
r0
Ω
δa cosΩt . (13.9)

Substituting this into the second equation expanded to first order in δr, we find

δr̈ + ω2
Mδr =

(
1 + 2

ωM

Ω

)
δa cosΩt , (13.10)

the solution of which is

δr =
1 + 2ωM

Ω

ω2
M − Ω2

δa cosΩt . (13.11)

Therefore, the effect of a nonzero δa is to polarize the Earth–Moon system toward the Sun.
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Numerically, ωE = 2π/1 year and ωM = 2π/27 days ∼ 13.4 ωE ∼ 2.7×10−6 s−1. Therefore,
δrmax ∼ 39δa/2ω2

M. Moreover, GmS/r
2
SE ∼ 5.9× 10−6 km/s2, and so

δr ≈ 1.8× 1010(εE − εM) cos(ωM − ωE)t , (13.12)

with δr expressed in meters.
The time for a laser beam to complete a round-trip between a network of terrestrial

observatories and four lunar mirrors has been measured experimentally with an accuracy of
1 ps, corresponding to 1 cm in the Earth–Moon separation. The constraint δr < 1 cm then
becomes

|εE − εM| ≡
∣∣∣
(

m

mI

)

E

−
(

m

mI

)

M

∣∣∣ < 5.5× 10−13 . (13.13)

Of course, in a more careful analysis one must verify that there is no other perturbing
effect with the same signature, for example, the same period. The main perturbation turns
out to be the tidal effect which we have neglected in (13.4).1

13.2 The restricted three-body problem

Let us consider the motion of three gravitationally interacting bodies m, m1, and m2 in the
limit m � m1, m � m2. This amounts to taking m to be a test particle which does not
affect the motion of the other two bodies. In addition, we assume that the three bodies move
in the same plane. Finally, we assume that the motion of m1 and m2 is circular.

Then in their center-of-mass frame the trajectories of m1 and m2 are (see Section 12.1)

R1(t)=
m1

M
d (cosωt eX + sinωt eY ) , R2(t)=−m2

M
d (cosωt eX + sinωt eY ) , (13.14)

where M = m1 +m2, d is the separation of the two masses, and d3ω2 = GM (Kepler’s third
law). The motion of the mass m, with radius vector R = XeX + Y eY , is then governed by
the Lagrangian

L(X,Y, Ẋ, Ẏ ) =
m

2
(Ẋ2 + Ẏ 2) +Gm

(
m1

|R−R1|
+

m2

|R−R2|

)
. (13.15)

Changing to dimensionless quantities via the transformations R1,2 → R1,2d and t → t/ω,
setting μ = m2/M , and choosing the system of units such that G = 1, the Lagrangian can
be rewritten as

L = md2ω2L0, with L0 =
1

2
(Ẋ2 + Ẏ 2) +

(
1− μ

|R−R1(t)|
+

μ

|R−R2(t)|

)
. (13.16)

Here L0 depends explicitly on the time, and so the energy is not conserved. This is due to
the fact that we have constrained m1 and m2 to remain in circular orbits without taking into
account the gravitational field created by m.

1We note that in the absence of the Laplace effect (mI = m) and when the tidal term can be neglected,
that is, when the size of the Earth–Moon ‘laboratory’ can be considered sufficiently small that the Sun’s
field is constant, then the motion of the Earth–Moon system [cf. (13.3)] will not depend on the presence of
the Sun. This is another aspect of the effacement property shared by the gravitational theories of Newton,
Nordström, and Einstein.

B
o
o
k
1



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 122 — #134

122 Book 1. Part III: Gravitation

The simplest way to determine the dynamics is to go to the rotating frame which lies
in the plane of the two masses and whose OX ′ axis is the line joining m1 and m2: e

′
X =

cosωt eX + sinωt eY . Then, using the same system of units, the positions of m1 and m2 will
respectively be (1− μ, 0) and (−μ, 0), and the equation of motion is (omitting the primes)

d2R

dt2
= ∇

(
1− μ

|R−R1|
+

μ

|R−R2|

)
+ 2

dR

dt
∧ Ω+ Ω ∧ (R ∧ Ω), (13.17)

where the vector Ω = eZ in the chosen units. The centrifugal term can then be written as
Ω∧(R∧Ω) = R = ∇(x2+y2)/2, where (x, y) are the components of R. Then (13.17) becomes

ẍ− 2ẏ =
∂Φ

∂x
, ÿ + 2ẋ =

∂Φ

∂y
, (13.18)

where the function Φ is defined as

Φ(x, y) =
1

2
(x2 + y2) +

μ
√

(x+ μ)2 + y2
+

1− μ
√

(x− 1 + μ)2 + y2
. (13.19)

Introducing ρ1 =
√

(x+ μ)2 + y2 and ρ2 =
√

(x+ μ− 1)2 + y2, the function Φ can also
be written as

Φ =
3− μ(1− μ)

2
+ μ

(
1

2
+

1

ρ1

)
(ρ1 − 1)2 + (1− μ)

(
1

2
+

1

ρ2

)
(ρ2 − 1)2. (13.20)

Multiplying the first expression in (13.18) by ẋ and the second by ẏ, we obtain

2Φ− (ẋ2 + ẏ2) = J, (13.21)

where J is the Jacobi constant. The other first integral of this system is not known, and so
we have to resort to numerical integration. For a given value of J we must have ẋ2 + ẏ2 =
2Φ − J > 0, so that the plane is divided into two regions, one allowed and one forbidden,
separated by the curve Φ = J/2, which is called the Hill curve.

The Lagrange points

In 1772 Lagrange proved that there exist five equilibrium points for a test particle in the
gravitational field of two other bodies (the restricted three-body problem).These points are called
libration points or stationary Lagrange points. They are defined by ẍ = ÿ = ẋ = ẏ = 0, which
amounts to solving the equation (since (13.21) implies that Φ = const) ∂Φ/∂x = ∂Φ/∂y = 0; cf.
(13.18).

If y = 0, then ρ1 = |x + μ| and ρ2 = |x + μ − 1|, and the equation ∂Φ/∂x = 0 reduces
to an equation of third degree whose three solutions x1 < −μ < x3 < 1 − μ < x2 define the
Lagrange points L1, L3, and L2. These three points are unstable, but it turns out to be useful
to position solar observation satellites at the point L1 of the Sun–Earth system and satellites
for observations pointing away from the Sun at L2.

If y 	= 0, we see from (13.20) that Φ possesses two minima at ρ1 = ρ2 = 1. These Lagrange

points L4 and L5 have the coordinates x = 1/2− μ, y = ±
√
3/2 (in the rotating frame in which

Φ is expressed), and together with the centers of the two masses m1 and m2 form two equilateral

triangles. It can be shown that L4 and L5 are stable if μ < μc = (1 −
√

1− 4/27)/2 ∼ 0.03852
and unstable otherwise. A large number of minor planets, called trojans, have accumulated at
the points L4 and L5 of the Sun–Jupiter system.
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13.3 Gauss equations of perturbations

The motion of the planets of the solar system is only Keplerian to a first approximation. It is
necessary to take into account the presence of other planets and asteroids, as well as the fact
that the bodies are non-spherical. Euler (1748), Lagrange (1782), Gauss, and many others
have contributed to the solution of this problem. Modern trajectory calculations include
hundreds of objects and are performed by computer programs which have become standard
tools in space engineering.

Here we shall limit ourselves to the study of the motion of two gravitational bodies with
spherical symmetry under the action of a perturbing force, for which the equations are

aA = −GmB

r3BA

lBA +
FA

mA
and aB = −GmA

r3AB

lAB +
FB

mB
, (13.22)

where lAB = RB − RA, aA ≡ R̈A, and aB ≡ R̈B , with RA and RB the radius vectors of
A and B in an inertial frame. If F is a force internal to the system (due, for example, to
the deformation of one of the bodies), then the principle of action and reaction (obeyed by
Newton’s law of gravity) imposes the constraint FA = −FB , so that the motion of the center
of mass is not affected by the perturbation and the problem reduces to solving the equation
of motion of a fictitious point Q:

l̈ = −GM

r3
l +A , (13.23)

where l ≡ lAB and A = F/μ with μ the reduced mass of the system and M the total mass.
The problem also reduces to solving (13.23) in the case of an external force (due to the
presence of a third body, for example) if mA � mB so that the center of mass coincides with
the center of the body A.

Equation (13.23) can be solved by iteration. To zeroth order the motion is Keplerian and
the trajectory of Q is an ellipse l = lK(t, ca) depending on six parameters (see Section 12.2):

ca = {a, e, i, ω,Ω, T} . (13.24)

To first order the perturbation A is evaluated on the Keplerian trajectory of Q and its effect is
modeled by changing the ellipse parameters: ci �→ ci(t). The ellipse whose elements are ca(t)
is called the osculating ellipse and describes Keplerian motion close to the actual motion in a
neighborhood of t. For example, a variation of the sole longitude of the periastron translates
into precession of the ellipse in its plane.

To obtain the evolution equations of the orbital parameters we write l = lK(t, ca), where
now the six orbital parameters ca are functions of time. Since we started with three unknown
functions li(t) which we have replaced by six new functions ca(t), we can add three inde-
pendent constraints on the ca without spoiling the generality of the approach. It is common
to require that the velocity also has a Keplerian form, that is, that l̇ = ∂lK/∂t. Since l̇ =
∂lK/∂t+ ċa∂lK/∂ca, we then have ċa∂lK/∂ca = 0. Therefore, l̈ = ∂2lK/∂t

2 + ċa∂
2lK/(∂ca∂t)

with ∂2lK/∂t
2 = −(GM/r3)lK, and so the equation of motion (13.23) becomes

ċa
∂lK
∂ca

= 0 , ċa
∂l̇K
∂ca

= A . (13.25)
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Forming the scalar product of the first equation with ∂l̇K/∂cb and of the second with ∂lK/∂cb
and then subtracting them from each other, we arrive at (summation over a is everywhere
understood)

[cb, ca]ċa = A.
∂lK
∂cb

, where [cb, ca] ≡ ∂l̇K
∂cb

.
∂lK
∂ca

− ∂l̇K
∂ca

.
∂lK
∂cb

(13.26)

is the Lagrange bracket of cb and ca, which is easily shown to be independent of time (so
that it can be evaluated at t = 0). We note that if the perturbing force can be derived from
a potential F = −μ∇Upert, (13.26) can be simplified to

[cb, ca]ċa = −∂Upert

∂cb
. (13.27)

An easy calculation using the properties of Keplerian ellipses (see Section 12.2) gives

[e, ω] = −
√

GMa

1− e2
e, [e,Ω] = [e, ω] cos i, [i,Ω] = −

√
GMa(1− e2) sin i ,

[a, ω] =
1

2

√
GM(1− e2)

a
, [a,Ω] = [a, ω] cos i, [a, T ] = −1

2

GM

a2

(13.28)

(all the other independent brackets vanish). The ∂liK/∂cj are obtained in the same way,
for example, ∂XK/∂a = XK/a. We also introduce R, S, and W, the components of the
perturbation A along the radius vector and the directions perpendicular to it (one in the
orbital plane, and the other orthogonal to it).2 Assembling all these results, inversion of
(13.28) finally gives the Gauss equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da

dt
= 2

√
a3

GM(1− e2)

[
Re sin ν + (1 + e cos ν)S

]

de

dt
=

√
a(1− e2)

GM

[
R sin ν +

(e+ 2 cos ν + e cos2 ν)

1 + e cos ν
S
]

di

dt
=

√
a(1− e2)

GM

cos(ω + ν)

1 + e cos ν
W

dΩ

dt
=

√
a(1− e2)

GM

sin(ω + ν)

1 + e cos ν

W
sin i

dω

dt
=

√
a(1− e2)

GM

[
−R

e
cos ν +

(2 + e cos ν) sin ν

e(1 + e cos ν)
S − sin(ω + ν)

1 + e cos ν
ctg iW

]

d�

dt
= n+

√
a

GM

1− e2

e(1 + e cos ν)

[
R(−2e+ cos ν + 2 cos2 ν)− sin ν(2 + e cos ν)S

]
,

(13.29)

2Therefore, FX/μ = RXK
r

−S(R 1
1 sin ν −R 2

1 cos ν) +R 3
1 W, with similar expressions for FY and FZ

(see footnote 4 of Section 12.1 and Section 1.3).
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where � ≡ n(t−T ), ν ≡ φ−ω, and n ≡
√

GM
a3 . These equations form a closed system governing

the time evolution of the six osculating elements (13.24). Here the time dependence of the true

anomaly ν is Keplerian at the order in which we are working3: ν̇ =
√

GM
a3(1−e2)3 (1 + e cos ν)2.

We remark that a can be replaced by p, which satisfies the equation

dp

dt
= 2r

√
p

GM
S . (13.30)

The Delaunay elements

A remarkable accomplishment of Delaunay in his study of lunar motion (1850–1870) was
finding combinations of osculating elements ca = {ql, pl} with 1 ≤ l ≤ 3 called canonial combi-
nations, whose Lagrange brackets reduce to

[ql, qm] = [pl, pm] = 0 , [ql, pm] = δlm . (13.31)

These Delaunay combinations are

q1 =
√
GMa , q2 =

√
GMp , q3 = cos i

√
GMp

p1 = � ≡ n(t− T ) , p2 = ω , p3 = Ω .
(13.32)

(They are not unique; for example, the pair {q1, p1} can be replaced by {GM/2a, T}.) Therefore,
the Delaunay elements bear the same relation to the Lagrange brackets as the generalized co-
ordinates and their conjugate momenta bear to the Poisson brackets in Hamiltonian mechanics;
see Section 9.1. Their equations of motion (13.27) indeed have a Hamiltonian form:

∂H

∂pl
= q̇l ,

∂H

∂ql
= −ṗl , (13.33)

where H can be written as

H =
1

2

G2M2

q21
+ δH(ql, pl) , (13.34)

the first term being the Hamiltonian of the system of two point masses and δH the perturbation.

The example of a radial perturbation

Let us consider the gravitational potential

U(r) = −GM

r

(

1 +
ε

n+ 1

Rn

rn

)

, (13.35)

3Now that we have the first-order approximation, we can of course continue and construct the second-order
one by iteration. As shown by Poincaré, the series are not convergent. However, for each type of perturbation
the divergence is more or less rapid depending on which combinations of osculating elements are chosen. See,
for example, Brouwer and Clemence (1961) or Hagihara (1970). See also Duriez (2003).
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where ε is a small parameter and R is a constant. The associated force F = −m∇U is a central
force with modulus

F = −GMm

r2

(

1 + ε
Rn

rn

)

. (13.36)

The components of the perturbation A then are

R = −ε
GM

r2
Rn

rn
, S = 0 , W = 0 . (13.37)

The Gauss equations (13.29) and (13.30) then imply that i, Ω, and p remain constant. The
equations for ω and e reduce to

ω̇ = ε

√
GMp

e

Rn

rn+2
cos ν , ė = −ε

√
GMp

Rn

rn+2
sin ν (13.38)

with, to first order, r = p/(1 + e0 cos ν) and ν̇ =
√
GMp/r2, which immediately gives

ω(ν) = ω0 +
ε

e0

Rn

pn

∫ ν

0

dν cos ν(1 + e0 cos ν)
n , e(ν) = e0 − ε

Rn

pn

∫ ν

0

dν sin ν(1 + e0 cos ν)
n .

(13.39)
This shows, in particular, that e does not exhibit a secular drift, Δe ≡ e(2π)− e0 = 0 for any n.

Let us consider the special case n = 2 (the perturbing force could be a tidal effect in the
symmetry plane of an ellipsoid). We obtain

Δω = 2πε
R2

p2
, e = e0 + ε

R2

3e0p2
[(1 + e0 cos ν)

3 − (1 + e0)
3] . (13.40)

Therefore, at the periastron e = e0 and at the apastron e = e0 − 2εR2(3 + e20)/3p
2. The orbit is

an oval with constant p, flatter at the apastron than at the periastron and turning by an angle
Δω at each revolution.

By attributing the perturbing forces to the Newtonian attraction of the planets, in 1846
Le Verrier and Adams independently succeeded in obtaining agreement between calcula-
tion and observation of the trajectory of Uranus by postulating the existence of another
planet, Neptune, which was discovered shortly afterwards by Galle at the predicted posi-
tion, a spectacular success. Gauss had in fact shown in 1801 that one could have predicted
the existence of Uranus, discovered accidentally by Herschel, using the same method. On
the other hand, the anomalous advance of the perihelion of Mercury completely baffles the
Newtonian theory.

Advance of the perihelion of Mercury

The observed advance of the perihelion of Mercury is of the order of 5600 arcseconds per
century. Most of it, 5026 arcseconds, is explained by the effect of precession of the equinoxes;
see Section 14.1 below. The perturbations due to the gravitational field of the other planets
account for another 531 arcseconds. There remain about 43 arcseconds per century which are
unexplained in the Newtonian theory.
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Causes of the advance of the perihelion of Mercury (in arcseconds per century)

Equinoxes Venus Earth Mars Jupiter Saturn Others Total Observed Anomaly

5025.6 277.8 90.0 2.5 153.6 7.3 0.2 5557.0 5599.7 42.7

Numerous hypotheses were advanced (in particular, Le Verrier postulated the existence of
a new planet, Vulcan, near the Sun). However, while they did explain the anomaly of Mercury,
either they involved objects which were not optically detected, or they gave rise to unacceptable
perturbations in the orbits of the other planets. The problem was solved only in 1915, by Einstein
in his theory of general relativity. He obtained

Δω =
6πGM

pc2
, (13.41)

where c is the speed of light. For Mercury (a = 58 × 106 km, e = 0.21) we find Δω = 42.7
arcseconds per century.
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14

Deformations of celestial bodies

In the preceding chapter we assumed that celestial bodies are spherically symmetric. Here we lift
this condition in order to study various gravitational effects arising from their non-sphericity.

14.1 Quadrupole expansion of the potential

The gravitational potential created at a point P with radius vector R (of length r) by a body
of density  is given in any reference frame by (see Section 11.4)

U(R) = −G

∫
(R′)

|R−R′|dV
′ = −G

r

∫
(R′)

√
1− 2R′.R

r2 + r′2

r2

dV ′ , (14.1)

where R′ is the radius vector (of length r′) of a point P ′ of the distribution and dV =√
dete d3x with dete the determinant of the metric coefficients in the coordinates xi. If

R � R′, that is, if P is far outside the body, then U(R) can be expanded as

U(R) = −G

r

∫
(R′)dV ′ − GR

r3
.

∫
(R′)R′dV ′

− G

2r5

∫
(R′)[3(R.R′)2 − r2r′2]dV ′ +O

(
1

r4

)
.

(14.2)

The first term involves the total mass,M =
∫
(R′)dV ′, and the second involves

∫
(R′)R′dV ′

(the continuous version of
∑

maRa), which is zero if the origin of the frame coincides with
the center of mass of the body. Finally, introducing the quadrupole moment

Qij =

∫
(R′)(3X ′

iX
′
j − r′2δij)dV

′ , (14.3)

where X ′i are the Cartesian components of the position vector R′, the expansion of the
potential can be written as follows in the center-of-mass frame:

U(R) = −GM

r
− G

2r5
QijX

iXj +O
(

1

r4

)
, (14.4)

where Xi are the Cartesian coordinates of P . The quadrupole moment is related to the
inertia tensor of the distribution (see Section 6.1) Iij =

∫
(R′)(δijr

′2 −X ′
iX

′
j)dV

′ as Qij =
−3Iij + Iδij , where I is the trace of Iij . Therefore, to lowest order the quadrupole term
characterizes the effect of the non-sphericity of a body on the gravitational potential it
creates.
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Now let us suppose that the body possesses a symmetry of revolution about the OZ axis.
Then (see Section 6.1) Iij is diagonal and IXX = IY Y ≡ I1, so that, setting IZZ = I3, we
have Q1 = Q2 = I3 − I1 and Q3 = −2Q1. Therefore, QijX

iXj = (I3 − I1)(X
2 + Y 2 − 2Z2)

becomes QijX
iXj = (I3 − I1)r

2(1 − 3 cos2 θ) in spherical coordinates, where θ is the angle
the radius vector R makes with the OZ axis. The quadrupole expansion of the potential is
then written as

U(r, θ) = −GM

r

(

1− J2

(
R0

r

)2

P2(cos θ)

)

, where J2 ≡ I3 − I1
MR2

0

, (14.5)

R0 is the equatorial radius of the distribution, and P2(cos θ) =
1
2 (3 cos

2 θ− 1) is the second-
order Legendre polynomial. For the Earth the measured value of J2 is J2 � 1.08× 10−3; see
Section 6.1.

The oblateness of the Sun and the motion of Mercury

Let us describe the Sun as a spheroid of revolution about the OZ axis so that the gravitational
potential it creates is approximately given by (14.5). The gravitational force per unit mass that
it exerts on a planet (whose own field we neglect) is F/m = −∇U and is the sum of the Keplerian
term and a perturbation whose components in spherical coordinates are (cf. the expression for
∇ in terms of the triad {hr, hθ, hφ} in Section 4.6)

A =
3GMJ2

r2

(
R

r

)2 (
3 cos2 θ − 1

2
hr − cos θ sin θ hθ

)

, (14.6)

where r is the distance from the Sun to the planet and M and R are the solar mass and radius.
We therefore see that the planet remains in the equatorial plane θ = π/2 if it was located there
initially. In this particular case where the perturbation is radial and has the form in (13.37), we
have R = −εGMR2/r4 with ε = 3J2/2. The advance of the perihelion that follows from this
was obtained in (13.40):

Δω =
2πεR2

p2
or Δω =

3πJ2R
2

p2
, (14.7)

where p = a(1−e2) is the parameter of the osculating ellipse. In (13.41) we gave the advance of the
perihelion of Mercury predicted by general relativity: Δω = 6πGM/(pc2), which is in complete
agreement with observation. It is difficult to measure the coefficient J2, but the currently accepted
value (J2 ≈ 2 × 10−7) gives an advance too small to be actually measurable. Therefore, the
oblateness of the Sun does not spoil the agreement between general relativity and the observation
of Mercury.

The precession of the equinoxes

Let us consider a reference frame S centered on the Earth and attached to the plane of the
ecliptic in which the Sun undergoes its annual motion (which we assume to be circular).1 We
attach a second reference frame S ′ to the Earth, the axis EZ′ coinciding with the Earth’s axis
of proper rotation. The orthogonal plane X ′EY ′ is the equatorial plane. In the approximation

1The reference frame S is not inertial—it is a frame of the Milne group; see Section 1.4. However, in this
‘freely falling’ frame Newton’s equations apply without the introduction of inertial forces; see Section 11.3.
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where both bodies are spherical, the two Euler angles Φ and Θ characterizing the relative position
of these two planes, called the precession and nutation angles (Section 1.3), remain constant.
The proper rotation angle Ψ varies as Ψ = ω0t, where ω0 = 2π/24 h is the angular velocity of
the Earth. The precession of the equinoxes is a slow variation of the precession angle Φ due to
the reaction of the Earth’s non-sphericity on the equation of motion of its angular momentum
(see Fig. 14.1).

Earth
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Fig. 14.1 The precession of the equinoxes.

We shall describe the Earth as a spheroid of revolution of mass M and moments of inertia
I1 = I2 and I3. The gravitational potential it creates is given to quadrupole order by (14.5):
U(r, θ) = −GM/r + G(I3 − I1)(3 cos

2 θ − 1)/(2r3), where r is the distance from the center of
the Earth to the point S and θ is the angle the radius vector ES makes with the symmetry
axis EZ ′ (here we neglect the polhode motion, see Section 6.2, so that the Earth’s rotation and
symmetry axes are the same). The force F = −M�∇U = −M�(hr(∂U/∂r) + (hθ/r)(∂U/∂θ))
(see Section 4.6) exerted by the Earth on the Sun splits into a radial component originating in
the motion of the Sun about the Earth and an orthoradial component which exerts a torque
ES ∧ F on the Sun:

ES ∧ F = r hr ∧ F = −M�
∂U

∂θ
hr ∧ hθ =

3GM�(I3 − I1)

r3
cos θ sin θ hr ∧ hθ . (14.8)

The vector hu ≡ hr ∧ hθ and therefore the vector ES ∧ F lie in the equatorial plane. According
to the law of action and reaction, the Sun exerts an opposing torque on the Earth K ≡ −ES∧F .
Finally, it is an easy exercise in geometry to show that the components of K in S ′ are

K = −3GM�(I3 − I1) sinΘ

2r3
[
cosΘ(1− cos 2λ)eN − sin 2λe′2

]
, (14.9)

where eN = e′1 cosΨ − e′2 sinΨ is the direction of the line of nodes and λ is the angle between
this line and the radius vector of the Sun.
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Since the Earth is a rotating body (here modeled by a symmetric top; see Section 6.1), the

Euler equations of motion in S ′ of its angular momentum (J̇ = K, where J ′1 = I1ω
′1 and so on)

are written as

I1
dω′1

dt
+ ω′2ω′3(I3 − I1) = K′1, I1

dω′2

dt
− ω′3ω′1(I3 − I1) = K′2, I3

dω′3

dt
= K′3, (14.10)

ω′1 = Φ̇ sinΨ sinΘ + Θ̇ cosΨ, ω′2 = Φ̇ cosΨ sinΘ− Θ̇ sinΨ, ω′3 = Φ̇ cosΘ + Ψ̇ . (14.11)

The vector K is periodic in λ. Here we are interested in the secular effect produced by its
average over λ (that is, its average over the year):

K′1 = −3GM�(I3 − I1) sinΘ cosΘ

2r3
cosΨ , K′2 =

3GM�(I3 − I1) sinΘ cosΘ

2r3
sinΨ . (14.12)

Moreover, using the fact that Φ̇, Θ̇, and Ψ̇ are nearly constant and that Ψ̇ � (Φ̇, Θ̇), we can write

[cf. (14.11)] ω′3 ≈ Ψ̇, ω̇′1 ≈ Ψ̇(Φ̇ cosΨ sinΘ− Θ̇ sinΨ), and ω′2 ≈ −Ψ̇(Φ̇ sinΨ sinΘ + Θ̇ cosΨ).

The third expression in (14.10) then gives ω′3 ≈ Ψ̇ ≈ const, which means that the daily
rotation of the Earth is not changed. The linear combination of the first two equations which
eliminates K′1 and K′2 gives Θ̇ = 0, showing that the angle between the two planes (equato-
rial and ecliptic) remains constant. Finally, the remaining equation gives the variation of the
precession angle:

Φ̇ = −3G(I3 − I1)

2Ψ̇ I3
cosΘ

M�
r3

. (14.13)

If we add to the contribution of the Sun that of the Moon (assuming that the Moon’s orbit lies in
the plane of the ecliptic, which is a crude approximation), then M�/r

3 �→ M�/r
3+MMoon/r

3
EM.

The numerical values are (M�/r
3) + (MMoon/r

3
EM) = 3.2M�/r

3, (I3 − I1)/I3 = 3.0× 10−3,

Ψ̇ = 2π/24 h, Θ = 23 degrees, and GM�/r
3 = (2π/year)2 (Kepler’s third law). This leads to

2π/Φ̇ ≈ 26, 000 years, which agrees (within the accuracy of the approximations we have made)
with observation. (The first observation was made by Hipparchus in the second century B.C.)

14.2 Causes of non-sphericity of bodies

The gravitational attraction of the Moon (or the Sun) differs from one point of the Earth to
another simply because the distance to the attracting body is not the same. Assuming that
the attractor of mass m∗ located at A is spherical, the gravitational potential that it induces
at a point P on the Earth, U = −Gm∗/|AP |, can be expanded as

U(R) = −Gm∗
d

(
1 +

r

d
cosϕ+

r2

d2
3 cos2 ϕ− 1

2
+ · · ·

)
, (14.14)

where OA = d eX is the Earth–attractor vector, OP = R = r hr is the radius vector of a
point P of the Earth, and the angle ϕ is defined as cosϕ = eX .hr (see Fig. 14.2).

The acceleration induced by the attractor at P in spherical coordinates is

g(R) = −∇U = −(∂rU)hr −
1

r
(∂ϕU)hϕ . (14.15)

Therefore, to zeroth and first order g0 = 0 and g1 = (Gm∗/d
2)eX , which is just the field

created by the attractor at O. This is a uniform field which leads to a global displacement
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of the matter (and therefore of its center of mass) without deforming the planet. The first
term which has a differential effect is

g2=
Gm∗r

2d3
[(3 cosϕ− 1))hr − 3 sinϕ cosϕhϕ]=

Gm∗r

d3
[2 cosϕeX − sinϕeY ] . (14.16)

We must add to this acceleration that due to the Earth’s own gravitational field −gE hr =
−(GME/r

3)R, which is derived from the potential Uproper(R) = −GME/r in the approxi-
mation where the Earth is assumed to be spherical. Introducing the coefficient ζ, called the
equilibrium tidal amplitude, the first term of the perturbing potential of the attractor can
be rewritten as

U2tidal = −ζgEP2(cosϕ) , ζ =
m∗
ME

(rE
d

)3
rE , (14.17)

where rE is the average radius of the Earth and P2(cosϕ) ≡ (3 cos2 ϕ− 1)/2.

O Sun

Moon
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eX
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er

eϕ

ϕ

Fig. 14.2 Gravitational field induced by an attracting body at the surface of the Earth.

Tides in the fluid model of the Earth

The response of the Earth to a perturbing potential can be obtained by assuming that the
planet surface is an equipotential (in which case the situation is analogous to that of Newton’s
bucket; see Section 6.3). This approximation of a ‘fluid Earth’ amounts to considering the defor-
mation of an ‘ocean’ of negligible mass covering a spherical, rigid Earth. To the order in which
we are working, the total potential at the surface of the Earth is [cf. (14.17)]

Utotal(R) = Uproper(R) + U2tidal(R) = −GME

r
− ζgEP2(cosϕ) . (14.18)

Let us expand the ‘ocean’ surface as r(ϕ) = rE[1 + ε(ϕ)]. In lowest order, Utotal = U0 gives
GME/rE = U0. In linear order, ε(ϕ) = (ζ/rE)P2(cosϕ), and the equation of the ocean surface is

r = rE + ζP2(cosϕ) . (14.19)

This surface is an ellipsoid which in the limit ζ � rE is close to an oblate spheroid of semi-major
axis a = rE+ζ in the direction of the attractor, and whose perpendicular cross section is circular
of radius b = c = rE − ζ/2 (which explains why ζ is called the equilibrium tidal amplitude). For
the Moon and the Sun, numerical calculation gives ζMoon = 0.36 m and ζSun = 0.16 m.
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This simple model neglects the fact that the Sun (or the Moon) orbits the Earth. However,
the approximation is quite good because the amplitude of the inertial force d2n2 ∼ GME/d �
GME/rE. We have solved the problem assuming a static configuration, which is also a good
approximation (the slowest proper vibrational modes of the Earth have a period of about an
hour, which is small compared to the 12 hours of the excitation). We have calculated the Earth’s
proper potential assuming that the Earth is a sphere, but actually its deformation should be
included and it gives a correction of order 10%. We have assumed that the Earth is a fluid, and
a more accurate study of its response should involve modeling using the mechanics of continuous
media. Our ignorance of the mechanical properties of the planet can be dealt with by introducing
the Love numbers (see Section 14.3).

The Earth is also deformed by its proper rotation. The centrifugal force derived from the
potential U = − 1

2R.(Ω ∧ (R ∧ Ω)) (see Section 2.4) is

Urot(R) = −1

2
ω2
Er

2 sin2 θ =
1

3
ω2
Er

2[P2(cos θ)− 1], (14.20)

where ωE = 2π/24 h and θ is the angle between the radius vector and the axis of rotation:
eZ .hr = cos θ.

Therefore, the perturbing potentials due to rotation and tidal effects, (14.17) and (14.20),
become

Urot(R) = −1

2
ω2
Er

2 sin2 θ and U
2tidal(R) = − m∗

ME +m∗
r2n2P2(cosϕ), (14.21)

where we have used Kepler’s law to transform the second term. Here n = 2π/27 days if the
perturbing body is the Moon. The potential due to tides is 105 times weaker than that due
to rotation. Moreover, the forces associated with these two sources act in different planes
(see Fig. 14.3).
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Fig. 14.3 Comparison of rotational and tidal effects.
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Deformation of the Earth due to rotation

The ‘ocean’ of negligible mass covering the Earth, assumed to be spherical, is deformed by
the proper rotation of the Earth. In spherical coordinates the total potential at the Earth’s
surface can then be written as

Utotal(R) = Uproper + Urot = −GME

r
+

1

3
ω2
Er

2 [P2(cos θ)− 1] , (14.22)

where ωE = 2π/24 h and the angle θ is the angle between the radius vector and the rotation
axis, eZ .hr = cos θ. Expanding the ocean surface as r = a[1 + ε(θ)], the requirement that it be
an equipotential implies that (GME/a)ε = (ω2

Ea
2/2) sin2 θ + ω2

Ea
2ε sin2 θ to linear order. Since

numerically ω2
Ea

2 � GME/a, we have

ε =
1

2

ω2
Ea

3

GME
sin2 θ ≡ q

2
sin2 θ. (14.23)

The Earth’s surface is therefore a spheroid whose axis of revolution coincides with the rotation
axis. Using

√
GME/a3 ∼ 2π/r24 h, we obtain q ≈ 3.4× 10−3.

If now we describe the Earth itself as an ellipsoid of revolution about the OZ axis, the proper
potential becomes

Uproper(R) = −GME

r

[

1− J2

(a

r

)2

P2(cos θ)

]

(14.24)

[cf. (14.5) for the definition of J2]. Expanding the equation of the surface as r(θ) = a[1 + ε(θ)],
we obtain Clairaut’s formula:

ε =

(
3

2
J2 +

1

2
q

)

P2(cos θ) ≡ f P2(cos θ) . (14.25)

Setting J2 equal to the measured value J2 = 1.08× 10−3, we find f ≈ 3.3× 10−3. Therefore, the
Earth is flattened at the poles: f = (re − rp)/re, which, using re = 6378 km, corresponds to a
deformation of 21.2 km, in good agreement with the measured value.

The Roche limit

Let us consider a body A subject to a tidal force created by another body B as well as by
the centrifugal force due to its proper rotation. One can state that A will not break up as long
as the perturbing body B is located at a distance larger than the Roche limit rR at which the
sum of the tidal and centrifugal forces balances the gravitational force at the surface of A:

2GMBrA
r3R

+ ω2
ArA =

GMA

r2A
. (14.26)

If the proper rotation of A is synchronous, that is, if ω2
A = GMB/r

3
R, we have

rR =

(
3MB

MA

)1/3

rA . (14.27)

The approximation is rather crude and the numerical factor of 3 is very approximate. To de-
termine it more accurately it is necessary to take into account the non-sphericity of the bodies
along with their response to the perturbing potentials within the framework of the mechanics of
continuous media.2

2See, for example, Pascoli (2000).
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14.3 The figure of the Earth

To calculate the proper potential of the Earth, we need to be able to determine its deformation
due to a perturbing potential, as discussed in the preceding section. Doing this accurately
requires knowledge of the internal structure of the Earth and use of the techniques of the
mechanics of continuous media. In this approach the internal stress–strain relationships of a
body are described by various phenomenological parameters and it becomes possible to study
the response of the body (deformation, oscillations, etc.) to the field of an external force.

Let us consider a planet located in an external perturbing potential Upert such that the
force exerted on each mass element of the planet located at R = r hr is dF (R) = −dm∇Upert.
We expand the potential in spherical harmonics as Upert(R) =

∑
�m w�m(r)Y�m(θ, φ). In the

case of a planet of center O located in the perturbing field of a spherical star A, this expansion
reduces to Upert(R) =

∑
� u�(r)P�(OA.R), where P� is the Legendre polynomial of order �.

This simplification corresponds to symmetry of revolution about the line connecting the
planet and the perturbing star (OA).

The radial and orthoradial deformations of the planet due to the external field can be
parametrized as δdef r(R) =

∑
ε�(r)P� and δdef θ(R) =

∑
κ�(r)P�. The proper gravitational

potential of the planet is parametrized as Uproper(R) =
∑

υ�(r)P�. We therefore have

Upert(R) =
∑

�

u�(r)P� induces

⎧
⎨

⎩

δdef r(R) =
∑

ε�(r)P�

δdef θ(R) =
∑

κ�(r)P�

which induces Uproper(R) =
∑

υ�(r)P� .

(14.28)

Following a phenomenological approach, Love (1909) and Shida (1912) proposed that the
coefficients (ε�, κ�, υ�) be expanded as

ε�(r) = H�(r)
u�(r)

g(r)
, κ�(r) = L�(r)

u�(r)

g(r)
, υ�(r) = K�(r)u�(r)

and to define h� = H�(rsurf), k� = K�(rsurf), �� = L�(rsurf),

(14.29)

where g(r) is the norm of the local gravitational acceleration a distance r from the center, and
h�, k�, and �� are the Love numbers. In general, a Love number refers to any dimensionless
parameter which relates the coefficients of the multipole expansion of a physical quantity
(pressure, etc.) to the coefficients of the expansion of the external potential. These numbers
are just a way of encoding our ignorance of the internal structure of the body in question.

In the case of a planet which is spherical, homogeneous (that is, the density and the
parameters describing the deformations are independent of r), and incompressible (so that the
divergence of the displacement field vanishes), the Love numbers can be calculated explicitly
(this is called the ‘Kelvin approximation’). Since the planet is assumed to be incompressible,
it remains homogeneous throughout the deformation, and calculation of the gravitational
potential at its surface gives3

Uproper(R) =
∑ 3g

2�+ 1
ε�(r)P� =⇒ k� =

3

2�+ 1
h� . (14.30)

3See, for example, Melchior (1973) and Murray and Dermott (1999).
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To obtain the other Love numbers it is necessary to solve the equilibrium equation of the
solid (the analog of the Euler equation with the stresses). It can be shown that3

h� =
2�+ 1

2(�− 1)

1

1 + (2�2+4�+3)μ
2gR

, �� =
3

2�(�− 1)

1

1 + (2�2+4�+3)μ
2�gR

. (14.31)

Here μ is one of the two ‘Lamé coefficients’ (λ, μ) which phenomenologically describe the
stress–strain relationships in a solid (for an incompressible solid λ = ∞ and μ is the shear
modulus; for a fluid μ = 0).

In a more realistic model the Love numbers cannot be calculated because they depend
on the entire internal structure of the planet. However, they can be measured4: k2 = 0.299
(the Earth perturbed by the Sun or the Moon), k2 = 0.14 (Mars perturbed by the Sun), and
k2 = 0.030 (the Moon perturbed by the Earth). Equation (14.30) and the value of k2 are
useful for studying the secular lengthening of the day; see the discussion that follows.

The Earth is deformed by tidal effects. It turns on its axis with a frequency of ωE =
2π/24 h, while the Moon revolves around the Earth with a frequency of n = 2π/27 d.
The tidal bulge, carried along by the Earth’s rotation, appears to be ahead by a constant
angle Δ relative to the Moon (see Fig. 14.4). In fact, the bulge is delayed on its retrograde
motion tending to restore it to the Earth–Moon axis. This delay is due to relaxation effects
in the interior of the Earth (friction, viscosity, etc.). As Fig. 14.4 illustrates, the fact that the
symmetry axis of the bulge is not aligned with the Earth–Moon axis means that the Moon
exerts a torque on the bulge, which slows down the Earth’s rotation and thus lengthens the
terrestrial day.
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Fig. 14.4 Deformation of the Earth under the action of the Moon.

4For example, the amplitude of the ocean tides and the deviation of the vertical relative to the normal
to the surface of the planet can be used to measure 1 + k
 − h
. The spatial variations of the strength of
terrestrial gravity depend on 1 + (2h
/)− k
/(+ 1). Finally, measurement of the vertical relative to a set
of fixed stars gives 1 + k
 − 
.
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More precisely, the torque KE induced by the perturbing potential of the Moon U2 =
−ζgEP2(cosϕ) [ (14.17)] is equal and opposite to the torque KM exerted by the Earth on
the Moon (assumed to be spherical and located at RM = d eX):

−KE = KM = RM ∧ F (RM) , F (RM) = − m∗∇Uproper(R)|R=RM
. (14.32)

Only the non-radial part of the Earth’s potential, given in lowest order by its quadrupole
moment,5 contributes:

Uproper(R) = −3

5
h2ζgE

(rE
r

)3
P2(cosϕ) = −k2ζgE

(rE
r

)3
P2(cosϕ) . (14.33)

Here k2 is the second Love number (14.31) and ζ is defined in (14.17). We then find that

KM(RM) =
3

2
k2Gm2

∗
r5E
d6

sin 2Δ ez ≡ K ez . (14.34)

When Δ > 0, KE slows down the Earth’s rotation thereby decreasing the rotational
energy, ĖE = KE.(ωEez) = −KωE < 0. In return, the Moon is accelerated and its orbital
energy increases, ĖM = Kn > 0. The energy balance is maintained by loss of the total energy
Ė = −K(ωE − n) < 0 to dissipation as heat owing to friction. The same result would be
obtained for Δ < 0 with the difference that the energy of the Earth’s rotation would increase
while the orbital energy of the Moon would decrease.

The bulge of the Earth due to the Moon

The delay of the bulge can be understood by analogy with a damped oscillator excited by
an external periodic force. The evolution equation is ẍ+ ω2

0x+ ẋ/τ = a0 cosωt with ω2
0 = k/m,

and the response to the excitation is x(t) = A cos(ωt+Δ) with A = a0/
√

(ω2
0 − ω2)2 + (ω/τ)2

and sinΔ = −(ω/τ)/
√

(ω2
0 − ω2)2 + (ω/τ)2.

Since the frictional force opposes the motion, Δ is negative and the response is always delayed
relative to the excitation.

The angle Δ can be related to the energy dissipation Q ≡ 2πE0/δE, where E0 is the
maximum potential energy stored during a cycle and δE is the energy dissipated in a cycle.

In this case E0 =
∫ A

0
kxdx = mω2

0A
2/2. The work performed by the frictional force during

time δt is −mẋδx/τ , so that the rate of energy dissipation is Ė = −ẋ2/τ . Therefore, during a

cycle δE = 2π〈Ė〉/ω = πmA2ω/τ and so Q = ω2
0τ/ω. In the limit ω2

0 � ω2 � ω/τ , we obtain
sinΔ = −1/Q .

The Earth’s rotation and the recession of the Moon

The total energy of the system is the sum of the Earth’s rotational energy IEω
2
E/2, where IE

is the Earth’s moment of inertia, and the Moon’s orbital energy −GMEm∗/2d. Using Kepler’s
third law G(ME +m∗) = n2d3, we find

5The quadrupole part of the proper potential external to the Earth has the form Ar−3P2(cosϕ). The
constant A is obtained by matching this potential to that obtained by solving the interior problem at the
Earth’s surface (14.30).
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Ė = IEωEω̇E +
1

2
μn2dḋ , (14.35)

where μ is the reduced mass. The total angular momentum J = (IEωE + μnd2)ez is conserved

because the system is isolated: J̇ = 0 = IEω̇E + μndḋ/2 (the derivative is calculated bearing in
mind that n2d3 is a constant), and so (14.35) becomes

Ė = −1

2
μndḋ(ωE − n) . (14.36)

Since Ė < 0 we have sgnΔ = sgn ḋ = −sgn ω̇E. Therefore, when Δ > 0 the semi-major axis of
the satellite orbit increases and the planet recedes. This is what happens in the Earth–Moon
system. The opposite case occurs in, for example, the Mars–Phobos system.

Equating (14.36) to Ė = −sgnΔK(ωE − n) and using Kepler’s laws again, we obtain

ḋ =
3

2
(sgnΔ) k2

(
m∗
ME

)(rE
d

)5

nd sin 2Δ . (14.37)

The conservation of total angular momentum then leads to the conclusion that

ω̇E = −3

4
(sgnΔ)

k2
αE

μ
m∗
M2

E

(rE
d

)3

n2 sin 2Δ , (14.38)

where the moment of inertia has been written as IE = αEMER
2
E, with αE a dimensionless

number.
Numerically, rE = 6.37×106 m, d = 3.8×108 m, ME = 6×1024 kg, and m∗ = 7.3×1022 kg.

The Love number is k2 = 0.299 and measurement gives sinΔ = 1/12. We therefore obtain

ḋ = 3.5 cm/yr, which corresponds to about 10−9 m/s, in agreement with the value derived
from lunar laser telemetry. The period of rotation of the Earth T = 2π/ωE then increases by

Ṫ = 3×10−3 s/century. This is consistent with the value for the lengthening of the day measured
on the geological time scale.

Synchronous rotation of the Moon

The variation of the Moon’s angular velocity ωM due to tidal effects produced by the Earth
can be obtained from (14.38) by a simple symmetry argument. In the limit m∗ � ME,

ω̇M = −3

2
(sgn(ωM − n))

k2M
αM

ME

m∗

(rM
d

)3

n2 sin 2ΔM

∼ k2M
k2E

αE

αM

(
rM
rE

)3 (
ME

m∗

)3
sin 2ΔM

sin 2ΔE
ω̇M.

(14.39)

Assuming that αM ∼ αE and using k2M = 0.030, sinΔM ∼ 1/27, and RM = 1.74 × 106 m, we
find ω̇M ∼ 500 ω̇E, which shows that the Moon has become synchronized before the Earth will.
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Self-gravitating fluids

In this chapter we present a brief description of ‘perfect fluids’, which are characterized by their
mass density (t, xi), pressure p(t, xi), and velocity field v(t, xi). The motion and equilibrium config-
urations of the fluid are determined by the equation of state, for example, p = p() for a barotropic
fluid, and by the gravitational potential U(t, xi) created at a point xi by the other fluid elements.

15.1 The Euler and Poisson equations

Given an equation of state, the equations of the problem to be solved are the continuity equa-
tion, the Euler equation, and the Poisson equation. In an inertial frame and using coordinates
xi, these equations can be written as (see Sections 6.3 and 11.4)

∂

∂t
=−∇. (v) ,

dv

dt
≡ ∂v

∂t
+ (v.∇)v=−∇U − 1


∇p , �U=4πG , p=p () . (15.1)

The fluid is stationary if none of its variables depends explicitly on time, and the fluid is
static if in addition v = 0.

The matching conditions at the surface Σ of the fluid xr = const can be read off from
(15.1). If  undergoes a finite discontinuity, the Poisson equation implies that U and ∂rU
are continuous there (because the integral of a discontinuous function is continuous). The
continuity equation then imposes the condition that vr vanish on Σ (to eliminate the term
involving ∂r, which is a distribution). Finally, the Euler equation states that ∂rp has at
most one finite discontinuity on Σ, and consequently p is continuous there, so that p = 0 on
Σ because p = 0 outside the fluid.

The gravitational energy of the fluid is given by [cf. (11.24)]

Wgrav =
1

2

∫
U dV = − 1

8πG

∫
(∇U)2dV, (15.2)

where the first integral runs over the entire volume of the fluid, the second runs over the
entire space (one is derived from the other using the Poisson equation with the condition
that U falls off at least as 1/r at infinity; see Section 11.4), and the volume element is dV =√
dete dx1dx2dx3, with dete the determinant of the metric coefficients in the coordinates xi.

15.2 Static models with spherical symmetry

Let us consider a spherically symmetric matter distribution confined to r < r0, where r is
the radial coordinate of a spherical coordinate system, creating a gravitational field which is
also spherically symmetric such that U = U(t, r). Outside the matter the Laplace equation

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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�U = 0 reduces to d2U/dr2+(2/r)(dU/dr) = (r2U ′)′/r2 = 0 (the expressions for the various
differential operators can be found in Section 4.6), the solution of which is

r > r0 : U = −GM

r
, (15.3)

where GM is an integration ‘constant’ depending only on time (the additive constant here
can be set equal to zero because the expressions in (15.1) involve only spatial derivatives of
U). We remark that according to Newton’s theorem (see Section 11.4), the solution is valid
for any motion of the matter creating this field as long as it remains spherically symmetric.

Now let us assume in addition that the matter distribution is static:  = (r), v = 0.
Inside the matter distribution the Euler and Poisson equations (15.1) then reduce to

r < r0 :
dp

dr
= −

dU

dr
,

d

dr

(
r2

dU

dr

)
= 4πG r2. (15.4)

These equations can be rewritten as a system of first-order differential equations for U(r)
and the mass function m(r):

dm

dr
≡ 4πr2,

dU

dr
=

Gm

r2
,

d

dr
= − 

dp/d

dU

dr
, (15.5)

where we have imposed the condition that U(r) remain finite at the origin. Given an equation
of state p = p(), the system (15.4) or (15.5) can be integrated (numerically if necessary)
with the initial conditions

m(0) = 0, U(0) = U0, (0) = 0. (15.6)

The value chosen for U0 is not important because only derivatives of U appear in (15.4); we
can a posteriori choose it such that U vanishes at infinity. We then see that for a given equa-
tion of state there exists an entire family of models parametrized by the central density 0.

The integration ends at the point where the pressure vanishes, which defines the radius
r0 of the distribution and its mass M = m(r0).

A ‘star’ of constant density

In the case of constant density, (15.4) can be integrated by inspection:

U(r) = D +
2πG

3
r2, p(r) = p0 −

2πG

3
2r2, (15.7)

where we have excluded a 1/r term from the potential so that the latter remains finite at the
origin. The exterior solution is given by (15.3). The continuity equations for U and dU/dr and
the vanishing of p at the fluid surface determine D, GM , and p0:

M =
4π

3
r30, D = −3GM

2r0
, p0 =

GM

2r0
, (15.8)
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so that

U(r) = −GM

2r0

(

3− r2

r20

)

, p(r) =
GM

2r0

(

1− r2

r20

)

. (15.9)

Therefore, in contrast to the general case where the solution depends only on the central density,
this model depends on two parameters, the density ρ and the radius r0 of the object (or its mass).

The gravitational lifetime of the Sun

The gravitational potential inside a static body for spherical symmetry and constant density 
is [cf. (15.9)] U = −(GM/2r0)

(
3− r2/r20

)
, where r0 is the radius of the object and M = 4πr30/3

is its mass. Its gravitational energy then is

Wgrav =
1

2

∫

UdV = −GM

4r0

∫ (

3− r2

r20

)

r2 sin θ dφ dθ dr or Wgrav = −3

5

GM2

r0
. (15.10)

For the Sun we find Wgrav = −2.3× 1041 J.
Now, the flux of energy radiated by the Sun can be measured and is found to be φ ≈ 1.5 kW

per m2 at the surface of the Earth. Therefore, the luminosity, defined as L� = 4πD2 φ where D
is the Earth–Sun distance, is L� ≈ 3.8× 1026 W.

If the energy radiated by the Sun were due to a loss of gravitational energy, we would have
dWgrav/dt = −L�, corresponding to a (short!) solar lifetime of τ ≈ −Wgrav/L� ≈ 2 × 107 yr.
On the other hand, the solar lifetime is estimated to be 5× 109 yr if its radiation is attributed
to nuclear reactions.

15.3 Polytropes and the Lane–Emden equation

The equation of state of a polytrope is p = Kγ , where K and γ ≡ 1 + 1
n are constants.1

The Euler equation (15.4) can then be integrated to find the density as a function of the
potential:

 = 0θ
n with θ ≡ C1 − U

K(n+ 1)

− 1

n
0 , (15.11)

where C1 is an integration constant and 0 is an arbitrary constant introduced for conve-
nience. The Poisson equation (15.4) then becomes the Lane–Emden equation:

1

ξ2
d

dξ

(
ξ2

dθ

dξ

)
= −θn, (15.12)

with ξ related to r as r = αξ with α ≡
√
K(n+ 1)/(4πG) 

1−n
2n

0 . The initial conditions at
ξ = 0 are θ(0) = 1 (which defines the constant 0 as the central density of the star) and
(dθ/dξ)|0 = 0 (so that the potential U is smooth at the origin). Analytic solutions of the
Lane–Emden equation are known only for n = 0 (θ = 1− ξ2/6, the case of constant density),
n = 1 (θ = sin ξ/ξ), and n = 5 (θ = (1+ ξ2/3)−1/2). In other cases it is necessary to resort to

1The constant n is called the polytropic index and γ is called the adiabatic index. The higher γ is, the
‘stiffer’ the equation of state. The values γ = 5/3 and γ = 4/3 describe white dwarfs. For a detailed discussion
of the physics of compact stars, see, for example, Grandclément (2008) and also Collins (2003).
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Taylor-series expansions θ(ξ) = 1− ξ2/6 + nξ4/120− (8n2 − 5n)ξ6/15120 + ... or numerical
integration. For n > 5 (γ < 6/5), it turns out that θ(ξ) never vanishes and therefore describes
configurations of infinite extent.

Once θ(ξ) (that is,  or p) is known, the stellar radius is known as a function of K,
n, and 0, namely, r0 ≡ αξ with θ(ξ) = 0. The mass is also known: M = 4π

∫ r0
0

 r2dr =

4π
∫ r0
0

0θ
nr2dr = 4π0α

3
∫ ξ
0
θnξ2dξ, which can be rewritten using the Lane–Emden equa-

tion (15.12) as

M = −4π0α
3ξ

2 dθ

dξ

∣∣∣
ξ=ξ̄

with α ≡
√

K(n+ 1)

4πG


1−n
2n

0 . (15.13)

We note that if n = 3 (γ = 4/3), M does not depend on the central density; this is the
Chandrasekhar mass.2

The gravitational potential U is given by U = −K(n + 1)
1/n
0 θ + C1 in the interior

of the star and is proportional to 1/r outside it. The continuity conditions on U and its
derivative give U = −GM/r with M from (15.13) (in agreement with Newton’s theorem, see
Section 11.4) and C1 = −GM/r0.

The gravitational energy Wgrav = 2π
∫
Ur2dr is also a function of the parameters of

the problem, that is, of K, n, and 0. In fact, there is a simple relation between M , r0, and
Wgrav, namely,3

Wgrav = − 3

5− n

GM2

r0
or also Wgrav = −3(γ − 1)

5γ − 6

GM2

r0
. (15.14)

For n = 0 we recover (15.10) for a homogeneous sphere.
The internal energy density ε is defined by4 p = (γ − 1)ε. A similar calculation gives

Wint =
∫
ε dV = (5γ − 6)−1GM/r20. Therefore, the total energy of the star or its binding

energy is

2After numerical integration of the Lane–Emden equation (15.12) in this particular case (n = 3), one

finds M = 2.02(4/
√
π) (K/G)3/2. The constant K can be estimated only using quantum mechanics; see the

references in the preceding footnote. One then finds M = 1.46M�.
3Using the Lane–Emden equation (15.11) we find

Wgrav

2πα3	0
=

∫ ξ

0
ξ2θn U dξ =

GM

r0
ξ
2
θ
′ −K(n+ 1)	

1/n
0 I with I =

∫ ξ

0
ξ2θn+1dξ,

where we have set θ′ = dθ/dξ and θ̄′ = (dθ/dξ)|ξ=ξ̄. The integral I is calculated using (15.11) and integration

by parts: first one shows that I =
∫ ξ
0 ξ2θ′2dξ and also that I = −n+1

3

∫ ξ
0 ξ3θ′θndξ, and then

∫ ξ

0
ξ3θ′θndξ =

∫ ξ

0
ξ2θ′(ξ2θ′)′dξ/ξ = 1

2
(ξ

3
θ
′2

+

∫ ξ

0
ξ2θ′2dξ).

We therefore have I = n+1
6

(ξ
3
θ
′2

+ I), from which we extract I = n+1
5−n

ξ
3
θ
′2
.

Finally, we use (15.13) to express θ
′
as a function of M , we introduce r0 = αξ, and we replace α by its

value as a function of 	0.
4Indeed, the force exerted on a fluid element of mass m = 	τ contained in a small volume τ bounded by

the surface S is −
∫
S pdS by the definition of the pressure (see Section 6.3). The energy density associated

with the small volume τ then is −p dV . Since τ = m/	 =
∫
dV , we have dV = −(m/	2)d	. Therefore,

−p dV = mpd	/	2. For a polytrope p = K	γ , and so −
∫
τ p dV = τp/(γ − 1). Therefore, the internal energy

density is ε = p/(γ − 1).
We note that the internal energy of a star of constant density (n = 0) is zero.
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W = Wgrav +Wint = −3− n

5− n

GM2

r0
or also W = −3γ − 4

5γ − 6

GM2

r0
. (15.15)

The system is bound if γ > 4/3.
Finally, we note that the Lane–Emden equation possesses a property called homology,

that is, it is invariant under rescalings ξ �→ Aξ and θ �→ Bθ if A2Bn−1 = 1 with A and B
being constants.This is an indication that it can be transformed into a first-order equation.
It is easy to see that if we introduce (following Chandrasekhar) the scale-invariant functions

u = −ξθn

θ′
, v = −ξθ′

θ
where θ′ ≡ dθ

dξ
, (15.16)

then the Lane–Emden equation can be rewritten as

u

v

dv

du
= − u+ v − 1

u+ n v − 3
(15.17)

with the initial conditions v = 0 and u = 3 [obtained by a finite series expansion of the
solution of the Lane–Emden equation (15.12)]. Equation (15.17) can be used to study models
of stellar families.

15.4 The isothermal sphere

The equation of state of a perfect gas at constant temperature is p = w with w a constant;
see Section 10.4. The Euler equation for spherical symmetry (15.4) describing this isothermal
sphere can be integrated to give  = 0 e

(−U/w), and the Poisson equation becomes (r2U ′)′ =
4πG0r

2 e(−U/w). This can be cast in the form of the Lane–Emden equation

1

ξ2
d

dξ

(
ξ2

dψ

dξ

)
= e−ψ (15.18)

after setting U ≡ wψ and r = αξ with α =
√

w/(4πG0). The initial conditions are ψ(0) =
0 (which defines 0 as the central density) and (dψ/dξ)|

0
= 0. Equation (15.18) can be

integrated numerically.5 It turns out that the density decreases and has fallen by about one
half at ξ0 = 3, the King radius.

We note that the ansatz ψ = 2 log ξ − ln 2, referred to as the ‘singular isothermal sphere’
because  = 20/ξ

2 diverges at the origin, solves this equation and gives a good approxima-
tion of the regular solution for large ξ.

Equation (15.18) possesses the property of homology since it is invariant under the trans-
formations ξ �→ eB/2ξ, ψ �→ ψ +B, where B is a constant. Introducing the invariant scaling
functions (called Milne functions)

u =
ξe−ψ

dψ/dξ
, v = ξ

dψ

dξ
, (15.19)

we can rewrite it (since the singular solution has been excluded) as a first-order equation:

5See, for example, Binney and Tremaine (2008).
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u

v

dv

du
= − u− 1

u+ v − 3
, (15.20)

with the initial conditions v = 0, u = 3 [obtained by a finite series expansion of the solution
of (15.18)].

Kinetic theory and the isothermal sphere

Let us consider a system of N identical particles of mass m interacting only gravitationally.
We assume that the system is isolated, so that its total energy E as well as N are constant
(the microcanonical description). In a stationary state such a system is described statistically
by a distribution function f(R, v) such that fd3Xd3V represents the number of particles in the
volume d3X centered at Xi whose components of the velocity v lie between V i and V i + dV i

(Xi are the Cartesian components of R in an inertial frame).
If the two-point correlation function of the distribution can be neglected, then (see Sec-

tion 10.2) f satisfies the stationary Boltzmann equation, which can be written as

v.∇f − ∂f

∂v
.∇U = 0 , (15.21)

where U is the average gravitational potential created by the distribution.
The total energy of the system is the sum of its kinetic and gravitational energies (see

Section 11.4; here we denote the kinetic energy by K rather than T ):

E = K +W with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K =
m

2

∫

v2f(R, v) d3Xd3V

W =
1

2

∫

Ud3X = − 1

8πG

∫

(∇U)2d3X.

(15.22)

The distribution function (normalized using
∫
dx e−ax2/2 =

√
2π/a)

f(R, v) =
0
m

(
βm

2π

)3/2

e−βm( 1
2
v2+U), (15.23)

where 0 and β are constants, solves the Boltzmann equation and extremizes the entropy, defined
as S = −

∫
f ln f d3Xd3V , for E and N constant.6 [If U = 0 we recover the Maxwell distribution

(10.31).] We then deduce that the mass density  and the Poisson equation which must be
satisfied by the average potential U , given by  = m

∫
f(R, v)d3V and 
U = 4πG, are

 = 0e
−βmU , 
U = 4πG0e

−βmU . (15.24)

The quantities  and U satisfy the Euler and Poisson equations (15.4) if the equation of state is
p = /(βm). Therefore, the distribution function (15.23) describes an isothermal sphere having
the equation of state p = w with w = 1/(βm).

6Introducing the Lagrange multipliers α and β, the extremization equation for S can be written as (see
Section 8.2) δS − βδE − αδN = 0. Only the calculation of δW requires a bit of care. We have δW =
1
2

∫
(Uδ	 + 	 δU)d3X and also δW = − 1

8πG

∫
δ(∇U)2d3X =

∫
	 δUd3X, after integration by parts and
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By elementary integration, we also deduce from (15.23) and (15.22) that the kinetic energy of this
perfect gas is K = 3N/(2β), so that we can identify β as the inverse temperature: β = 1/(kT ),
where k is the Boltzmann constant; see also Section 10.4. Finally, the scalar virial theorem
2K +W = 0 (see Section 7.4) provides the easiest method of obtaining the gravitational energy
W of the distribution. To sum up,

K =
3

2
NkT, W = −2K, E = −K, (15.25)

so that the specific heat of the system CV = dE/dT |V,N , which characterizes the increase of the
energy when the temperature is raised, is given by

CV = −3

2
Nk < 0 . (15.26)

Therefore, as it loses energy (E < 0) the system becomes warmer and contracts. This implies
that a self-gravitating system cannot be in thermodynamical equilibrium given the hypotheses
we have made.7

15.5 Maclaurin spheroids

The gravitational potential inside a homogeneous ellipsoid of revolution bounded by the
surface

X2 + Y 2 +
Z2

1− e2
= a2 (15.27)

was found by Maclaurin8 by solving the Poisson equation �U = 4πG with  = const:

U(X,Y, Z) = −πG
√
1− e2

[
a2I − (X2 + Y 2)A1 − Z2A3

]
(15.28)

with ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I = 2
Arcsin e

e

A1 =
Arcsin e− e

√
1− e2

e3
, A3 = 2

e−
√
1− e2Arcsin e

e3
√
1− e2

.

(The constant I has been chosen to make the exterior potential go to zero at infinity.) The
equipotentials U = const are also ellipsoids of revolution, but the surface (15.27) is not an
equipotential.

using the Poisson equation. Therefore,
∫
	 δUd3X =

∫
Uδ	 d3X and δW =

∫
Uδ	 d3X = m

∫
Uδf d3Xd3V .

The extremization equation then becomes

∫ [
ln f + βm

(
1

2
v2 + U

)
+ (α+ 1)

]
δf d3Xd3V = 0,

the solution of which is (15.23) after redefinition of the constant α.
7An instability of this type can lead to a gravothermal catastrophe; see Lynden-Bell and Wood (1968). A

more recent discussion can be found in, for example, Chavanis (2003).
8See Chandrasekhar (1969) for a detailed discussion.
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In the limit where the eccentricity tends to zero, (15.28) can be expanded as

U(r, θ) = −2πGa2
[
1− r2

3a2
− e2

3

(
1 +

2

5

r2

a2
P2(cos θ)

)]
+O(e4) , (15.29)

where r2 = X2 + Y 2 +Z2, cos θ = Z
r , and P2(x) = (3x2 − 1)/2 is the second-order Legendre

polynomial. On the surface of the spheroid this quadrupole series coincides with that derived
from (14.18).

Now that we have the solution of the Poisson equation, we can solve the continuity
equation and the Euler equation (15.1) by seeking a stationary solution describing a fluid
undergoing rigid rotation about its symmetry axis OZ. To determine its velocity in the
inertial center-of-mass frame S, we go to a frame rotating with the fluid, in which the velocity
v′ = v − Ω ∧ R = 0, where R = XeX + Y eY + ZeZ corresponds to a point of the fluid and
Ω = ωeZ is its rotation vector. Then v = Ω ∧ R = ω(−Y eX + XeY ) such that (v.∇v) =
V i∂iV

jej = −ω2(XeX + Y eY ) = − 1
2ω

2∇(X2 + Y 2). Therefore, the Euler equation (15.1)
becomes

∇
(
U +

p


− ω2

2
(X2 + Y 2)

)
= 0 , (15.30)

the solution of which is, using (15.28),

p


= −πG

√
1− e2

[
(X2 + Y 2)

(
A1 −

ω2

2πG
√
1− e2

)
+ Z2A3 − const

]
. (15.31)

The surface of the star is given by (15.27) and also by p = 0. These two surfaces coincide if

A1 −
ω2

2πG
√
1− e2

= (1− e2)A3 (15.32)

[and (1− e2)a2A3 = const], or equivalently if

ω2

2πG
= −3(1− e2)

e2
+

√
1− e2

e3
(3− 2e2)Arcsin e . (15.33)

In the limit e → 0 we have ω2 ≈ 8πGe2/15 (a result obtained by Newton). The curve
ω(e) reaches its maximum ω2

max/(πG) = 0.449 at e = 0.930 and falls to 0 again at e = 1.
Therefore, for a given  and rotational velocity ω (< ωmax), (15.33) has two solutions e1,2
corresponding to two different equilibrium solutions.

The mass of the spheroid is M = (4π/3)a3
√
1− e2 and its moments of inertia are I1 =

I2 = Ma2(2 − e2)/5 and I3 = 2Ma2/5 (see Section 6.1). The component of its angular
momentum along the OZ axis is MZ = (2M/5)ωa2 (see Section 7.2). Its kinetic energy is
T = 1

2

∫
v2dV , or, since v = Ω ∧R = ω(−Y eX +XeY ),

T =
1

2

∫
v2dV =

ω2

2

∫
(X2 + Y 2)dV =

1

2
ω2I3

=
16π2

15
G2a5

(1− e2)

e
Arcsin e

(
3

2e2
− 1− 3

√
1− e2

2eArcsin e

)

.

(15.34)
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Its gravitational energy is

Wgrav =
1

2

∫
UdV = −1

2
πG
√

1− e2
[
a2IV −A1I3 −

A3

2
(I1 + I1 − I3)

]

= −16π2

15
G2a5

(1− e2)

e
Arcsin e .

(15.35)

The ratio T/|Wgrav| is an increasing function of the eccentricity. For e = 0 (a sphere)
T/|Wgrav| = 0, and for e = 1 (a disk) T/|Wgrav| = 1/2.

Jacobi ellipsoids

Given the eccentricity (0 ≤ e ≤ 1) of a homogeneous ellipsoid of revolution of mass density
, we then know the speed of rigid rotation ω about its symmetry axis which maintains it in
gravitational equilibrium (Maclaurin, 1742); cf. (15.33). This speed is independent of the length
of the major axis a.

In 1834 Jacobi showed that if e exceeds its bifurcation value e = 0.813 [corresponding to
ω2/(πG) ≥ 0.374 and T/|Wgrav| ≥ 0.1375], there exists, along with the Maclaurin spheroid,
another equilibrium shape in rigid rotation. It is ellipsoidal, that is, it is described by the equation

X2+ Y 2

1−e22
+ Z2

1−e2
= a2, where the value of e2 as well as the rotational velocity are determined9 by

e. Dedekind (1860) and Riemann (1892) generalized these results to the case where the rotation
of the fluid is not constrained to be rigid.

For a given mass and angular momentum, a Maclaurin spheroid turns out to have a total
energy E = T + W [cf. (15.34) and (15.35)] greater than that of the corresponding Jacobi
ellipsoid. It is therefore unstable (this instability is termed secular because it requires energy
dissipation). Direct analysis (Riemann, 1860) of perturbations of the equilibrium configuration
shows that a dynamical (i.e., without energy dissipation) instability develops for e ≥ 0.953 [or
ω2/(πG) = 0.4402].

In 1885 Poincaré performed a similar analysis of perturbations of the equilibrium configura-
tions of Jacobi ellipsoids and demonstrated the existence of a point of bifurcation to pear-shaped
configurations for e = 0.881 or ω2/(πG) = 0.284. It has been found that this point also corre-
sponds to the development of the dynamical instability (Cartan, 1924).

9The equations can be found in Chandrasekhar (1969). For more recent developments, see, for example,
Christodoulou et al. (1995).
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Newtonian cosmology

As we have seen in Chapter 11, there exist two formulations of Newton’s law of gravitation. The first,
due to Newton himself, gives the 1/r2 force between two masses, and the second, due to Laplace
and Poisson, gives the differential equation which must be satisfied by the potential from which the
force is derived. The two formulations are not equivalent when the matter density does not vanish
at infinity but instead becomes, for example, constant. The construction of models of the universe
is therefore ambiguous in Newtonian theory.

However, some results presented here will be recovered within the framework of general relativity,
and they will in addition make it possible to lay the foundation of the theory of the formation of
large-scale structures in the universe such as galaxies and galactic clusters.

16.1 The model of an expanding sphere

Let us imagine a matter distribution spherically symmetric about the origin O of an iner-
tial frame which interacts only gravitationally. If gravity is described by Newton’s law, the
spherical layer of particles labeled by the index (a) located a distance ra(t) from the center
is subject to the force due to a mass Ma equal to the mass lying inside the sphere of radius
ra and located at the origin: r̈a = −GMa(t)/r

2
a (according to Newton’s theorem; see Sec-

tion 11.4). Let us now assume that no particle overtakes or is overtaken by another. Then
Ma is independent of time and the first integral of the motion is

ṙ2a = −v2a +
2GMa

ra
, (16.1)

where v2a is an integration constant with the dimensions of velocity squared characterizing
the layer in question labeled (a).

For v2a > 0 the solution of (16.1) is written in parametric form as1

ra =
rma

2
(1− cos η) , t− t0a =

rma

2va
(η − sin η) , (16.2)

where t0a is a second integration constant and rma ≡ 2GMa/v
2
a.

If t0a and rma/va are independent of (a) the motion will be self-similar, that is, different
layers of particles will reach their maximum displacement at the same time and fall back to
the origin at the same time. Setting t0a ≡ t0 and rma/(2va) ≡ a0/c, where c is a constant
with dimensions of velocity introduced for convenience, (16.2) can be rewritten as

ra =
va
c
a(t) with a(η) = a0(1− cos η) and t− t0 =

a0
c
(η − sin η) . (16.3)

1When va = 0, the solution of (16.1) is ra = Ca(t− t0a)
2
3 with C3

a = 9
2
GMa. The matter cloud expands

indefinitely, as for v2a < 0.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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Equation (16.1) becomes ȧ2/a2 + c2/a2 = 2GMa/r
3
a or

ȧ2

a2
+

c2

a2
=

8πG

3
 if we set  =

3c2a0
4πGa3(t)

. (16.4)

If we treat the galaxies as the particles of a uniform cloud which is spherically symmetric
about the origin of an inertial frame, our model (16.3) and (16.4) will describe a universe
which expands and eventually collapses on itself. Newton, who believed in eternal Creation
(despite the contradiction in terms) concluded that such a cloud, since it is unstable, cannot
represent the universe in its totality.

Newton’s objection can be assuaged by assuming that the cloud is undergoing a global
rotation. The problem then becomes considerably more complicated,2 but one can imagine
that the centrifugal force could counterbalance gravitation, resulting in a stable configuration.
This idea was developed by Kant and Laplace in building their models of the solar system
(which in the eighteenth century was the universe).

If we accept the idea that the universe may not be static, Newton’s objection also falls.
The universe then has a history, a beginning and eventually an end. As pointed out by Milne
and McCrea in 1934, this Newtonian model is mathematically equivalent to some relativistic
models derived from the Einstein theory of gravitation, with the function a(t) then referred
to as the scale factor of the universe.

We note that the velocity distribution is isotropic with regard to all the particles of the
cloud. Indeed, since the motion is self-similar, the position vector of particle Pi of layer (i)
is OPi = (vi/c)a(t), where vi is a constant vector. Then with Pj a particle of the layer (j),
we have PiPj = (vj − vi)a(t)/c, so that the velocity vector vij = d(PiPj)/dt of particle j
relative to that of particle i is

vij = H(t)PiPj , (16.5)

where H(t) is the Hubble parameter:

H(t) ≡ 1

a

da

dt
. (16.6)

For a time t short compared to the characteristic evolution time of the universe, that is,
t � a0/c, the Hubble parameter H(t) is nearly constant and the recession speed of ‘galaxy’
j relative to that of galaxy i is linear in the distance. This is Hubble’s law.

However, isotropy of the velocity field does not imply that all particles are equivalent.
Indeed, observation of a point on the outer edge of the cloud would allow an observer to
be located relative to the center. Moreover, the reference system of this observer, which is
co-moving with the particle to which it is attached, is not inertial—it is in free fall.

16.2 The pitfalls of the infinite Newtonian universe

The external radius of the cloud discussed above is not specified. We can therefore let it
tend to infinity without changing any of our conclusions.3 It would, however, be erroneous

2See, for example, Binney and Tremaine (2008).
3The first person to have exploded the spherical world of the Greeks to pass from “the closed world to

the infinite universe” (in the words of Koyré) seems to have been Thomas Digges in A Perfect Description of
the Celestial Orbs according to the most ancient doctrine of the Pythagoreans, lately revived by Copernicus
and by geometrical demonstrations approved, London (1576).
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to conclude that such a configuration of infinite extent no longer has a center, at least if
gravitation is described by a force.

Let us consider, as did Newton, a cloud uniformly filling the entire universe, that is, a
cloud of constant density, at least on average, throughout space. Each galaxy, or group of
galaxies, then becomes a center. Since the 1/r2 attractive forces acting on it due to galaxies
diametrically opposite cancel, we may be tempted to conclude that the galaxy in question
is undergoing free motion and, paradoxically, that gravity disappears for it. However, the
integral of the forces does not in fact converge (the summations over the angles and the
distance do not commute; equivalently, Gauss’s theorem does not hold).

The same problem arises if we describe gravitation by a force which is the gradient of a
potential F = −m∇U , U = −

∫
((R′, t)/|R−R′|)dV . The potential U must remain finite in

the passage to the limit, which requires that the matter density decrease sufficiently rapidly
at infinity (faster than 1/r2). Therefore, the density must depend on r, and the special nature
of the origin then remains.

Therefore, strictly speaking, a universe which is infinite and has no center cannot be
modeled using Newtonian theory. The universe must have a center, either because it has
infinite extent, or because its density is a function of the distance.

These models of island-universes whose history may not be eternal while time runs on
forever, and which are organized about a center for which it is impossible to know if it is
at rest or in uniform translation in the absolute reference frame, are a rather disappointing
aspect of the superb edifice built by Newton. . . . The Newtonian theory of gravity does not
allow realization of the dream of Giordano Bruno4: the universe of Newton, whether finite or
not, must have a center. Strictly speaking, it is the only free point of the universe, in uniform
translation relative to the absolute frame. This is absurd!5

16.3 The ‘Friedmann’ equation

In order to build satisfactory Newtonian cosmological models, it is necessary to broaden the
theory, first of all by describing gravity as a local field theory in the form of the Poisson law,
which involves only the acceleration of gravity g ≡ f/, so that the problem of convergence
of the potential (like ∇U = −g) does not arise. Then the Galilean group must be enlarged
to the Milne group.

Let us assemble the equations governing the Newtonian ‘cosmological fluid’ in an inertial
frame (see Section 15.1):

4“There is a single universal space, a single vast immensity which we may freely call Void: in it are
innumerable globes like this on which we live and grow. . . there are in this space those countless bodies such
as our earth and other earths, our sun and other suns, which all revolve within this infinite space, through
finite and determined spaces or around their own centres.” This perspective did not appeal to Kepler, who
wrote to Galileo in 1610: “This very cogitation carries with it I don’t know what secret, hidden horror; indeed
one finds oneself wandering in this immensity, to which are denied limits and center and therefore also all
determinate places.” [Citations of G. Bruno and J. Kepler, in Koyré (1957)].

5As Leibniz said: “These gentlemen maintain therefore, that Space is a real absolute Being. But this
involves them in great difficulties. . . the Fiction of a material finite Universe, moving forward in an infinite
empty Space cannot be admitted. It is altogether unreasonable and impracticable. For, besides that there
is no real Space out of the material Universe, such an Action would be without any Design in it: It would
be working without doing any thing, agendo nihil agere. There would happen no Change, which could be
observed by Any Person whatsoever. These are Imaginations of Philosophers who have incomplete notions,
who make Space an absolute Reality.” [Cited in Koyré (1957)].
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ΔU = 4πG,
∂v

∂t
+ (v.∇)v = −1


∇p−∇U,

∂

∂t
+∇.(v) = 0, (16.7)

along with the equation of state p = p().
We seek a solution of the form  = (t), p = p(t) (corresponding to the assumption

that the matter is homogeneous throughout the universe), and v = H(t)R, where R is the
radius vector (of modulus r) from the origin to the ‘galaxy’ under consideration, which
corresponds to isotropy (with regard to all the points) of the distribution. For H > 0 the
matter distribution is expanding, and the galaxies are moving away from each other with a
speed proportional to their distance.

We already know the solution of the Poisson equation (see, for example, Section 15.2):
U = 2

3πG(t) r2. Setting H ≡ ȧ/a, where a(t) is the scale factor, the continuity equation
gives

(t) =
0
a3

, (16.8)

with 0 a constant of integration. Finally, from the Euler equation we find the ‘Friedmann’
equation (we use the quotes because this equation was discovered by Friedmann in 1922
in the very different context of general relativity, where it is assumed that space itself is
expanding):

H2 +
Kc2

a2
=

8πG

3
 , (16.9)

where Kc2 is an integration constant. These equations are the same as those obtained in
Section 16.1, and it should be noted that the solution does not involve the pressure. If
K = 0, (16.8) and (16.9) are easy to integrate and we find

a = (6πG0)
1
3 t

2
3 , H =

2

3t
,  =

1

6πG t2
. (16.10)

In general relativity this is referred to as the Einstein–de Sitter solution.
In this cosmological model all the particles (galaxies) are accelerated relative to each

other. So then how is it possible to materialize the inertial frame in which the equations are
supposed to be valid?

We can follow Leibniz and say that only relative motion is important. Then each point-
like galaxy defines a local frame in free fall in which the equations are assumed to hold. This
dynamical equivalence between frames in free fall and inertial frames means that gravitation
can be locally effaced. The fact that this is possible stems from the equality of gravitational
and inertial mass and the invariance of the equations of motion (ΔU = 4πGρ, a = −∇U)
under the Milne group: x → x′ = x−d(t) with the condition that the potential is transformed
at the same time as U → U ′ = U − x.d̈; see Section 11.3. It should be noted that under
these transformations of the Milne group the gravitational potential is no longer a frame-
independent, scalar quantity.

16.4 The evolution of perturbations

With the reservations discussed above, Newtonian mechanics can nevertheless be used to
study the evolution of perturbations of a homogeneous, isotropic cloud.
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Starting from the continuity, Euler, and Poisson equations, we assume that the density,
pressure, velocity field, and gravitational field are the sum of the uniform, isotropic back-
ground solution described in Section 16.3 and a perturbation (1, p1, v1, g1). It is easy to
linearize the equations of motion about the background solution and find the equations for
the perturbations6:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂1
∂t

+3H1 +HR.∇1 + ∇.v1 = 0

∂v1
∂t

+Hv1 +H(R.∇)v1 = g1 −
1


∇p1

∇ ∧ g1 = 0, ∇.g1 = −4πG1

p1 = v2s 1,

(16.11)

where in the last equation vs ≡
√

dp/d is the speed of sound. We solve these equations by
decomposing the perturbations into a sum of Fourier modes written generically in the form

f1(R, t) = fq(t) exp

(
i
R.q

a(t)

)
, (16.12)

where the ‘co-moving wave vector’ q (independent of time) characterizes the mode whose ‘co-
moving’ wavelength (that is, relative to the scale factor) is λ(t) ≡ 2πa(t)/q (in Section 17.3 we
shall give a more detailed description of waves). Then after rearrangement (16.11) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δ̇ =
q2ε

a

v̇⊥q +Hv⊥q = 0 , ε̇+Hε =
(
−v2s

a
+

4πGa

q2

)
δ

q∧gq = 0 , i q.gq = −4πGaq ,

(16.13)

where we have introduced the density contrast δ ≡ q/ and have decomposed vq as vq =
v⊥q + iqε with v⊥q .q = 0. Eliminating ε, we obtain the evolution equation of the density
contrast:

δ̈ + 2Hδ̇ +
(v2s q

2

a2
− 4πG

)
δ = 0. (16.14)

Given the solution of (16.14), we can find the pressure perturbation pq = v2s  δ and the

expression for the compression modes ε = a δ̇/q2. The rotational modes �v⊥q decrease as 1/a
[cf. (16.13)]. Finally, the perturbation of the gravitational acceleration is obtained by solving
(16.13) directly: gq = 4iπGaδq/q2.

The Jeans approximation (1902) consists of neglecting the expansion of the matter cloud
in which the perturbations propagate, that is setting H = 0 as well as a = 1 and  = const in

6See, for example, Weinberg (1972), Peter and Uzan (2013), or Mukhanov (2005).
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(16.14). We then see that perturbations whose wavelength is smaller than the Jeans length
λJ, defined as

λJ = vs

√
π

G
, kJ =

√
4πG

vs
, MJ ≡ 4

3
πλ3

J (16.15)

(where we have also introduced the corresponding wave vector and mass), oscillate with con-
stant frequency ω ≡ vsq

√
1− (kJ/q)2 and propagate with ‘phase’ velocity ω/q ≡

vs
√

1− (kJ/q)2 → vs as long as gravity can be neglected.
Inversely, perturbations of wavelength longer than the Jeans length grow exponentially

in a characteristic time 1/ω which for very long wavelengths or vs → 0 is tgrav = 1/
√
4πG.

Therefore, in the Jeans approximation the static background cosmological solution is highly
unstable.

Let us now take into account the expansion of the cloud in which the perturbations
propagate.

Again, if the size of the perturbations λ = 2πa(t)/q is larger than the Jeans length (16.15),
where vs ≈ 0 if the pressure term is negligible, then the solution of (16.14), in the simple case
of K = 0 so that a(t), H(t), and (t) are given by (16.10), is the sum of a decaying mode
and a growing mode:

δ = C1t
−1 + C2 t

2/3 ⇐⇒ δ = D1 a
−2/3 +D2 a . (16.16)

Therefore, in an expanding cloud the zero modes, that is, the perturbations of size larger
than the Jeans length, begin to grow (but only as the scale factor, that is, as a power of
the time). Then when their wavelength λ = 2πa(t)/q ∝ t2/3 becomes smaller than the Jeans
length (which, since  ∝ 1/t2, now grows linearly in time and therefore faster than λ), they
begin to oscillate with decreasing amplitude, since, as is easily shown, the adiabatic solution
of (16.14) then is

δ ∝ 1√
a
exp

(
±i q

∫
vs
a
dt

)
. (16.17)

These results serve as a starting point for studying the growth of the large-scale structure
of the universe.

16.5 Olbers’s paradox

Let us consider a static, homogeneous, and infinite universe in which the density of luminous
objects, all alike and having the same absolute luminosity L0, is n. In a thin spherical layer
of radius r and thickness dr we then have 4πnr2dr ‘stars’ whose apparent luminosity at the
center is 4πnL0dr, given that the luminosity falls off as 1/r2. Therefore, the total luminosity
at the center is 4πnL0

∫
dr and tends to infinity. However, the night sky is dark (or nearly

so, because the Earth is in fact immersed in the microwave radiation of a black body at
3 kelvin).

This paradox was popularized by Olbers in 1826, but Thomas Digges seems to have been
the first to conceive of it in 1576 [the version presented here is due to Chéseaux (1744)].
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Resolution of Olbers’s paradox

In order to solve Olbers’s paradox we need to abandon one of the hypotheses leading to it.
It can be argued that the universe is not infinite (Kepler, 1610); that the density is ‘fractal’

(C. Charlier, 1908 and E. Fournier d’Albe, 1907); that stars have a finite lifetime and their light
takes time to reach us (Kelvin, 1901); that the universe has an infinite lifetime but is not static,
so that a Doppler effect occurs (the ‘stationary state’ model; Bondi, 1957); or that the universe
is expanding slowly and has finite age (the Big Bang model). Finally, we note that the loophole
suggested by Chéseaux, namely, that the light is absorbed by the intervening stars, in fact solves
nothing owing to considerations of thermodynamical equilibrium (Herschel, 1831).7

7To learn more, see, for example, Harrison (1987).
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Light in Newtonian theory

Astronomy (and physics in general) is certainly not a complete science without a theory of light.
However, the nature of light and its kinematical properties were not completely understood until
the advent of Maxwell’s theory, special and general relativity, and quantum field theory. The an-
swers to these questions provided by the Newtonian theory were only partial and sometimes even
contradictory. Here we shall present a few aspects of this topic.1

17.1 Light and gravity

If asked the question, “Does gravity influence the propagation of light?”, the proponents of a
corpuscular theory (like Newton himself, and also Michell, Laplace, Blair, Soldner. . .) would
have answered, “Yes, of course.”

Let us recall the first integral of the equation of motion of a particle in the gravitational
field of a spherically symmetric body of mass M (see Section 12.2):

r2
dφ

dt
= L ,

(dr
dt

)2
= 2E +

2GM

r
− L2

r2
, (17.1)

where r and φ are the polar coordinates of the particle in an inertial reference frame whose
origin is at the center of the body, and L and E are its specific angular momentum and
energy. We shall study radial motion, i.e., L = 0. The particle will escape the attraction of
the central body if E is positive or zero. Its initial velocity at r0, the radius of the central
body, must therefore be greater than the escape velocity: dr/dt|0 =

√
2GM/r0, or ∼ 11

km/s for the Earth and ∼ 630 km/s for the Sun. Assuming that light particles are emitted
with velocity c, we deduce that if they are emitted from a body of radius smaller than the
gravitational radius

rS =
2GM

c2
, (17.2)

they will not reach infinity. For a star of one solar mass rS ∼ 3 km, and for a star with the
mass of the Earth rS ∼ 1 cm.

Römer and the speed of light

In 1676 Ole Römer invoked the finiteness of the speed of light to explain the fluctuations of
the dates of emersion of the satellite Io, which depend on the variation of the distance between
Jupiter and the Earth from one eclipse to another. If the Sun, Earth, and Jupiter lie along
a straight line, there are two possible configurations. For the first, S-E-J, the travel time is

1See Eisenstaedt (2005) and Uzan and Lehoucq (2005).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.
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(DSJ − DSE)/c, and then, six months later, for the second configuration E-S-J the travel time
is (DSJ +DSE)/c. The difference of these is 2DSE/c. Römer obtained 22 minutes, which implies
that c ∼ 215, 000 km/s using today’s data for the size of the solar system.

Now let us consider a light particle deflected by a star, the Sun for example, grazing
its surface r = r0 with speed c (see Fig. 17.1). Its trajectory is a hyperbola given by (see
Section 12.2)

r =
p

1 + e cosφ
with p ≡ L2

GM
, (17.3)

where L = r0c [from the first equation in (17.1)] and 1/r0 = (GM/r20c
2)(1 + e) [or e �

r0c
2/(GM) � 1]. This hyperbola is very close to the straight line X = r cosφ = r0. Its

asymptotes are determined by 1 + e cosφa = 0, or φa � ±π/2 + 1/e. The light particle is
therefore deflected by an angle Δφ given by

Δφ � 2GM

r0c2
. (17.4)

For the solar data we find Δφ ∼ 0.9′′.

φa

X

Y

Observer

r0

Fig. 17.1 The bending of light rays.

These curious possibilities of the existence of ‘dark’ stars and light bending were respec-
tively discovered by Michell in 1784 and Soldner in 1801, within the framework of Newton’s
corpuscular theory of light then in fashion.

In the nineteenth century the wave theory of light triumphed over the corpuscular theory
owing to the work of Young and Fresnel (following Huygens and Euler). In the wave theory
the question of an interaction between light and gravitation was not addressed. Einstein’s
invention of the photon within the framework of quantum mechanics in the early twentieth
century did not lead to the rebirth of these eighteenth-century ideas, because it turned out
that a photon always travels at the same velocity c, and that only the probability of its
presence can be defined. General relativity proposes a coherent theory of the interaction of
(non-quantum) light and gravitation. It gives a value for the bending of light which is twice
the Newtonian prediction. It also defines rS as the Schwarzschild radius or the ‘event horizon’
of a ‘black hole’.

17.2 Stellar aberration

Let us place ourselves in the ‘absolute’ reference frame of the solar system and choose the
axes of the plane of the ecliptic such that the components of the velocity of light coming
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from a fixed star are (0, c cosα, c sinα) (c is negative), and consider the time when the
Earth’s velocity has components (0, v, 0) (see Fig. 17.2). In the frame attached to the Earth
defined by (X ′ = X, Y ′ = Y − vt, Z ′ = Z), the velocity of light has the components
(0, c cosα− v, c sinα) = (0, c′ cosα′, c′ sinα′) with

tanα′ =
tanα

1− v/(c cosα)
or α′ ≈ α+

v sinα

c
. (17.5)

Z 

X 

Y 

Y ′

Z ′

X ′  

t 

t + 6 months

Fixed star

π/2 − α

Fig. 17.2 Stellar aberration.

Six months later the Earth’s velocity is (0,−v, 0) and α′ will have changed (‘wandered’)
by Δα′ ≈ 2v sinα/|c|, where v/c ≈ 10−4 ≈ 20 arcseconds. This is the phenomenon of stellar
aberration discovered and explained by Bradley in 1728.

In a corpuscular theory of light, we have, strictly speaking, c = c∞ + v∗, where v∗ is the
speed of the star in the absolute reference frame and c2∞ = c20 − 2GM/r0, with c0 the speed
of emission of the ‘photon’ at the surface of the star of mass M and radius r0. Therefore,
Δα′ for a given α′ should vary from one star to another, which is not the case. This can be
explained in the wave theory: the speed of a wave is independent of the speed of the source
(see Section 17.3). Therefore, reasoned Fresnel, v should be replaced by |v − V0|, where V0

is the speed of the wave-supporting aether in the solar system. Since aberration is observed,
|v − V0| �= 0: the Earth does not drag the aether, rather, there must exist an ‘aether wind’
blowing at a speed of about 30 km/s if the aether is at rest in the reference frame of the
solar system.

17.3 Wave propagation

Let us recall the Euler and continuity equations which in the absence of an external field
govern the motion of a perfect fluid of mass density , pressure p, and velocity v (see Sec-
tion 6.3):

B
o
o
k
1



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 158 — #170

158 Book 1. Part III: Gravitation

∂

∂t
+∇. (v) = 0 ,

∂v

∂t
+ (v.∇)v = −1


∇p , p = p () . (17.6)

The ansatz  = 0, p = p0 = p(0), v = V0, where 0, p0, and V0 are constants, solves these
equations and describes a homogeneous fluid (for example, air) propagating at velocity V0 in
an inertial frame S. Setting  = 0+1(t,X

i), p = p0+p1(t,X
i), and v = V0+v1(t,X

i) and
linearizing the equations, we find (after taking the time derivative of the continuity equation
and eliminating ∂v1/∂t using the Euler equation) the equation describing the propagation of
the density perturbation:

− 1

c2s

∂21
∂t2

+�1 −
2V0

c2s
.∇∂1

∂t
− 1

c2s
V0.∇(V0.∇1) = 0 , (17.7)

where c2s = dp/d|
0
is the speed of sound. The terms involving V0 are eliminated by going

to the frame S ′ moving at velocity V0 with respect to S, defined as X ′i = Xi − V i
0 t, so that

∂
∂t →

∂
∂t −V0

∂
∂X′ and

∂
∂X → ∂

∂X′ . Therefore, the sound propagation equation is not invariant
under Galilean transformations (which is not surprising, since it was obtained by perturbing
a particular solution).

A particular solution of (17.7) is

1 = ak cosΦ with Φ ≡ kiX
i − (|k|cs + kiV

i
0 )t− φk , (17.8)

where k is a vector of modulus |k| =
√
kiki, and ak and φk are constants. A perturbation of

this type is a completely delocalized wave.
Let us imagine a ‘snapshot’ of the perturbation at a given time t. It varies sinusoidally

in space along the lines determined by k, called the wave vector. The wavelength of the
perturbation is λ ≡ 2π/|k|. The wave fronts, that is, the set of points where the phase is
constant at a given instant, are planes orthogonal to the wave vector k.

In each plane of E3 orthogonal to k, that is, on each wave front, the density perturba-
tion (17.8) has the same amplitude and oscillates in time with angular frequency

ω ≡ (|k|cs + kiV
i
0 ) (17.9)

(P ≡ 2π/ω is the associated period and ν ≡ 1/P = ω/2π is the frequency).
Let us consider the case where the wave vector lies along the X axis, ki = (k, 0, 0). Then

the perturbation (17.8) is constant if its phase Φ = kX − ωt − φk is constant. Therefore, if
it has a certain value in the plane X = X0 at time t0, it will have the same value in another
plane located a distance ΔX0 away after a time interval such that ωΔt0 = kΔX0. The wave
surfaces, that is, the perturbation itself, propagate in the positive direction of the X axis at
the phase velocity

cph =
ω

|k|
k

|k| . (17.10)

The solution (17.8) is called a monochromatic plane wave. The adjective ‘chromatic’ is not
really suitable for sound waves, but it is commonly used.

Any linear superposition of monochromatic plane waves (17.8)

1 =

∫
d3k a(k) cosΦ with Φ ≡ kiX

i − (|k|cs + kiV
i
0 )t− φ(k) (17.11)

is also a solution of (17.7) and constitutes a wave packet. Inversely, any square-integrable
perturbation can be decomposed into Fourier modes as in (17.11). The more strongly peaked
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the function a(k) is at some value of k, the more the wave is spread out spatially. Inversely,
the broader a(k) is, the more the packet is localized on the trajectory given by ∂Φ/∂ki = 0,
which the packet travels along at the group velocity

cg = cs
k

|k| + V0 (17.12)

(see below for a more precise definition). The phase and group velocities (17.10) and (17.12)
coincide only in the frame where the air is at rest or if V0 and k are collinear; see (17.9).
The functions a(k) and φ(k) encode the initial conditions of the perturbation, that is, they
represent the action of the source of the perturbation.

Phase velocity and group velocity

Let us consider a function F (X, t) =
∫
dk a(k) ei(kX−ω(k)t), a sum of monochromatic waves

individually propagating at the phase velocity vp = ω/k. We assume that a(k) is a function with
maximum at k = k0 such that only values close to k0 contribute to the integral. We can then
expand the integrand about k0 and write F (X, t, k0) ≈ ei(k0X−ω(k0)t)

∫
dk a(k) ei(k−k0)(X−vgt)

with vg ≡ dω/dk|0, which can be rewritten as

F (X, t, k0) ≈ A(k0, X − vgt)e
i(k0X−ω(k0)t), (17.13)

where A(k0, X − vgt) ≡
∫
dk a(k) ei(k−k0)(X−vgt). The function F (X, t, k0) then is a plane wave

of amplitude A and describes a wave packet whose envelope moves at the group velocity

vg ≡ dω

dk

∣
∣
∣
∣
0

. (17.14)

The Doppler effect

Let Sr be an inertial frame moving at speed vr relative to S: Xi
r = Xi − virt. Since the

density perturbation 1 is a scalar, it is the same in S and Sr: 1 =
∫
d3k a(k) cosΦ, where

Φ ≡ kiX
i
r − ωrt − φ(k) with ωr = |k|cs + ki(V

i
0 − vir). We then deduce that in the reference

frame Sr of a stationary receiver, the wave packet moves at group velocity cr ≡ dωr/dk, which
is independent of the emitter velocity and given by

cr = cs
k

|k| + V0 − vr , tanαr =
tanα

1− |vr − V0|/(cs cosα)
. (17.15)

In the second equation for the aberration, α and αr are the angles the vectors k and cr make
with (vr−V0). This should be compared to (17.5) giving the stellar aberration in the corpuscular
theory. We recall that V0 is the global speed of the fluid in the frame S.

Finally, the fact that the phase Φ has the same value in any inertial frame allows the frequency
of a wave measured by a stationary receiver in Sr to be related to that measured in the frame
Se where the emitter of the perturbation is stationary:

B
o
o
k
1



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 160 — #172

160 Book 1. Part III: Gravitation

νr = νe
1 + ki(V

i
0 − vir)/(|k|cs)

1 + ki(V i
0 − vie)/(|k|cs)

. (17.16)

This expression, discovered by Doppler, depends (except in first order in 1/cs) not on the relative
velocity of the receiver and emitter, but on their velocities relative to the fluid, so that it is
possible, for example, to measure changes of the velocity of the receiver with respect to the fluid.

In Newtonian wave theory, light was thought to propagate in the aether just like sound
propagates in air.

17.4 The Fizeau experiment

Let us imagine a refractive medium, water, for example, at rest in the laboratory frame. The
speed of light in the medium is measured to be c/n, where n is the index of refraction of the
medium. If we now give the medium a speed u, what will the speed of light c′ be with respect
to the laboratory? Observations of stellar aberration imply that the Earth does not drag the
aether in its wake, and so one might be tempted to conclude that refractive media also do
not drag it, and so c′ = c/n. However, in 1818 Fresnel showed (by ‘ingenious’ reasoning, in
the words of Sommerfeld) that refractive media must partially drag the aether according to2

c′ =
c

n

[
1 +

nu

c

(
1− 1

n2

)
+O(u2/c2)

]
. (17.17)

Fizeau verified this formula (which does not depend on the Earth’s velocity) as follows.
A U-shaped tube of length 2D has water running through it at a speed u ≈ 7 m/s. Two
light beams are sent through the tube, one in the direction along the current and the other
opposite to it, and they are made to interfere at the exit from the tube. The travel times of
the light beams are t± = 2D/c′± ≈ (2Dn/c)

[
1∓ (nu/c)

(
1− 1/n2

)]
, and so the ratio of the

shift Δi of the interference pattern and the spacing between fringes i is

Δi

i
=

c(t− − t+)

λ
≈ 4Dn2u

λc

(
1− 1

n2

)
, (17.18)

which was measured by Fizeau in 1850.

Optical interference

Let us consider two monochromatic plane waves (sound or light waves, for example) with
angular frequencies ωa and wave vectors ka:

Ea = E0a cos(Φa + ψa) with Φa ≡ �ka. �X − ωat+ φa . (17.19)

The sources of these waves emit packets of quasi-monochromatic waves separated by irregular
time intervals, a fact which can be encoded in the phases ψa, which then become random
variables. If the random nature of the emission can be ignored, the two sources are said to be
coherent and the phases ψa can be set equal to zero (in practice, this implies that the sources
both come from a single primary source split into two beams). The phases φa specify the initial
conditions.

2See Darrigol (2003). This formula explains why the refraction angle in a prism for light coming from the
stars, the speed of which is in principle varying owing to the orbital motion of the Earth, is actually constant.
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At a given point �X the two coherent waves interfere, and the resultant wave is the sum of
E1 and E2 if the equations governing their propagation are linear. This is the case with optical
waves, which ultimately are governed by the linear Maxwell equations, and also sound waves,
which are defined as perturbations of the Euler equations; see Section 17.3.

A measuring device placed at �X (a screen, for example) will be sensitive to the intensity I
of the wave, that is, to the time-averaged value of the square of its amplitude. This is because in
Maxwell’s theory the wave energy is proportional to its squared amplitude and the characteristic
observation times are very long compared to its period or even the time duration of the wave
packets. Therefore, for coherent waves we have

I ≡ 〈E01 cosΦ1 + E02 cosΦ2〉2

=

〈

E2
01

1 + cos 2Φ1

2
+ E2

02
1 + cos 2Φ2

2
+ E01E02 (cos(Φ1 +Φ2) + cos(Φ1 − Φ2))

〉

.

Given the phases Φa above, we find that on average all the cosine terms vanish, except for the
last one when the two waves have the same angular frequency ω1 = ω2 (this occurs if the beams
come from a single primary source). The measured intensity then is

I = I1 + I2 + 2
√
I1I2 cos(ΔΦ), where ΔΦ ≡ (�k2 − �k1). �X + (φ2 − φ1). (17.20)

Let us consider the example of the Young slits, where the observation point is at �X = (D, y) and

the sources are at �S1,2 = (0,±d/2). The wave vectors �k1,2 have the same modulus 2π/λ, because
ω2 = ω1 and the two beams propagate in the same medium. We then have (see Fig. 17.3)

�k1,2 =
2π

λ

(D, y ∓ d/2)
√

D2 + (y ∓ d/2)2
.

If y and d are of the same order of magnitude and much smaller than D, we see that (�k2−�k1). �X is
of order 2 and does not contribute to the phase difference. Regarding the second term in (17.20),

at �S1,2 the phases Φa of the waves are the same, so that [cf. (17.19)] �k1.�S1 + φ1 = �k2.�S2 + φ2

because ω2 = ω1. To linear order we therefore have

Δφ ∼ φ2 − φ1 with φ2 − φ1 = 2π
dy

λD
. (17.21)

The bright fringes correspond to ΔΦ = 2πn, where n is an integer, and the fringe spacing is
i = λD/d.

In the Fizeau experiment described above the initial phases of the waves are such that
�k1.�S1 + φ1 = �k2.�S2 + φ2 − ω(t− − t+) with ω = 2πc/λ and where the extra term increases with
the water velocity. The fringe spacing therefore remains constant but the interference pattern
[cf. (17.21)] is shifted by c(t− − t+)D/d.

In the Newton’s rings experiment a light beam falls perpendicularly on a spherical lens of
radius R resting on a mirror (see Fig. 17.3). Part of the beam is reflected by the lens and the

rest passes through the lens and is reflected by the mirror. In this case the point �X is on the

lens and we have �X = (r, d), where r is the distance to the axis and r2 + (R− d)2 = R2, so that
d ≈ r2/2D to lowest order in 1/R. The phases φ1 and φ2 differ by π owing to the reflection on

the mirror. Finally, the wave vectors have opposite directions: �k2 = −�k1 with �k2 = (0, 2π/λ).
Then (17.20) gives ΔΦ = 4πd/λ + π. The dark fringes correspond to ΔΦ = (2n + 1)π with

integer n and their radii are r =
√
nλR.
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Fig. 17.3 (a) Young slits and (b) Newton’s rings.

17.5 The Michelson–Morley experiment

In the laboratory frame the speed of light is cl = c− v, where c is the speed of light relative
to the aether (which is assumed to be at rest in the reference frame attached to the Sun) and
v is the orbital velocity of the Earth. We consider an interferometer one of whose arms, of
length l, is parallel to v. On this arm the time required for the light to make a round trip is
T1 = l/(c− v) + l/(c+ v) = 2lc/(c2 − v2). On the other arm, perpendicular to the first one,
we have cl = c−v = (c1−v, c2) with c1 = v and (c1)2+(c2)2 = c2, from which we find |cl| =√
c2 − v2 and the round-trip time is3 T2 = 2l/

√
c2 − v2. Therefore, T1 − T2 ≈ (l/c)(v2/c2).

When the interferometer is turned by 90 degrees, the arms are interchanged and the path
difference is doubled, so that the expected shift Δi of the interference pattern is

Δi

i
≈ 2l

λ

v2

c2
, (17.22)

where i is the fringe spacing. Therefore, Δi/i ≈ 0.4 for l ≈ 10 m, λ ≈ 0.5 micron, and
v/c ≈ 10−4.

No shift was observed.4

FitzGerald noted that if the motion shortened the interferometer arm parallel to v by
a factor of

√
1− v2/c2, there would be no shift of the fringes. This length contraction was

explained by Lorentz in a detailed study of electrostatic cohesive forces but at the price of
making numerous hypotheses about the structure of matter.5 As we all know, in the end all
these brilliant fixes could not measure up to the new view of space and time proposed by
Einstein in 1905.

3And not 2l/c, an error dating from 1881 and corrected by Alfred Potier, professor at the École Polytech-
nique. This persuaded Michelson to redo the experiment with Morley in 1886.

4As commented upon by Poincaré (1906), “It seems that this impossibility of experimentally demonstrating
the absolute motion of the Earth is a general law of Nature.”

5“An explanation was necessary, and was forthcoming; they always are; hypotheses are what we lack the
least.” Poincaré (1902).
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du Seuil, Paris.

Galileo, G. (1638). Discorsi e dimostrazioni matematiche intorno a due nuove scienze. Elze-
vir, Leiden. [English translation by Crew, H. and de Salvio, A. (1914). Dialogs concerning
two new sciences. Macmillan, New York.]

Grandclément, P. (2008). Compact objects [in French]. http://www.luth.obspm.fr/
article400.html?lang=fr.

Hagihara, Y. (1970). Celestial mechanics. MIT Press, Cambridge.

Harrison, E. (1987). Darkness at night. Harvard University Press, Cambridge.
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A note on the units

In special relativity the limiting velocity c, identified as the speed of light, is a universal
constant. We shall use the system of units in which its numerical value is 1. We then end up
with only two fundamental dimensional quantities: the time expressed in seconds (s) and the
mass expressed in kilograms (kg). The meter (m) and all other quantities are derived from
these. Here we list some useful conversion factors.

SI base units:

1 meter = 1
2.99792458×108 s = 3.33564× 10−9 s

1 ampere (A) = 1.82637× 10−8 kg1/2·s−1/2

1 kelvin (K) = 1.53616× 10−40 kg
(the Boltzmann constant is set equal to 1)

SI derived units:

1 newton (N) = 1 kg·m·s−2 = 3.33564× 10−9 kg·s−1

1 joule (J) = 1 N·m = 1.11265× 10−17 kg

1 coulomb (C) = 1 A·s = 1.82637× 10−8 kg1/2·s1/2

1 volt (V) = 1 J/C = 6.09214× 10−10 kg1/2·s−1/2

1 V/m = 0.182638 kg1/2·s−3/2

1 tesla (T) (= 104 gauss) = 1 N/(A·m) = 5.47534× 107 kg1/2·s−3/2

In addition:

the charge of the electron:
e = −1.602176485× 10−19 C = −2.92617× 10−27 kg1/2·s1/2

1 eV = 1.78266× 10−36 kg

the mass of the electron: me = 9.10956× 10−31 kg

the mass of the proton ≈ 1838 me

the vacuum permeability: μ0 = 4π × 10−7 N/A2 = 4π = 376.7 ohm (Ω)
(1 Ω = 1 V/A; the value of the ampere given above is derived from this)

the vacuum permittivity: ε0 = 1
μ0(2.99792458×108)2 C2/(N·m2) = 1/4π

And finally:

α = 1
137.0359997 is the fine structure constant

(its value is independent of the choice of units)

� ≡ e2/α, or � = 1.2× 10−51 kg·s, is Planck’s constant
aBohr = e2/meα

2, or aBohr = 1.77× 10−19 s = 5.29× 10−11 m, is the Bohr radius
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Part I

Kinematics

Gentlemen! The concepts about time and space, which I would like to develop before you
today, have grown on experimental physical grounds. Herein lies their strength. Their ten-
dency is radical. Henceforth, space for itself, and time for itself shall completely reduce to a
mere shadow, and only some sort of union of the two shall preserve independence.

Hermann Minkowski, Raum und Zeit. Lecture delivered before the Congress of Natural
Philosophers, Cologne, 21 September 1908;

English translation by Meghnad Saha, in: The Principle of Relativity, Calcutta, 1920
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1

Minkowski spacetime

Minkowski spacetime, the geometrical framework in which the laws of relativistic dynamics are
formulated, is a very simple mathematical extension of three-dimensional Euclidean space. In this
chapter we shall give a concise presentation of its main features. We shall stress the interpretation
of the fourth dimension, which in special relativity is the time. Time now loses the ‘universal’ and
‘absolute’ nature that it had in the Newtonian theory.

1.1 An absolute spacetime

The two founding principles

In 1905 Albert Einstein created a new mechanics based on two postulates1: the principle
of relativity, which states that the laws of physics must have the same form in any inertial
reference frame (that is, in any frame where free particles undergo uniform rectilinear motion),
and therefore they cannot be used to distinguish a particular frame; and the principle of invariant
light speed in a vacuum, which states that light propagates at a velocity of constant modulus |c|
in all reference frames. (This postulate arose from the relation between the speed of light and
the vacuum permeability and permittivity which follows from Maxwell’s equations: c = 1/

√
εμ.)

Therefore, the law governing the transformation from one reference frame to another cannot
be the Galilean law, because the latter implies that the speed of light is not the same in two
frames moving relative to each other. It states that if the speed of light is |c| in S, it must be
|c′| = |c− V0| in a frame S ′ moving at speed V0 relative to S.

Now, the Galilean transformations follow directly from the structure of space and time
assumed in Newtonian physics, and so rejecting Galilean transformations implies abandoning
the idea of representing space by a Euclidean space E3, time by a universal parameter t, and
spacetime by a E3 ×R.

In special relativity, ‘relative, apparent, and common’ (in the words of Newton) space and
time are represented by a mathematical set of points p called events, which constitute
the Minkowski spacetime: {p} = M4. M4 is postulated to be a pseudo-Euclidean four-
dimensional space. This means that each event p is associated with a set of four real num-
bers, its spacetime coordinates, and that there exist, among the various possible labelings,
Minkowski (or pseudo-Cartesian) coordinate systems (T,X, Y, Z), denoted more compactly
as Xμ (μ = 0, 1, 2, 3), such that the length element or interval, denoted ds2, between two
points with coordinates Xμ and Xμ+dXμ is defined by a generalized Pythagorean theorem:

1The English translation of Einstein’s seminal paper, Zur Elektrodynamik bewegter Körper can be found
in Einstein (1905a).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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ds2 = −dT 2 + dX2 + dY 2 + dZ2

=
∑

μ,ν

ημν dX
μdXν = ημν dX

μdXν = dXν dX
ν . (1.1)

The second equation defines the 10 coefficients ημν of the Minkowski metric in Minkowski
coordinates: η00 = −1, η0i = 0 (i = 1, 2, 3), and ηij = δij , where δij is the Kronecker
delta. In the third expression of (1.1) we have used the Einstein summation convention of
summing over repeated indices, and in the fourth we define the operation of lowering an
index: dXν ≡ ημν dX

ν (and so dX1 = dX but dX0 = −dT ). The origin O with coordinates
(0, 0, 0, 0) and the four axes {T,X, Y, Z} constitute an orthonormal Minkowski frame2 S.

The interval can be positive, in which case the distance between p and p+dp is ds ≡
√
ds2.

If it is negative the distance is denoted as dτ ≡
√
−ds2. Finally, it may vanish, in which case

p and p+ dp have zero separation, but are nevertheless distinct because they have different
coordinates.

Owing to the fact that its metric is specified a priori, the spacetimeM4 of special relativity
(as opposed to that of general relativity, where the metric is a dynamical quantity) can be
regarded as an absolute spacetime.

Review of vector geometry

Minkowski spacetime is an affine space. The coordinates Xμ of the point p can therefore also
be viewed as the components of the position vector Op ≡ Xμeμ, where O is the origin (0, 0, 0, 0)
and the four vectors eμ form the basis, associated with the coordinates Xμ, of the vector space
M4 spanning M4. The ensemble of the origin O and the basis vectors eμ constitutes a frame S
of M4. Similarly, dXμ represents a coordinate increment (not necessarily infinitesimally small)
or, equivalently, the μth component of the vector dp = dXμeμ. The quantity dXμ is the μth
component of the form dXμε

μ, where the four forms εμ form the basis associated with the eμ of
M∗

4 , the dual space of M4: ε
μ(eν) = δμν , where δμν is the Kronecker delta (equal to 1 if μ = ν and

0 otherwise). Finally, (1.1) means that M4 is equipped with a pseudo-Euclidean metric, that is,
the bilinear symmetric form (or 2-fold covariant tensor)

� = ημνε
μ ⊗ εν . (1.2)

We have discussed various concepts of vector geometry in Chapter 2 of Book 1. For example, we
recall that the metric � acts on the vector dp = dXμeμ to give ds2 as

�(dp, dp) = dXμdXν �(eμ, eν) = dXμ dXν [ηρσ (ερ ⊗ εσ)](eμ, eν)

= dXμdXν ηρσ [ερ(eμ)] [ε
σ(eν)] = dXμdXν ηρσ δρμ δσν = ημν dX

μdXν = ds2.

The first equality expresses the linearity of �, the second defines it, the third defines the tensor
product, the fourth defines a dual basis, and the fifth uses the properties of the Kronecker delta
and the definition of the Minkowski metric.

The metric also defines the scalar product of two different vectors u = uμeμ and v = vνeν as

(u · v) ≡ �(u, v) = ημνu
μvν ≡ uμv

μ, (1.3)

where uμ ≡ ημνu
ν are the components of the form uμε

μ dual to the vector u.

2The signature chosen for the Minkowski metric is therefore (−1,+1,+1,+1).
From now on, Greek indices run from 0 to 3 and Latin indices from 1 to 3 (or to n if the spatial dimension

is not specified).
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We also recall that for any spatial dimension n, a tensor T which is p-fold contravariant and
q-fold covariant is a multilinear form which acts on p forms and q vectors to give a number:

T = T
i1···ip
ji···jq ei1 ⊗ ei2 · · · ⊗ eip ⊗ εj1 ⊗ · · · εjq , (1.4)

where T
i1···ip
ji···jq are the components of this tensor in the basis ei1 ⊗ · · · eip ⊗ εj1 · · · ⊗ εjq , that is,

the result of the action of T on p forms of the basis εi and q vectors of the basis ej . (For a more
detailed discussion see Sections 2.1 and 2.3 of Book 1.)

Let us conclude with a few definitions, the physical interpretation of which will be dis-
cussed in the following section.

The sections T = const of Minkowski spacetime are Euclidean spaces E3 and the Cartesian
coordinates Xi = (X,Y, Z) are referred to as ‘spatial’ coordinates.3

The quantity T ≡ X0 is called the time coordinate.
The ensemble of events p at null distance from, for example, the origin O, that is, such

that �(Op,Op) = 0, forms a cone of equation −T 2 +X2 + Y 2 +Z2 = 0, called the light cone
(see Fig. 1.1).

X 0 = T

e0

eX

eY

c

X

Y

p

Fig. 1.1 Minkowski spacetime.

If �(Op,Op) > 0, the interval between O and p is space-like; if �(Op,Op) < 0, it is time-
like. If �(Op,Op) = 0, it is light-like and Op is an isotropic vector or null vector, not to be
confused with a vector all of whose components are zero; we also use c to denote the unit
3-vector of its projection on the plane T = 0. The ensemble of events p (said to lie ‘inside

3When there is no possibility of confusion, S will designate either a Minkowski frame of M4 or a three-
dimensional Cartesian frame of E3, the ensemble consisting of the spatial origin and the three basis vectors
ei.

We can of course perform any change of coordinate in these spatial sections; for example, we can transform
to spherical coordinates, where the length element is written as

ds2 = −dT 2 + dr2 + r2(dθ2 + sin2 θ dφ2) .

(See the discussion of differential geometry in Chapters 3 and 4 of Book 1.)
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the light cone’) for which the distance to O is time-like and T > 0, represents the future of
O (or the past if T < 0).

1.2 Inertial reference frames

Since a sectionX0 = const of Minkowski spacetime is a Euclidean space E3, a Cartesian frame
of E3 can be realized as in Newtonian physics by choosing an oriented physical trihedron (for
example, the laboratory walls), constructed using the ordinary Pythagoras theorem and
its consequences. The three coordinates Xi, the ‘spatial’ coordinates, will thus specify the
location of the event p. The ‘time’ coordinate X0 ≡ T will be realized by the time given by
accurate clocks located at Xi = const, that is, clocks which are at rest relative to the grid of
spatial coordinates (this restriction is essential!).

In addition, for the realization of a Minkowski frame we require that the physical reference
frame S thus constructed, the ensemble of a Cartesian trihedron and clocks at rest, be inertial,
that is, that the motion of free particles measured using the time T of its clocks be uniform
and rectilinear. If this were not the case, it would indicate, absent proof to the contrary, that
the particles are in fact subject to forces, or that the clocks are of poor quality or are moving
relative to each other.

Finally, the (future) light cone issuing from an event p, that is, the 2-sphere issuing from
the site Xi at time T and moving away at speed c (of modulus 1), is realized by a light flash
(or a thin spherical shell of particles moving radially at speed c).

“c=1”

At first sight it might appear strange that the four basis vectors eμ are realized in ‘relative,
apparent, and common’ space by the ticking of a clock plus three orthogonal unit rulers. However,
in the theory of relativity the concepts of length, of ruler, and, in general, of rigid body are
secondary. For example, spatial localization is effected in practice not by using ‘rulers’, but by
triangulation using laser telemeters which are at rest with respect to each other (if they are at
rest, the spatial geometry obtained (when gravity is ignored!) must be Euclidean). Therefore,
only the time unit needs to be defined, since the length unit is derived from it by multiplication
by a universal constant c.

Numerically, this fundamental constant is equal to the speed of light in the vacuum. For this
reason, light plays a special role in special relativity, which is why there is an entire terminology
based on it. One speaks of, for example, ‘light signals’ instead of ‘particles traveling at speed c’
and so on. However, it should be emphasized that the theory is not based on these identifications:
the fundamental speed c could just as well be realized by objects other than light, or by nothing
at all.4 It can always be set equal to 1, in which case lengths are expressed in, for example,
seconds.

It is useful to note that such an inertial frame is not a priori unique, and that we never
need to choose the direction of the reference trihedron axes, nor are we ever led to single out
any particular one of them.5

In addition, since it must not depend on the coordinates chosen, the value of the interval
ds2 will be zero in any Minkowski frame if it is zero in one. Therefore, a light signal must

4See, for example, Ellis and Uzan (2005).
5The idea of ‘absolute’ rest, inherent in the representation of space and time in Newtonian physics, is

therefore unnecessary in relativity theory. It is equally unnecessary to introduce an aether which would give
physical reality to all the points of M4.
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propagate with speed c of modulus 1 in all inertial frames, in contrast to the Newtonian
prediction.

Minkowski spacetime is therefore a suitable framework for incorporating the two Einstein
postulates stated above.

The Michelson–Morley experiment

In a reference frame attached to the Earth and regarded as inertial, the speed of light
will have modulus 1, |c| = 1, as in any other frame. The times required for two light signals
to make a round-trip along the arms of length l of an interferometer, one parallel and one
perpendicular to the orbital velocity of the Earth, will be the same: 2l/|c|. They will be the
same after the apparatus is rotated. The path difference between the two signals will then be
the same in the two configurations, and so no shift of the interference pattern is expected, in
agreement with experiment (1881), and in contrast to the predictions of A. A. Michelson and his
contemporaries. No FitzGerald–Lorentz-type shortening of the arms (see Section 17.5 of Book
1) will be required to explain this result, which instead is interpreted as a direct consequence of
the Einstein postulates.

Another difference between Einstein’s physics and Newton’s physics is that in the latter,
all (good) clocks, no matter what their motion, are assumed to measure the same time T . In
special relativity nothing a priori requires that the time measured by a moving clock coincides
with the time T measured by the clocks of S. There is no longer any reason for the concepts
of “now” and of simultaneity to be universal; for example, it can no longer be asserted that
the duration of a trip measured by the traveler will be the same as that measured by the
person who stays at home, which was a straightforward statement in Newtonian physics.

1.3 Lorentz transformations

A change of the labeling Xμ → X ′μ of the points p of M4 which preserves the form of the
interval (ds2 = ημν dX

μdXν = ημν dX
′μdX ′ν) and therefore describes the passage from one

system of Minkowski coordinates S to another S ′ is called a Poincaré transformation. Such
a transformation is written as

X ′ν = Λ ν
μ (Xμ − dμ) with Λ μ

ρ Λ ν
σ ημν = ηρσ, (1.5)

where dμ and Λ ν
μ are independent of Xμ. This change of coordinates is accompanied by a

change of the origin of the affine space, O �→ O′ with OO′ = dμeμ, as well as a change of
basis of the vector space M4, eμ = Λ ν

μ e′ν , and its dual εν = Λν
με

′μ, where Λν
μ is the inverse

matrix of Λ ν
μ , such that6 Λ ν

μ Λμ
ρ = δνρ .

These transformations are the Minkowski generalization of changes of Cartesian frame
in Euclidean geometry (see Book 1, Sections 1.3 and 2.4). They depend on 10 parameters:

6We recall (see Book 1, Section 2.3) that in a linear transformation the components of a p-fold contravariant
and q-fold covariant tensor become

T
′i1···ip
ji···jq = T

k1···kp

li···lq Λ i1
k1

· · ·Λ ip
kp

Λl1
j1

· · ·Λlq
jq
.

The components ημν of the Minkowski metric, the Kronecker delta δμν , and the Levi-Civita symbol eμνρσ (the
properties of which are given below in Section 7.2) are three quantities which are invariant under restricted
Lorentz transformations.
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the four components of the translation vector dμ and the six independent components of the
‘pseudo’-rotation matrix Λ ν

μ , which actually has 4 × 4 = 16 components constrained by
the 10 relations in (1.5). Three parameters, for example, the Euler angles, describe spatial
rotations, while the other three describe ‘pseudo’-rotations or boosts.

If we restrict ourselves to rotations and pseudo-rotations (dμ = 0), the transformations
(1.5) are referred to as Lorentz transformations. If det Λ = +1 the transformation is termed
proper, and if Λ 0

0 > 1 it is termed orthochronous. Transformations satisfying both these con-
ditions are called restricted Lorentz transformations. It is easy to show (see also Section 1.5)
that they form a non-commutative group, the Lorentz group.

Let us consider the particular Lorentz transformation called a Lorentz boost:

T ′ = T cosh ψ −X sinh ψ, X ′ = −T sinh ψ +X cosh ψ, Y ′ = Y, Z ′ = Z, (1.6)

where ψ is a constant, sometimes called the rapidity. We then have

ds2 = −dT 2 + dX2 + dY 2 + dZ2 = −dT ′2 + dX ′2 + dY ′2 + dZ ′2,

with T ′ a time coordinate and X ′i three spatial coordinates.
In order for the two frames S and S ′ to remain equivalent, the three Cartesian coordinates

X ′i must specify the location of the event p. As far as the coordinate T ′ is concerned, it must
represent the time as measured by clocks at rest in the new reference frame. Therefore,
X ′ = 0 ⇔ X = T tanhψ describes the motion in S of the spatial origin of S ′, and the
constant tanhψ ≡ V0 ∈ ]− 1,+1[ is interpreted as the speed of the frame S ′ measured at the
time T of S: S ′ is undergoing uniform translation relative to S along the X axis.

As a function of V0, the transformation (1.6) takes the form

T ′ =
T − V0X√
1− V 2

0

, X ′ =
X − V0T√
1− V 2

0

⇐⇒ T =
T ′ + V0X

′
√

1− V 2
0

, X =
X ′ + V0T

′
√

1− V 2
0

. (1.7)

(To simplify the notation, it is common to introduce the coefficient Γ ≡ 1/
√

1− V 2
0 , called

the Lorentz factor.)
In Newtonian physics it was necessary to distinguish between changes of Cartesian frame

of E3 and the law for passing from one frame to another undergoing uniform translation
relative to the first. In special relativity these ideas merge together, because time is now a
coordinate. We therefore use the term inertial frame to describe the ensemble of Minkowski
frames related to each other by Poincaré transformations; it is in these frames that the motion
of a free particle must be represented as a straight line.

We note that the law (1.7) reduces to the Galilean transformation (T ′ = T ,X ′ = X−V0T )
when V0 � 1 and if we restrict ourselves to events deep inside the light cone issuing from
the origin O such that X = O(V0T ).

We also note (see Fig. 1.2) that the new basis vectors (e′0 = coshψ e0 + sinhψ e1 and
e′1 = sinhψ e0+coshψ e1) are orthogonal in the sense of the Minkowski metric [�(e′0, e

′
1) = 0],

but on (Euclidean) paper they make an acute angle and merge with the bisectrix when7

V0 → 1.

7The apparent absence of equivalence between the (T,X) and (T ′, X′) axes is due to a Euclidean ‘cultural
bias’. In some studies (mostly older ones), an imaginary time T = iT is introduced in order to cast the
Minkowski length element in an apparent Euclidean form: ds2 = dT 2 + dX2 + dY 2 + dZ2.

Here we also recall that we can always use curvilinear coordinates to describe the spatial sections of inertial
frames; cf. footnote 3 of this chapter. We shall reserve the term ‘Minkowski frame’ for frames whose spatial
coordinates are Cartesian.
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X

T

X′

T ′

p1

p2

O

e0

e ′
0

e ′
1

e1

Fig. 1.2 A Lorentz boost.

Lastly, we note that light cones are invariant under Lorentz transformations, as they must
be, owing to the fact that a null interval in one frame is a null interval in any other.

We can realize a Lorentz boost by introducing a new physical trihedron undergoing uni-
form translation with respect to the first one. The location of the event p is then specified
by the three spatial coordinates X ′i of the new reference frame. As far as the new time
coordinate T ′ is concerned, it represents the time measured by clocks which are at rest in
the new frame, that is, which are undergoing uniform rectilinear motion relative to the first
frame. Then, according to (1.7) the time indicated by a clock at rest will not be the same as
the time indicated by an identical clock which is moving.

The fact that T ′ measures the time in S ′ and T the time in S also shows that the idea of si-
multaneity is not universal. For example, as seen from Fig. 1.2, two events O and p1 which are
simultaneous in the frame S ′ are not so when measured by the time T of S. This is surprising
when one is used to the idea of an ‘absolute’ time. If two events are separated by a space-
like interval, there exists a reference frame in which they are simultaneous, while if they are
separated by a time-like interval, there exists a frame in which they occur at the same place.

Therefore, physical space and time are viewed as a single ‘block’ which does not involve
any ‘flow’ of time and which each inertial frame ‘slices’ according to its proper time axis and
its associated space. Singling out a particular time axis is no more justified than singling out
a particular spatial axis, for example, the X axis.8

We conclude with an important remark. While they do unify the spatial rotation of axes
and passage from one inertial frame to another, Lorentz transformations do not encompass
the passage from an inertial frame to an accelerated frame, that is, they do not provide a
relativistic generalization of the Newtonian group of rigid displacements. We shall return to
the discussion of accelerated frames in special relativity in Chapter 5 below.

8A heuristic introduction to Lorentz transformations can be found in, for example, Lévy-Leblond (1976)
and (1979), as well as Langlois (2011).
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1.4 Time dilation

Let us consider two events O and A occurring at the same place but separated by a time
interval Δτ in an inertial frame S (see Fig. 1.3a). By direct application of (1.7) we find that
in S ′ these two events are separated by a time interval

ΔT ′ =
Δτ

√
1− V 2

0

. (1.8)

This is the phenomenon of time dilation: the events O and A might, for example, represent
the ticking of a clock in S and Δτ might define the second (or the lifetime of a particle); this
clock moves at speed (−V0) in S ′ and runs slowly relative to the clocks at rest in S ′ which
measure the time T ′. Therefore, a phenomenon of duration Δτ occurring at a given site in
an inertial frame S will last a time ΔT ′ in S ′ and, according to (1.7), will unfold between
two different sites separated by a distance ΔX ′ = −V0Δτ/

√
1− V 2

0 (it can be checked that
indeed −ΔT ′2 +ΔX ′2 = −Δτ2).

It also follows directly from (1.7) that a clock of S ′ will be slowed down in a symmetric
manner relative to a clock of S: ΔT = Δτ/

√
1− V 2

0 , where now Δτ measures, for example,
the second in S ′ (see Fig. 1.3).

X

(a)

T

X′

T ′

Δ
T

′

X
 =

 V
0
T

A

Δ
τ

ΔX
′

(b)

X

T ′

X′

Δ
X
′

ΔX

L1 L2

T

Fig. 1.3 Time dilation and length contraction.

The muon lifetime (I)

Muons are unstable particles which decay on the average in a time Δτ = 2.1948 μs in their
rest frame S. In Newtonian physics, the clocks of any reference frame must measure the same
lifetime and, even in a frame in which the muons move at nearly the speed of light, they should
in principle not be able to travel farther than cΔτ ≈ 650 m.

In 1941 B. Rossi and D. B. Hall, in measuring the cosmic muon flux at various altitudes,
showed that the muon path length was much larger than 650 m, so that the muon lifetime
ΔT ′ measured in the reference frame S ′ of the Earth had to be much greater than 2.2 μs.
The experiment was performed again in a quantitative fashion in 1963 by D. H. Frisch and
J. H. Smith, who measured a lifetime ΔT ′ ≈ 8.8Δτ for muons moving with Lorentz factor

1/
√

1− V 2
0 ≈ 8.8, in agreement with the relativistic prediction (to within about 10%); see also

Section 2.2 below.
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Length contraction

Let us imagine a rigid ruler which is at rest in S, that is, an object for which the world
lines of its extremities are represented by the lines L1 and L2 which in S are parallel to the T
axis; see Fig. 1.3b. The proper length is the distance ΔX between L1 and L2 at constant T . In
S the lines L1 and L2 have the equations X = 0 and X = ΔX, ∀ T . In S ′, where the ruler
is undergoing uniform translation at velocity −V0, the equations of motion of the extremities
become [cf. (1.7)]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T ′ =
T

√
1− V 2

0

, X ′ = − V0T
√

1− V 2
0

or X ′ = −V0T
′ for L1

T ′ =
T − V0ΔX
√

1− V 2
0

, X ′ =
ΔX − V0T
√

1− V 2
0

or X ′ = −V0T
′ +ΔX

√

1− V 2
0 for L2,

(1.9)

and so at a given time T ′ measured by the clocks of S ′

ΔX ′ = ΔX
√

1− V 2
0 , (1.10)

which gives rise to the (imprecise) saying ‘a moving ruler is shorter than a ruler at rest’.9

1.5 Thomas rotation

As an example of the properties of the Lorentz group,10 here we present two different methods
of obtaining the law for the transformation from one Minkowski frame S to another S ′ when
the velocity V0 of S ′ relative to S lies in the XOY plane and makes an angle φ with OX.
In the first method we (1) go from S to a frame S(1) by rotating the X and Y axes by an
angle φ such that the X(1) axis becomes collinear with V0. Then we (2) go from S(1) to S(2)

by performing a Lorentz boost of velocity V0 along X(1). Finally, we (3) go from S(2) to the
final frame S ′ by rotating the X(2) and Y (2) axes by an angle (−φ) so that the X ′ and Y ′

axes are parallel to the X and Y axes of the initial frame S. The sequence of transformations
is (setting V0 = tanhψ)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T (1) = T , X(1) = X cosφ+ Y sinφ , Y (1) = −X sinφ+ Y cosφ ,

T (2) = T (1) coshψ −X(1) sinhψ , X(2) = −T (1) sinhψ +X(1) coshψ , Y (2) = Y (1) ,

T ′ = T (2) , X ′ = X(2) cosφ− Y (2) sinφ , Y ′ = X(2) sinφ+ Y (2) cosφ , (1.11)

and their composition gives

9The phenomenon of length contraction is conceptually less important than that of time dilation be-
cause the idea of a rigid body is superfluous in relativity. Moreover, although one can devise many amusing
undergraduate exercises, it has in fact never been observed directly.

10A more mathematical and detailed presentation of the properties of the Lorentz group can be found in,
for example, Gourgoulhon (2013).
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T ′ = T coshψ −X sinhψ cosφ− Y sinhψ sinφ ,

X ′ = −T sinhψ cosφ+X[1+cos2 φ(coshψ−1)]+Y sinφ cosφ(coshψ−1) ,

Y ′ = −T sinhψ sinφ+X sinφ cosφ(coshψ−1)+Y [1+sin2 φ(coshψ−1)] .

(1.12)

In the second method of going from the frame S to the frame S ′ we (1) go from S to a
frame S(a) by a Lorentz boost of velocity Va along the X axis (Va is the speed measured at
time T of S). Then we (2) go from S(a) to a frame S(b) by a second Lorentz boost, this time
of velocity Vb along the Y (a) axis, where Vb is the speed measured at time T (a). Finally, since
the spatial axes of S(b) are not parallel to those of S, we (3) go from S(b) to the final frame
S ′ by rotating the X(b) and Y (b) axes by an angle θ so that the X ′ and Y ′ axes are collinear
with the X and Y axes of the initial frame S. The transformations are (setting Va = tanhψa

and Vb = tanhψb)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T (a) = T coshψa −X sinhψa , X
(a) = −T sinhψa +X coshψa , Y

(a) = Y ,

T (b) = T (a) coshψb − Y (a) sinhψb , X
(b) = X(a) ,

Y (b) = −T (a) sinhψb + Y (a) coshψb ,

T ′ = T (b) , X ′ = X(b) cos θ − Y (b) sin θ , Y ′ = X(b) sin θ + Y (b) cos θ ,

(1.13)

and their composition gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

T ′ = T coshψa coshψb −X sinhψa coshψb − Y sinhψb ,

X ′ = −T [sinhψa cos θ − coshψa sinhψb sin θ]

+X[coshψa cos θ − sinhψa sinhψb sin θ]− Y coshψb sin θ ,

Y ′ = −T [sinhψa sin θ + coshψa sinhψb cos θ]

+X[coshψa sin θ + sinhψa sinhψb cos θ] + Y coshψb cos θ .

This is identical to (1.12) if

⎧
⎪⎨

⎪⎩

coshψ = coshψa coshψb ,

sinφ =
sinhψb√

cosh2 ψa cosh
2 ψb − 1

, sin θ = − sinhψa sinhψb

coshψa coshψb + 1
,

(1.14)

which can also be written as
⎧
⎪⎪⎨

⎪⎪⎩

V 2
0 = V 2

a + V 2
b − V 2

a V
2
b ,

sinφ =
Vb

√
1− V 2

a

V0
, sin θ = − VaVb

1 +
√
1− V 2

0

.
(1.15)

Equations (1.14) and (1.15) give, as functions of Va and Vb, the modulus V0 of the velocity of
S ′ relative to S, its angle φ with the X axis, and also the angle θ of the Thomas rotation. The
fact that this angle is nonzero (except in the Galilean limit) shows that the composition of two
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Lorentz boosts in non-collinear directions is identical to a single Lorentz boost followed by a
rotation of the spatial axes. We also see that the expression for the angle φ is not symmetric
in Va and Vb, and therefore depends on the order in which the successive translations of the
frames are done.

Let us conclude with the simpler case of the composition of two collinear Lorentz boosts,
the first of velocity V1 ≡ tanhψ1 measured at time T of S and the second of velocity
V2 ≡ tanhψ2 measured at time T (1) of the intermediate frame. An elementary calculation
shows that this composition of transformations will be a Lorentz boost of velocity V0 ≡ tanhψ
given by

V0 =
V1 + V2

1 + V1V2
or ψ = ψ1 + ψ2. (1.16)

In this case the rapidities, but not the velocities, add.
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The kinematics of a point particle

In the preceding chapter we considered only objects undergoing uniform translation relative to each
other. Here we shall discuss the kinematics of point particles undergoing any type of motion. We
shall introduce the concept of proper time, the geometric representation of the time measured by an
accelerated clock.

2.1 World lines

A world line is a curve L in M4, λ �→ p(λ), whose equations in a Minkowski frame S with
coordinates Xμ are Xμ = Xμ(λ). Its tangent at p is the vector dp/dλ with components
dXμ/dλ in S. A world line represents the motion of a material point or point particle P ,
that is, an object whose spatial extent and internal structure can be ignored. More precisely,
each event p(λ) ∈ L represents the location Xi of the object at the time T of an inertial
frame S.

If this world line is time-like everywhere,1 that is, if (see Section 1.1) �(dp, dp) =
ημνdX

μdXν = ds2 < 0 at any point p of L, we can choose the parameter λ to be the curvi-
linear abscissa τ of L, dτ =

√
−ds2. The tangent u ≡ dp/dτ with components Uμ = dXμ/dτ

in S is then called the 4-velocity, to distinguish it from the 3-velocity V with components2

V i ≡ dXi/dT .
Since �(u, u) = ημνU

μUν = −1 by definition of the curvilinear abscissa, we have U0 =√
1 + U iUi (choosing U0 to be positive so that τ increases with T ), and so

V i ≡ dXi

dT
=

U i

U0
=

U i

√
1 + U jUj

=⇒ V 2 =
U iUi

1 + U jUj
< 1 , (2.1)

where V 2 ≡ V .V ≡ |V |2 ≡ δijV
iV j ≡ ViV

i. Therefore, the maximum 3-velocity that a
(non-tachyonic) particle can have is equal to the speed of light. Inversely,

U0 ≡ dX0

dτ
=

1√
1− V 2

, U i ≡ dXi

dτ
=

V i

√
1− V 2

. (2.2)

The 4-acceleration of P is the vector γ = du/dτ with components γμ ≡ dUμ/dτ in S. In
terms of the 3-velocity V i and the 3-acceleration ai ≡ dV i/dT we have

1World lines which are not time-like everywhere describe tachyons, hypothetical and problematical parti-
cles which we do not consider here.

2In what follows, when there is no possibility of confusion, the term velocity will be used for both 4- and
3-velocity. It should of course always be borne in mind that u = Uμeμ is a vector of M4 while V = V iei is
a vector of E3. Likewise, the Minkowski scalar product defined in (1.3) (u · γ) ≡ (u, γ) = ημνUμγν should
not be confused with the Euclidean scalar product a .V ≡ e(a, V ) = δij a

iV j . Finally, it will sometimes be

necessary to distinguish between world lines Xμ = Xμ(τ) and trajectories Xi = Xi(T ).
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γ0 =
a .V

(1− V 2)2
, γi =

1

1− V 2

(
ai + V i a .V

1− V 2

)
, (2.3)

where a .V ≡ δija
iV j ≡ aiV

i. Since ημνU
μUν = −1 implies that d

dτ (ημνU
μUν) = 0, the

4-velocity and acceleration are orthogonal, that is, in the various notations we are using,

(u · γ)≡�(u, γ)≡ημνU
μγν ≡ Uμγ

μ=0,

V .γ≡e(V, γ)≡δijV
iγj≡Viγ

i = γ0.
(2.4)

Uniformly accelerated rectilinear motion

Uniformly accelerated rectilinear motion is defined by γμγ
μ = g2, where g is a constant and

γμ = dUμ/dτ = d2Xμ/dτ2 are the components of the 4-acceleration of the particle in an inertial
frame S and Xμ(τ) are its 4 coordinates. Choosing the spatial axis X to be parallel to the
motion, we can write the 4-velocity Uμ as U0 = cosh f(τ), U1 = sinh f(τ), so that UμU

μ = −1.
The condition −(dU0/dτ)2 + (dU1/dτ)2 = g2 then requires that f = gτ . Then, after choosing
the initial conditions and with h a constant, we have

⎧
⎪⎪⎨

⎪⎪⎩

γμ ≡ dUμ

dτ
= g(sinh gτ, cosh gτ); Uμ ≡ dXμ

dτ
= (cosh gτ, sinh gτ)

T =
1

g
sinh gτ, X =

1

g
cosh gτ + h .

(2.5)

The trajectory is a branch of the hyperbola (X − h)2 − T 2 = 1/g2.

The 3-velocity is V ≡ dX/dT = tanh gτ = gT/
√

1 + g2T 2 and tends to ±1, that is, to the
speed of light for T and τ → ±∞. The 3-acceleration is

a ≡ d2X

dT 2
=

g

cosh3 gτ
=

g

(1 + g2T 2)3/2
.

In the limit of small velocities (gτ � 1) a ∼ g and we recover the Newtonian parabola: T ∼ τ ,
v ∼ gT , X − h ∼ 1/g + 1

2
gT 2.

Uniform circular motion

Let us consider a particle P constrained to follow uniform circular motion

Xμ(T ) = (T, r0 cosΩT, r0 sinΩT, 0)

in a Minkowski frame S. Its 3-velocity and 3-acceleration

V i ≡ dXi

dT
= r0Ω(− sinΩT, cosΩT, 0), ai ≡ d2Xi

dT 2
= −r0Ω

2(cosΩT, sinΩT, 0) (2.6)

are orthogonal, a .V = 0, and have constant modulus |V | = r0Ω and |a| = r0Ω
2.

The components of its 4-velocity and 4-acceleration are given by (2.2) and (2.3):

Uμ ≡ dXμ

dτ
=

(1,−r0ΩsinΩT, r0ΩcosΩT, 0)
√

1− r20Ω
2

, γμ ≡ d2Xμ

dτ2
= −r0Ω

2(0, cosΩT, sinΩT, 0)

1− r20Ω
2

. (2.7)
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Here γ has constant modulus
√
γμγμ = r0Ω

2/(1− r20Ω
2). The quantity U0 = dT/dτ relates the

curvilinear abscissa τ to the time T of S as τ =
√
1− V 2 T . In order for it to be defined, that is,

in order for UμUμ = −1 and for the world line to be time-like, we must have V 2 < 1, that is, r0 Ω
must remain smaller than 1, so that for a given Ω the particle cannot orbit arbitrarily far from
the origin. When |V | → 1, that is, when r0Ω → 1, the length of the world line τ =

√
1− V 2T

tends to zero: τ → 0 for finite T .

2.2 Proper time

Let us now consider the interpretation of the curvilinear abscissa τ . By definition, τ measures
the length of the world line L representing the motion of the point particle P . Therefore, the
distance between two events p1 and p2 of L is (see Section 1.1)

Δτ =

∫ 2

1

√
−ds2 =

∫ 2

1

√

−ημν
dXμ

dX0

dXν

dX0
dX0 =

∫ 2

1

√
1− V 2 dT . (2.8)

This is a geometrical invariant: its numerical value (expressed, for example, in seconds) must
be the same, no matter what coordinate system is used to define the trajectory of P .

Now let us consider the case where the 3-velocity V is constant in S so that Δτ =√
1− V 2ΔT , where ΔT is the time interval separating p and p+Δp measured by clocks at

rest in S. We introduce the inertial frame S ′ in which the particle is at rest. We then see
that Δτ is just the time interval separating p and p + Δp measured using the time T ′ of
the clocks of S ′. If Δτ represents the ticking of a clock (or the lifetime of a particle) in S ′,
then this time interval measured by the clocks of S will be longer: ΔT = Δτ/

√
1− V 2, in

accordance with the phenomenon of time dilation discussed in Section 1.4. Therefore, τ is
the time measured by the clocks moving along with P .

If the 3-velocity of a point particle is not constant, we can generalize this result by
postulating that the time measured by an accelerated clock co-moving with P is given by τ .
The curvilinear abscissa τ then measures the proper time of the clock.

It should, however, be noted that this identification of the curvilinear abscissa with the
time measured by an accelerated clock requires that a (good) clock, even though it is an
extended object, can be accelerated without its operation being affected.

Extremization of the proper time and the geodesic

The world line of a free point particle is a time-like straight line of M4. It is also a geodesic,
that is, the longest path between two events. Its equation can be obtained by extremizing the
length or the proper time τ(s), which was denoted as Δτ in (2.8):

τ(s) =

∫ λ2

λ1

dλ

√

−ημνẊ
μ
s Ẋν

s with Ẋμ
s ≡ dXμ

s

dλ
, (2.9)

where λ parametrizes one of the paths Xμ = Xμ
s (λ) joining p1 and p2, and s parametrizes the

various paths.
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If we use δXμ ≡ (∂Xμ
s /∂s)|0 ds and δẊμ ≡ (∂2Xμ

s /∂s∂λ)|0 ds to denote the variations of

Xμ
s and Ẋμ

s in going from the path with s = 0 to a neighboring path, the variation of the proper
time (2.9), δτ ≡ (dτ/ds)|0 ds, will be written as follows omitting the label3 s:

δτ=−
∫ λ2

λ1

dλ
ημνẊ

νδẊμ

√

−ηρσẊρẊσ

=− ημνẊ
νδXμ

√

−ηρσẊρẊσ

∣
∣
∣
∣
∣
∣

λ2

λ1

+

∫ λ2

λ1

dλ

⎡

⎣ d

dλ

⎛

⎝ ημνẊ
ν

√

−ηρσẊρẊσ

⎞

⎠

⎤

⎦δXμ. (2.10)

Since the variations δXμ vanish at λ1 and λ2, the first term of the second equality is zero.
The proper time will then be an extremum if the integrand of the second term vanishes. Since
the integral (2.9) is reparametrization-invariant, that is, is unchanged for any transformation

λ �→ f = f(λ), we can set ηρσẊ
ρẊσ = − 1, which returns us to parametrizing the geodesic by

its proper time (after variation!), and its equation of motion then becomes trivially that of a
straight line of M4:

dUμ

dτ
= 0, where Uμ =

dXμ

dτ
. (2.11)

Tangent inertial frames and ‘observers’

Since the 3-velocity V (τ) of a point particle can always be considered to be constant during
a short interval Δτ , it is possible to associate with each event p with curvilinear abscissa τ a
tangent inertial frame, also called an instantaneous inertial frame, that is, a Minkowski frame
S(τ) having (constant) 3-velocity V = V (τ) relative to S and spatial axes parallel to those of S.
As long as the particle velocity does not change significantly during the time Δτ , the curvilinear
abscissa τ will, as we have seen, be identified with the times of clocks at rest in S(τ). At (τ+Δτ)
it will be identified with the times of other clocks, those of S(τ +Δτ), and so on. (In Section 5.1
below we shall give a more sophisticated discussion of such ‘local’ frames.) The proper time is
therefore defined by some authors as the time read from this succession of clocks undergoing
uniform translations.

We can further postulate that it is also the time measured by an accelerated clock co-moving
with the point particle. For example, if the period of circular motion of radius r0 is P ≡ 2π/Ω

according to the clocks of S, it will be Pproper =
√

1− r20Ω
2 P according to a clock accompanying

the moving particle (see Section 2.1). If r0Ω → 1, that is, if |V | → 1, then Pproper → 0, meaning
that the clock makes a complete turn ‘in no time’ (according to the time it measures). It should
also be noted that this postulate implies that if the clock is an extended object, it can spin on
itself without its operation being affected.

In many books on this subject, an ‘observer’ (at rest and supplied with a clock) is associated
with an inertial frame, and similarly for the ensemble of a point particle and an accelerated
clock. Such an anthropomorphic viewpoint can help to guide intuition. However, we should not
lose sight of the fact that an ‘accelerated observer’ might in fact be an elementary particle, or
an atomic clock, and so on.4

The muon lifetime (II)

Let us consider a particle P constrained to undergo uniform circular motion Xμ(T ) =
(T, r0 cosΩT, r0 sinΩT, 0) in a Minkowski frame S. The modulus of its 3-velocity is constant:

3See Book 1, Section 8.1 for an introduction to variational principles.
4For a coherent and mathematical treatment of the concept of observer, see Gourgoulhon (2013).
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|V | = r0Ω, so that its proper time τ is related to the time T of S as τ =
√
1− V 2 T ; see

Section 2.1.
Let us assume that the particle is created at p(τ) and decays at p(τ + Δτ). We set ΔT =

Δτ/
√
1− V 2.

Owing to the meaning assigned to it, Δτ represents the proper lifetime of the particle, that
is, the lifetime measured by a clock moving along with the particle (or the lifetime measured
by the family of clocks of inertial frames tangent to the particle’s world line). Then ΔT will
correspond to the value of this same lifetime as measured by the clocks of S.

The muon lifetime in a reference frame where the muon is at rest is 2.1948 μs (see also

Section 1.4). We must then have Δτ = 2.1948 μs and ΔT = 2.1948μs/
√
1− V 2.

In an experiment performed at CERN in 1976, J. Bailey et al. measured the lifetime ΔT of
muons using the clocks of the reference frame in which they were moving, that is, the storage
ring. Their speed was 0.999419 c (corresponding to a Lorentz factor of 1/

√
1− V 2 = 29.33). It

was found that ΔT = 64.37 μs, in perfect agreement (up to two parts in a thousand) with the
prediction.

Since ΩΔT/(2π) = VΔT/(2πr0) ≈ ΔT/(2πr0) ≈ 460 turns for radius of the storage ring
r0 = 7 m, the muon motion cannot be considered to be uniform and rectilinear. The muon
3-acceleration is a = V 2/r0 ≈ 1.3 × 1016 m/s2 and the modulus of the spatial part of the
4-acceleration [cf. (2.7)] is |γ| = a/(1− V 2) ≈ 1.1× 1019 m/s2. Since the experimental result is
in agreement with the prediction, this indicates that the functioning of the ‘muon clock’, that
is, the properties of the weak interaction responsible for the muon decay, is not affected by this
acceleration.5

The absolute time of Newton now exits the stage.

2.3 The Langevin twins

Let us imagine a point particle which, after leaving the spatial origin of an inertial frame S
at T = 0 (event p1), returns after ΔT (event p2) (see Fig. 2.1a). The duration of the trip
according to a clock at rest in S is ΔT . On the other hand, the proper time Δτ that passes
between p1 and p2 according to a clock co-moving with the particle is given by (2.8) and, no
matter what motion the particle undergoes, Δτ will always be less than ΔT . In particular,
if the particle moves away from the spatial origin at constant velocity V and then makes an
instantaneous U-turn to return with velocity −V , (2.8) can be integrated immediately to give

Δτ = ΔT
√

1− V 2. (2.12)

Mathematically, the result (2.12) just corresponds to application of the Pythagorean theorem
in Minkowski geometry, and the fact that Δτ < ΔT is the Minkowski version of the ‘triangle
inequality’: the line connecting the events p1 and p2 is the longest possible path.

This result was popularized in France by Paul Langevin in the 1920s. If the clocks P and
P ′ are ‘twins’ (for example, identical particles), the traveling twin P ′ will at the end of the
trip be younger than the sedentary twin P .6 This result was considered paradoxical. It was

5Muons are charged particles, and so they emit radiation during their circular motion (the so-called
synchrotron radiation; see Section 18.3 below). Therefore, the ‘muon clock’ is also not affected by this emission
of electromagnetic waves.

6Returning to the experiment of Bailey et al. described in Section 2.2: after one trip around the storage
ring, the traveling muon has aged an amount equal to 1/460 of its lifetime, while the muon that stays at rest
in the laboratory has aged 29.33/460 of its lifetime.
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Fig. 2.1 The Langevin twins.

argued that if the lengths of the world lines of P and P ′ are calculated in the frame S ′ where
P ′ is at rest, then it is P which becomes the traveler, which is correct. Then, (2.8) is saying
that when P rejoins P ′, it will be P and not P ′ who will have aged less! However, this part
of the argument is false because (2.8) only applies if S ′ is an inertial frame. But the motion
of P ′ cannot be inertial all the time. In contrast to P , it must at some instant or another be
accelerated relative to the ensemble of inertial frames, at least to do the U-turn.

In order to calculate the lengths of the world lines in S ′, it is necessary to know how to
pass from an inertial frame to an accelerated frame. Below in Chapter 5 (see, for example,
Section 5.2) we shall study some examples of such transformations which turn Minkowski
coordinates into curvilinear coordinates.

An example of the twin ‘paradox’

We consider a point particle Pin at X = Xin > 1/g in an inertial frame S (the sedentary
twin) and another undergoing uniform acceleration Pacc (the traveler), whose world line is the
hyperbola given by (2.5), namely, gT = sinh gτ , gX = cosh gτ (see Fig. 2.1b). The proper time
of the sedentary twin is the time T of S, and τ is that of the traveler.

The world lines intersect at T = ±T0, the instant the traveler leaves the sedentary twin
and the instant they are reunited. The interval separating these two events is Δτin = 2T0 for
Pin (the sedentary twin). The duration measured by Pacc (the traveler) is Δτacc = 2τ0 with
gT0 = sinh gτ0, and so

Δτacc =
2

g
ArgSinh

gΔτin
2

(< Δτin) . (2.13)

The Langevin twins in a closed space

A length element defines the local geometry of a space but says nothing about its global
structure or topology. For example, the Euclidean plane E2 = R×R (whose topology is termed
trivial) has the same local geometry as the cylinder R× S1 or the torus S1 × S1.

The trivial topology of Minkowski spacetime is R × E3, but other topologies are possible.
For example, if (T,X, Y, Z) is identified with (T +L,X, Y, Z) by means of a translation of length
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L along the T axis, the topology of M4 becomes S1 ×E3, and there then exist closed time-like
curves which contradict the causality hypothesis, according to which an effect cannot precede
its cause.

We therefore limit ourselves to topologies M4 = R × Σ where the spatial sections Σ are
obtained by identification of certain points of E3. In the example of Fig. 2.2, the space (here
two-dimensional) has the topology of a torus S1 × S1. It can be shown7 that there exist 18
different topologies having the same local structure as E3.

If we decide to represent space and time by Minkowski spacetimes possessing such topologies,
the twin paradox seems to resurface (see Fig. 2.2b): twin 2 is not inertial but twins 3 and 4 are
and, owing to the non-trivial topology of the space, they return to their point of departure where
they meet up again with twin 1 without ever having changed their direction or their speed.

However, there is no paradox because the twins 1, 3, and 4 are in fact not equivalent. It
is not possible to reverse their trajectories by a change of frame because they are topologically
different: trajectory 1 can be shrunk to a point by a continuous deformation, whereas trajectories
3 and 4 loop around the space.

The non-equivalence of the inertial frames of 1, 3, and 4 arises from the fact that the identi-
fication of the points (T,X) and (T, g(X)) of the spatial sections defines a particular foliation of
spacetime and singles out directions. The events (T,X) and (T, g(X)) are two representations of
the same event in the inertial frame of twin 1 only because the hypersurfaces Σ are hypersurfaces
of constant time only for this twin.

Therefore, the choice of a spatial topology introduces the idea of an absolute space and
therefore the idea of absolute rest. The oldest twin will always be the inertial twin whose motion
is compatible with the choice of the spatial topology because it is this twin who will have the
longest world line between the two events.7

Spatial sectionSpace
(a)

4

2

1

3

(b)

T
im

e

P′

P
1 4

3
2

O′

O

P ′′
t

O′′

x0

Fig. 2.2 The Langevin twins in a closed space.

2.4 Transformation of velocities and accelerations

Let us consider the time-like world line L of a point particle P . In an inertial frame S with
Minkowski coordinates Xμ the equations of L are Xμ = Xμ(τ), where τ is the proper time
of P . The components of the 4-velocity and 4-acceleration in S are Uμ ≡ dXμ/dτ and
γμ ≡ d2Xμ/dτ2, and from the definition of the proper time we have ημνU

μUν = −1.

7For more detail see Uzan (2002).
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Under a Lorentz transformation the coordinates of P in S ′ become X ′ν(τ) = Λ ν
μ Xμ(τ),

where Λ ν
μ is a Lorentz rotation matrix, so that

U ′ν ≡ dX ′ν

dτ
= Λ ν

μ Uμ, γ′μ ≡ dU ′ν

dτ
= Λ ν

μ γμ, (2.14)

because the Λ ν
μ are constants. (It can be verified that indeed ημνU

′μU ′ν = −1 because
Λ μ
ρ Λ ν

σ ημν = ηρσ.) Therefore, the components U ′μ and Uμ are the avatars of the same
vector in two different bases: u = (dXμ/dτ)eμ = (dX ′μ/dτ)e′μ, and the same holds for the
acceleration γ. We can then speak of the 4-velocity and 4-acceleration in the absolute sense,
without specifying the inertial frame in which they are evaluated. This was a property of the
3-acceleration also in Newtonian physics, but it did not hold for the 3-velocity, which was
not represented by the same vector in two different inertial frames.

In the particular case of a boost of velocity V0 ≡ tanhψ along the X axis, (2.14) becomes
[cf. (1.6)]

U ′0 = U0 coshψ − U1 sinhψ, U ′1 = −U0 sinhψ + U1 coshψ,

U ′2 = U2, U ′3 = U3,
(2.15)

so that the 3-velocity V ′i ≡ dX ′i/dT ′ = U ′i/U ′0 of a point particle measured at the time of
S ′ is written as a function of V i = dXi/dT = U i/U0 and V0 as

V ′X =
V X − V0

1− V XV0
, V ′Y =

V Y
√

1− V 2
0

1− V XV0
, V ′Z =

V Z
√

1− V 2
0

1− V XV0
. (2.16)

The formulas are of course symmetric, because we also have

V X =
V ′X + V0

1 + V ′XV0
, V Y =

V ′Y√1− V 2
0

1 + V ′XV0
, V Z =

V ′Z√1− V 2
0

1 + V ′XV0
. (2.17)

We recover the Galilean velocity composition law (T ′ = T , V ′X = V X − V0, V
′Y = V Y ,

V ′Z = V Z) if V 2
0 � 1 and V XV0 � 1. Equations (2.16) also imply that

V ′2 = 1− (1− V 2
0 )(1− V 2)

(1− V0 .V )2
. (2.18)

We therefore again find that if the modulus of the particle velocity V tends to 1 in S, it will
also tend to 1 in S ′.

Similarly, we obtain the relation between the components of the 3-accelerations ai ≡
d2Xi/dT 2 and a′i ≡ d2X ′i/dT ′2:

a′X =
(1− V 2

0 )
3
2

(1− V XV0)3
aX , a′Y =

1− V 2
0

(1− V XV0)3
[
(1− V XV0)a

Y + V Y V0 a
X
]

(2.19)

(and a similar expression for a′Z). In the Galilean limit, that is, for V 2
0 � 1 and V iV0 � 1,

the 3-acceleration becomes invariant: a′i = ai.
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Composition of velocities and ‘rapidity’

The velocity composition law (2.16)–(2.17) is not additive. However, it can be shown that un-
der certain conditions there exists a functional of the velocities that is additive. These conditions
on the velocity composition law (denoted ⊕) are:

(1) ⊕ must possess a neutral element O such that u⊕O = O ⊕ u = u for all u;

(2) ⊕ must possess an absorbing element c (of modulus 1 for suitably chosen units) such
that u⊕ c = c⊕ u = c for all u;

(3) ⊕ must be associative, u⊕ (v ⊕ w) = (u⊕ v)⊕ w;

(4) d(u⊕v)
du

and d(u⊕v)
dv

must exist and be continuous in u and v; and

(5) d(u⊕v)
du

> 0 and d(u⊕v)
dv

> 0 so that u 	= O, v 	= O, u 	= c, and v 	= c.

If these five conditions are satisfied, it is always possible to construct a differentiable and
strictly monotonic ‘rescaling’ function such that f(u⊕v) = f(u)+f(v) which permits redefinition
of the velocities so that they become additive quantities. Here f(u) is the rapidity.8 Zero rapidity
corresponds to zero velocity, and infinite rapidity corresponds to velocity equal to c. The law
of velocity composition is then given by u⊕ v = f−1[f(u) + f(v)]. The relativistic law u⊕ v =
(u+v)/(1+uv) is a special case of this transformation corresponding to the choice f = arctan(u)
for the rapidity; see also Section 1.5.

E. Whittaker gives an argument justifying this particular choice.9 Considering the compo-
sition law k = u ⊕ v as a function g(u, v, k) = 0 and supposing that g is symmetric in u,
v, and −k (because this relation can be interpreted as a function of the relative velocities of
three reference frames: A relative to B, B relative to C, and C relative to A), he shows that
the relativistic law is the only law linear in u, v, and k. Thus, starting from the general form
g(u, v, k) = l +m(u + v − k) + n(uv − uk − vk) − puvk = 0, l and n must vanish (because for
v = 0 we have k = u for all u, and so l − nu2 = 0 for all u); moreover, for v = 1 we have k = 1
(by the definition of the absorbing velocity), and so m = p.

The Fresnel formula and the Fizeau experiment

Special relativity is constructed in such a way as to incorporate the postulate that the speed
of light in the vacuum (that is, in the absence of a physical medium) is the same in all inertial
frames. This is what an experiment like the Michelson–Morley experiment shows to be true.

On the other hand, the effective 3-velocity of light in a refractive medium depends on the
reference frame in which it is measured because it is not equal to the limiting velocity c: its
modulus is on average |c|/n = 1/n in the reference frame where the medium, of refractive index
n, is at rest.10 Since n is always greater than 1, we can view light propagating in a refractive
medium as physical particles whose world lines are time-like and whose 3-velocity components
therefore transform as (2.16) under a change of inertial frame. The speed of light c′ (relative to

8This theorem was proved by Whitrow (1935). The name ‘rapidity’ was proposed by Lévy-Leblond (1976).
9Whittaker (1949).

10The index of refraction n =
√
εμ is related to the permittivity ε and the permeability μ, the coefficients

characterizing the medium, which appear in the Maxwell equations of electrodynamics; see Chapter 16 below.
In the units we have chosen, ε0 = 1/4π and μ0 = 4π are the permittivity and permeability of the vacuum, a
‘medium’ whose state of being at rest or not is useless to speculate on because the speed of light is always
the same.

For a study of light propagation in matter and its various applications which are not treated in the present
book see, for example, Jackson (1975) or Raimond (2000).
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the laboratory) when the medium is moving with speed u parallel to the direction of propagation
is then given by (2.16) with V0 = −u:

c′ =
1/n+ u

1 + u/n
=

1

n
+ u

(

1− 1

n2

)

+O(u2). (2.20)

This expression was obtained by Fresnel (1818) within the framework of the Newtonian wave
theory assuming partial dragging of the aether by the refractive medium, and verified by Fizeau
in 1850 (see Book 1, Section 17.4). Two light beams travel down a U-shaped tube of length 2D in
which water flows at speed u, with one beam traveling in the same direction as the water current
and the other traveling in the opposite direction. The two beams then interfere at the exit of
the tube. The travel times of the two light signals measured by the time of S are T± = 2D/c′±,
which leads to a shift Δi of the interference pattern as measured by the fringe spacing i of
Δi/i ≈ (4Dn2u/λc)

(
1− 1/n2

)
.

In special relativity the difference of the travel times is of purely kinematical origin and the
experiment tests the velocity composition law.
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3

The kinematics of light

In this chapter we embark on the study of light in the vacuum in special relativity. Here we shall
represent light by world lines of zero length, that is, by particles which propagate at speed c. Such a
description does not include the electromagnetic or quantum wave nature of light, but it does allow
the interpretation of experiments which measure light travel times (such as the Sagnac experiment)
or aberration effects due to motion of the receiver.

3.1 Light lines

In Section 1.1 we defined the light cone, the ensemble of points at zero distance from a given
event. As we saw in Section 1.2, the future light cone of apex p, that is, the 2-sphere issuing
from Xi at time T and moving away at the speed of light c = 1, can represent a ‘light flash’.
The generatrices of the cone are light-like lines, that is lines of zero length, leaving p, and
one of these lines can represent the world line of a signal or light corpuscle1 emitted at Xi

at time T .
More generally, a light line representing the motion of a light corpuscle is a curve L of M4,

λ �→ p(λ), whose equations in a Minkowski frame S with coordinates Xμ are Xμ = Xμ(λ),
and whose tangent at p, k ≡ dp/dλ of components kμ = dXμ/dλ in S, is a vector which is
not necessarily constant but has zero norm at any point p of L:

�(k, k) = ημνk
μkν = 0 ⇐⇒ k0 =

√
kiki (3.1)

(with the convention that k0 is positive). Therefore, a light line is defined at each point by
its direction cosines, that is, ki/k0 (of which there are two since ki/k0 is normalized to 1),
while the component k0 remains arbitrary.

The 3-velocity and 3-acceleration of a light line

Let us consider a light line. The components kμ = dXμ/dλ of its tangent vector, of zero

norm, satisfy k0 =
√
kiki. The 3-velocity of the light corpuscle represented by this line is ci ≡

dXi/dT = ki/k0 = ki/
√

kjkj , which has modulus 1. The 3-acceleration is given by

ai ≡ d2Xi

dT 2
=

dkj

dλ

1

(klkl)

[

δij −
kikj
(klkl)

]

=⇒ a .c = 0 .

1Here we shall use the terms light ‘signal’ or ‘corpuscle’ indiscriminately to refer to the representation of
light as a particle propagating at speed c. Since the term ‘light corpuscle’ is outdated, we shall occasionally
replace it by the term photon, but it should be clearly understood that our description of light here has, with
some exceptions, nothing to do with quantum theory, and that a ‘light corpuscule’ may refer to a packet of
‘classical’ photons of well-determined world line.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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Therefore, the ‘photon’ trajectory is a straight line if the light propagates ‘freely’ (because the
trajectory of any free particle is a straight line). It is a broken line if the photon interacts with
mirrors which reflect it (in agreement with Snell’s law; see Section 16.2 below). Finally, in the
continuum limit (which implies an infinite series of mirrors) and if the trajectory is planar, it
can only be a circle traveled around at speed |c| = 1.

In Section 2.1 we introduced time-like lines for which the tangent vector u is normalized
to −1, �(u, u) = −1, so that the component U0 = dT/dτ relates the time T of the frame S
to the proper time measured by a clock co-moving with the particle. We also saw that when
the particle is ultrarelativistic, that is, when its 3-velocity tends to the speed of light, the
proper time ‘freezes’: dτ → 0 for finite dT . The components of the 4-velocity u, see (2.2),
then diverge. Therefore, a light line defined by (3.1) can be viewed as the limit of the world
line of a material particle, and the fact that k0 is arbitrary means that we decide not to
associate a proper time with it. In the following chapter we shall see how to interpret k0.

3.2 The Sagnac effect

Let us consider the following three trajectories in an inertial frame S with Minkowski coor-
dinates Xμ = (T,X, Y, Z):

{
Xμ

P = (T, r0 cosΩT, r0 sinΩT, 0)

Xμ
± = (T, r0 cos(Ω + ω±)T, r0 sin(Ω + ω±)T, 0).

(3.2)

The first represents the motion of a material point Pacc traveling in a circle and the other
two represent the motions of two particles emitted at time T = 0 at Pacc, also constrained
to move in a circle in the prograde (ω+ > 0) and retrograde (ω− < 0) directions relative to
Pacc. The times taken by P± to rejoin Pacc measured using the time T of the ‘laboratory’ S
are T± = ±2π/ω±, and so

ΔT ≡ T+ − T− = 2π
ω+ + ω−
ω+ω−

. (3.3)

The world line of Pacc is time-like, and so its 4-velocity is (see Section 2.1)

Uμ
P =

1
√

1− r20Ω
2
[1, −r0ΩsinΩT, r0ΩcosΩT, 0]. (3.4)

The proper time of Pacc is related to T as U0
P = dT/dτP , or τP =

√
1− r20Ω

2 T , and so the
advance of P+ compared to P− measured using the time of the receiver Pacc is

ΔτP =
√

1− r20Ω
2ΔT = 2π

√
1− r20Ω

2
ω+ + ω−
ω+ω−

. (3.5)

Now if the particles are light corpuscles constrained to follow a circular trajectory by means
of mirrors,2 the tangents to their light lines will be given by

2Which must remain tangent to the circumference of the circle; see Section 3.1.
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kμ = k0[1, −r0(Ω + ω±) sin(Ω + ω±)T, r0(Ω + ω±) cos(Ω + ω±)T, 0]

and must be of zero length: kμk
μ = 0, which gives

r0ω± = ±1− r0Ω =⇒ ω+ + ω−
ω+ω−

=
2r20Ω

1− r20Ω
2
. (3.6)

Therefore, the expressions for the advances of P+ compared to P− as measured using the
time of the receiver Pacc or the laboratory time are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ΔτP =
4πr20Ω√
1− r20Ω

2
=

4SΩ
√

1− β2

ΔT =
4πr20Ω

1− r20Ω
2
=

4SΩ

1− β2

with S = πr20, β = r0Ω. (3.7)

This is the Sagnac effect.

The Sagnac effect (I)

Measurement of the delay (3.7) in practice requires using the wave properties of light. Let λ
be the wavelength (or period) of the beams P± measured in the laboratory. If they are allowed
to interfere at Pacc, one observes a shift Δi of the interference pattern (relative to the pattern
obtained when Ω = 0)

Δi

i
=

ΔT

λ
=

4SΩ

λ(1− β2)
=

4SΩ

λ
+O

(
β2) , (3.8)

where i is the fringe spacing and S is the surface bounded by the beams (which, as is easily
shown, can follow a closed broken line rather than a circle).

In the Newtonian corpuscular theory of light the time for a rotating device to make a trip
around the origin must be the same for the two directions because the speeds have the same
modulus relative to the rotating reference frame, and so the prediction is that there is no shift.
However, in the wave theory of light the speed of light is constant relative to the aether in which
the rotating reference frame moves and a shift is expected.

The experiment was proposed by O. Lodge in 1897 and performed by G. Sagnac in 1913
following calculations made in 1905. Sagnac measured3 the effect (3.8) with an accuracy of 10−2.

The Michelson–Gale–Pearson experiment

The effect (3.8) should be observed whenever the receiver is rotating relative to an inertial
frame, and therefore also in an interferometer fixed on the Earth, whose diurnal rotation (rel-
ative to the quasi-inertial reference frame of the solar system) can thereby be measured. This
experiment, also proposed by O. Lodge in 1893, was performed in 1925 by A. A. Michelson,
H. G. Gale, and F. Pearson using an apparatus of 612 by 339 meters which the light beams

3The Sagnac effect is now measured using high-precision (10−12) ring laser gyroscopes (the first experiment
was that of W. M. Macek and D. T. Davis in 1963), and is commonly used in navigation systems. It has also
been measured using massive particles like neutrons (S. A. Werner et al., 1979), calcium atoms (Ch. Bordé et
al., 1991), and electrons (F. Hasselbach and M. Nicklaus, 1993). In this case λ is the de Broglie wavelength
of the particles.
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traveled around in opposite directions before interfering; they did indeed observe a shift of the
interference fringes.4

These experiments, like that of the Foucault pendulum (see Book 1, Section 5.4), measure
absolute rotations relative to the ensemble of inertial frames, which have a special status in
special relativity just as in Newtonian physics. In Section 5.3 we shall see how they can be
described using rotating frames.

3.3 Aberration formulas

In a Lorentz rotation, the components of a null vector k = kμeμ = k′μe′μ transform like any
vector:

k′ν = Λ ν
μ kμ. (3.9)

[It can be checked that ημνk
μkν = 0 implies that ημνk

′μk′ν = 0 because Λ μ
ρ Λ ν

σ ημν = ηρσ: a
vector which is null in one frame is null in any other.]

If the transformation is a boost, (3.9) reduces to [cf. (1.6)]

k′0 = k0 coshψ − k1 sinhψ, k′1 = −k0 sinhψ + k1 coshψ, k′2 = k2, k′3 = k3, (3.10)

where V0 ≡ tanhψ is the speed of the frame S ′, which moves along the X axis of S.
Let us consider a light source in the XOY plane of an inertial frame S whose radius vector

makes an angle α with the OX axis (see Fig. 3.1). The null vector tangent to the light line of a
photon emitted from this source has the components kμ = k0(1, cosα, sinα, 0). In the frame
S ′ moving with speed V0 along the OX axis, its components k′μ = k′0(1, cosα′, sinα′, 0)
are given by (3.10), and so the angles α and α′ are related as k′0 cosα′ = −k0 sinhψ +
k0 cosα coshψ, k′0 sinα′ = k0 sinα or

tanα′ =

√
1− V 2

0

1− V0/ cosα
tanα. (3.11)

Using a bit of trigonometry, we can write these expressions in a form which explicitly displays
the symmetry between the frames S and S ′, for example,

tan
α′

2
=

√
1 + V0

1− V0
tan

α

2
, or cosα′=

cosα− V0

1− V0 cosα
⇐⇒ cosα=

cosα′ + V0

1 + V0 cosα′ . (3.12)

The zeroth components, the interpretation of which will be given in the following chapter,
are related as

k′0 =
k0(1− V0 cosα)√

1− V 2
0

, k0 =
k′0(1 + V0 cosα

′)
√

1− V 2
0

. (3.13)

We see from (3.12) that for any α, α′ → π if V0 → +1 and α′ → 0 if V0 → −1. Therefore, a
light source which is isotropic in the frame where it is at rest emits, in the frame where it is
in rapid motion, primarily in the forward direction (i.e., in its direction of propagation). We
shall return to this effect in Section 17.1 when we study the electromagnetic field created by
a moving charge.

4In 1979 S. A. Werner and J. L. Staudenmann observed the same effect on the phase of the neutron wave
function.
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Bradley’s formula

Let us place ourselves in the quasi-inertial frame S of the solar system and consider the light
(that is, a continuous flux of light corpuscles) coming from a star, represented by the null vector
with components kμ = k0(1, cosα, sinα, 0) (with α ∈ [π/2, π]), at the time when the Earth is
moving along the X axis with speed V⊕ relative to S. In the frame S ′ attached to the Earth, the
angle is α′ given by (3.12) and (3.13), with V0 replaced by V⊕. Six months later, V⊕ will have
changed sign and α′ will have changed by Δα′ with

cos(α′ +Δα′)− cosα′ =
2V⊕ sin2 α

1− V 2
⊕ cos2 α

=
2V⊕ sin2 α′

1 + 2V⊕ cosα′ + V 2
⊕
, or Δα′ ≈ 2V⊕| sinα′| .

We therefore recover, to first order in V⊕, Bradley’s formula for stellar aberration (1728), ob-
tained within the framework of the Newtonian corpuscular theory of light (see Book 1, Sec-
tion 17.2). In special relativity the aberration formula (3.12)–(3.13) is just an ‘effect of perspec-
tive’ due to Lorentz rotation, and the question of whether or not to take into account the source
velocity does not arise.

T ′

T

k0

kµ

kX

k′X
kY = k′Y

k′0

X ′

X

Y
α

Fig. 3.1 The aberration of light.

‘Superluminal’ jets

Let us consider a light source S (for example, a ‘spot’ from a jet emitted by a quasar)
which has 3-velocity V in an inertial frame where the ‘astronomer’ A is at rest. It is always
possible to choose the spatial axes such that the world lines are, respectively, S = (T, 0, V T, 0)
and A = (T,R, 0, 0). The light corpuscles emitted by S at Tem in Xi

em = (0, V Tem, 0) follow
lines of zero length: Xi − Xi

em = T − Tem, and the time of reception by A is given by Trec =
Tem +

√
R2 + V 2T 2

em.
During the interval ΔTem the source moves a distance d = (0, VΔTem, 0), but A measures the

projection of this vector on the line of sight, that is (see Fig. 3.2a) da = VΔTem| sin θ|, where θ is
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the angle between SA and the Y axis. The apparent speed measured by A then is Va = da/ΔTrec

or, since (to first order) ΔTrec = ΔTem

(
1 + V 2T 2

em/
√
R2 + V 2Tem

)
= ΔTem(1 + V cos θ),

Va =
V | sin θ|

1 + V cos θ
, (3.14)

the maximum value of which, obtained for cos θ = −V , is Vamax = V/
√
1− V 2. The speeds Va

and Vamax can be greater than 1 and the jets can appear to be superluminal.
Now let us consider an entire light surface expanding at radial speed5 V . The apparent speed

of each point of the sphere is given by (3.14). The apparent image of the source is an ovoid, given
by the projection on a surface T = const of the intersection of the past light cone issuing from the
world line of A at Trec and the cone representing the evolution of the source (see Figs. 3.2b and c).

An easy calculation then gives the equation of the ovoid and the angle θm for which the line
of sight is tangent to it at Sm. If V Tem � R, we then find that the apparent speed of Sm is just
the apparent maximum speed obtained above, namely, Vm = V/

√
1− V 2.

V
T

V
Δ

T
e
m

da

θ

X

Y

RO A
(a)

T

A at Trec

X

Y

(b)

R

A

Sm

θm

X

Y

(c)

Fig. 3.2 Superluminal jets.

5Martin Rees (1966).
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Reflection on a moving mirror

In the inertial frame S where the mirror is at rest, Snell’s law applies (see Section 16.2): the
angles of incidence and reflection of the light are equal and lie in the same plane.

First let us deal with the case where the frame S ′ is undergoing uniform translation at speed
V0 tangentially to the mirror (the mirror speed then is −V0 in S ′). In the frame S the components
of the null vectors tangent to the lines of the incident and reflected light are

kμ
inc = k0(1, cosα, sinα, 0), kμ

ref = k0(1, cosα,− sinα, 0),

where α is the angle of incidence and −α the angle of reflection. Equation (3.11) then gives the
angles of incidence and reflection in the frame S ′ where the mirror is moving:

tanα′
inc = tanα

√
1− V 2

0

1− V0/ cosα
, tanα′

ref = − tanα

√
1− V 2

0

1− V0/ cosα
=⇒ α′

inc = −α′
ref .

Therefore, Snell’s law remains unchanged when the mirror is undergoing tangential uniform
rectilinear motion (and also k′0

inc = k′0
ref). This result also follows simply from the fact that the

geometry of the problem is invariant under this tangential motion of the mirror.
Let us now turn to the case where the frame S ′ moves perpendicularly to the reflective

surface of the mirror. In the frame S the components of the null vectors tangent to the lines of
the incident and reflected light are

kμ
inc = k0(1,− cosα, sinα, 0), kμ

ref = k0(1, cosα, sinα, 0),

where now α is the angle of reflection and π − α is the angle of incidence. Again, (3.11) gives
the angles of incidence and reflection in the frame S ′ where the mirror is in motion:

tanα′
inc = − tanα

√
1− V 2

0

1 + V0/ cosα
, tanα′

ref = tanα

√
1− V 2

0

1− V0/ cosα
=⇒ α′

inc 	= π − α′
ref .

Snell’s law stating the equality of the angles of incidence and reflection therefore no longer applies
when the mirror moves perpendicularly to its reflecting surface. At lowest order in V0 we have
α′
inc = π − α′

ref + ε with ε = 2V0 sinα
′
ref . In addition,

k′0
ref = k′0

inc
1− V0 cosα

1 + V0 cosα
, (3.15)

the interpretation of which will be discussed in Section 4.1.
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4

The wave vector of light

In the preceding chapter we showed that the motion of ‘light corpuscles’ whose structure is ignored
can be represented by simple world lines of zero length. Here we shall show how such lines can also
describe an undulatory aspect of light,1 namely, its frequency.

4.1 The wave vector and spectral shifts

A simple way of taking into account the ‘color’ attribute of light is to identify the time
component k0 of the vector kμ tangent to a light line (which we left arbitrary in the preceding
chapter) with the constant frequency ω of the wave associated with the light corpuscle:

k0 = ω. (4.1)

Here ν ≡ ω/2π is the frequency, P ≡ 2π/ω is the period, and λ = P (in the vacuum) is the
wavelength. The vector kμ is then called the 4-wave vector.2

Let us consider the case where the light propagates in the XOY plane of a frame S
making an angle α with the X axis, and then change inertial frame. Owing to (4.1), we now
interpret (3.13) and (3.15) as spectral shift formulas:

ω′ =
ω(1− V0 cosα)√

1− V 2
0

, ω =
ω′(1 + V0 cosα

′)
√

1− V 2
0

. (4.2)

This is the relativistic version of the Doppler–Fizeau formula: a wave of frequency ω in the
frame S has frequency ω′ as measured using the time of S ′. We note that if α = π/2, then
ω′ = ω/

√
1− V 2

0 , which can also be written as λ′ =
√

1− V 2
0 λ. This is the transverse

Doppler effect, the avatar of the phenomenon of time dilation or length contraction.
We note that (4.2) can be obtained without explicit use of the Lorentz transformation

(3.10). We introduce the 4-velocity u of the world line of the spatial origin of the frame S ′.
Its components in S are Uμ = (1, V0, 0, 0)/

√
1− V 2

0 , and its components in S ′ are U ′μ =
(1, 0, 0, 0). Since the scalar product of two vectors is invariant, we have

ημνk
μUν = ημνk

′μU ′ν , (4.3)

where we recall that kμ = ω(1, cosα, sinα, 0) and k′μ = ω′(1, cosα′, sinα′, 0). Equation (4.2)
for ω′ then follows.

1We have already alluded to this in Sections 1.2 (the Michelson experiment), 2.4 (the Fizeau experiment),
and 3.2 (the Sagnac effect).

2As will be discussed in Chapter 15 below, a monochromatic plane wave is delocalized and therefore
characterized by a ‘bundle’ of wave vectors of given frequency ω, or a ‘free’ vector. However, in practice a
beam of light is always of finite width, and if we can view it as a ‘light ray’, the wave vectors become ‘bound’,
that is, tangent to a light trajectory.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.
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The Doppler–Fizeau formula

Equation (4.2) gives the spectral shift of a light wave as a function of the motion of the
receiver. To first order in V0 it reduces to ω′ = ω(1− V0 cosα). This expression was obtained by
Doppler (1842) and Fizeau (1848) by introducing a special reference frame in which an aether
carrying the light waves was at rest (see Book 1, Section 16.5). The relativistic calculation does
not involve any privileged frame.

The Ives–Stilwell experiment

At second order in V0 the relativistic Fizeau formula (4.2) becomes ω′ = ω(1 − V0 cosα +
V 2
0 /2), which differs from the Newtonian prediction (see Book 1, Section 16.5). In 1938 H. E.

Ives and G. R. Stilwell produced two beams of hydrogen atoms, one traveling toward a receiver
(α = 0) and the other traveling away from it (α = π), and measured the average frequency of
one of their emission lines, ω̄′ = (ω′

− + ω′
+)/2. They obtained a result which agrees with (4.2),

namely, ω̄′ = ωV 2
0 /2, where V0 is the beam velocity and ω is the frequency of the emission line

of the atoms at rest.

4.2 Light signals and spectral shifts

In the preceding section we encoded the information about the frequency of a monochromatic
light wave in the zeroth component of its wave vector. An alternative method of taking into
account the wave nature of light is based on the fact that the emission of successive light
corpuscles by the source also defines the period of a light signal.

As an illustration, let us consider the example of a light source and a receiver moving
along the X axis of a frame S. Let Le and Lr be their world lines and Uμ

e and Uμ
r the

components of their 4-velocities (see Fig. 4.1).
At the instant τem of its proper time, the source emits a light signal (event Pem1), at

τem+Δτem it emits a second signal (event Pem2), and so on. By hypothesis, Δτem ≡ 2π/ωem

represents the period of the emitted light and ωem its frequency; at the time given by the
clocks of S the interval separating the two events is ΔTem = Δτem/

√
1− V 2

e (τem) (with the
condition that Δτem is so short that the velocity can be assumed constant).

The two signals then propagate on their respective light cones, and the two generatrices
which cut Lr at Prec1 and Prec2 are the world lines of the two light corpuscles which reach the
receiver at the instants τrec and τrec+Δτrec of its proper time. The quantity Δτrec = 2π/ωrec

will be the period and ωrec the frequency measured by the receiver; at the time of S the
interval separating Prec1 and Prec2 is ΔTrec = Δτrec/

√
1− V 2

r (τrec) (again with the condition
that the velocity can be assumed constant).

We still need to relate ΔTrec to ΔTem. If the light corpuscles propagate toward negative
X (see Fig. 4.1a), the equation of the world line of the first one is T = −X + Tem1 +Xem1,
so that ΔTrec +ΔXrec = ΔTem +ΔXem or

ΔTrec = ΔTem(1 + Ve(τem))/(1 + Vr(τrec)).

If they travel toward positive X (Fig. 4.1b), we find similarly

ΔTrec = ΔTem(1− Ve(τem))/(1− Vr(τrec))

(these are the formulas of the ‘Newtonian’ Doppler–Fizeau effect).
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Fig. 4.1 The Doppler–Fizeau effect.

Assembling the results, in the first case (Fig. 4.1a) we have

Δτrec =

√
1− Vr(τrec)

1 + Vr(τrec)

√
1 + Ve(τem)

1− Ve(τem)
Δτem

=

√
1 + V ′

e

1− V ′
e

Δτem with V ′
e ≡ Ve(τem)− Vr(τrec)

1− Ve(τem)Vr(τrec)
.

(4.4)

The formula in the second case (Fig. 4.1b) can be obtained simply by changing the signs of Ve

and Vr. When the velocities of the source and the receiver are constant, V ′
e is the 3-velocity

of the source relative to the receiver given by the velocity composition law (2.16).
If, for example, the source is at rest Ve = 0, and if Δτem is its period in S, then (4.4)

gives the period Δτrec of the signals measured by the receiver, that is, in the frame S ′ where
it is at rest. In terms of the frequencies we then have ω′ =

√
(1 + Vr)/(1− Vr)ω, in complete

agreement with the Fizeau formula (4.2) with α = π and V0 = Vr. It is easily seen that the
same occurs for the other cases in Fig. 4.1.

4.3 An example of a particle horizon

In this section we illustrate the idea of a particle horizon as well as the limits of validity
of the spectral shift formulas (4.2) and (4.4) by the example of two objects which exchange
light signals. One of the objects is inertial and the other is undergoing uniformly accelerated
rectilinear motion.

We consider two particles, one, Pin, at rest atX = 1/g in S and the other, Pacc, undergoing
uniform acceleration. The world line of the latter is given by

T =
1

g
sinh gτ, X =

1

g
cosh gτ, (4.5)

see (2.5) and Fig. 4.2. We shall use Lin and Lacc to denote the world lines of Pin and Pacc.
We assume that Pin sends a light signal at T = Tem. This signal propagates on a light

cone, and the equation of the generatrix which cuts Lacc is X = T − Tem + 1/g. Since Lacc
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X

T

Lacc
Lin

Pin

Pacc
1/g

Pin

Pin

Pacc−1/g

Fig. 4.2 The horizon of a uniformly accelerated particle.

is asymptotic to X = T for T → +∞, we see that if Tem > 1/g, none of the light corpuscles
will reach Pacc (of course, with the condition that the particle is accelerated forever).

Even though the particle Pacc is accelerated, at each instant of time it is possible to
associate with it an inertial frame S ′ tangent to its world line. The light signals it emits
propagate along the common light cones in S and S ′, and the equations of the generatrices
which cut Lin are X = −T + const. Since Lacc is asymptotic at X = −T for T → −∞, we
see that none of these photons can reach Pin before T = −1/g.

Therefore, Pacc enters the horizon of Pin at T = −1/g (before this time, no signal coming
from Pacc can reach Pin), and at T = +1/g it is Pin which leaves the horizon of Pacc (after
this time, no signal coming from Pin can reach Pacc).

Qualitatively, the reason for this phenomenon is that the speed of Pacc approaches the
speed of light asymptotically. When T → −∞, the signals emitted by the particle Pacc cannot
get ahead of it and Pin cannot receive them. When T → +∞, Pacc moves away at the speed
of light and the signals emitted by Pin cannot catch up to it.

To discuss this more quantitatively we return to our reasoning of the preceding section.
The interval Δτeacc of the proper time of Pacc which separates the sending of two light signals
corresponds to a time interval in S of ΔTem = Δτeacc/

√
1− V 2

e , where Ve is the speed of
Pacc in S at the moment of emission (‘time dilation’: for Δτ eacc a constant, ΔTem → ∞ when
Ve → ±∞). Since in addition the two signals are sent from different places, the interval
separating the reception of the two photons by Pin is ΔTrec = ΔTem(1 + Ve) (the Doppler
effect with + sign because the photons travel toward negative X). This interval is also the
interval effectively measured by Pin, which is at rest in S. We therefore have

Δτ rin = ΔTrec = ΔTem(1 + Ve) = Δτeacc

√
1 + Ve

1− Ve
. (4.6)
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If Δτeacc is the period of the light emitted by Pacc, we see that when Pacc enters the horizon
of Pin (Ve → −1), the period measured by Pin tends to 0 and the frequency of the signal is
infinitely shifted towards the blue. Inversely, when Pin leaves the horizon of Pacc (Ve → 1),
the frequency at which Pin receives the photons is infinitely shifted towards the red. We recall
that this calculation makes sense only if the velocity of Pacc does not vary appreciably during
the emission. We shall see below that this imposes the condition gΔτeacc � 1 (for example,

for g = 10n × 10 m/s
2
we would have Δe

accτ � 10−n yr, which is not very restrictive.).
Now let us suppose that it is Pin which sends the signals. It is then Pin whose velocity is

temporarily constant relative to Pacc and equal to −Vr, where Vr is the speed of Pacc in S
at the instant the photon is received. Inverting the roles, we find

Δτ racc = Δτein

√
1 + Vr

1− Vr
, (4.7)

where Δτ racc is the interval, measured by Pacc, separating the reception of the photons which
Pin has emitted at its proper time interval Δτein. If Δτein is the period of the light emitted
by Pin, we see that when Vr → −1 the frequency of the signal received by Pacc is infinitely
shifted towards the blue. Inversely, when Vr → 1 we have Δτ racc → ∞, and the photons
received by Pacc are spaced farther and farther apart. We shall see below that this reasoning
is valid as long as gΔτ racc � 1. Therefore, the spectral shift cannot be given by (4.7) when
Vr → 1.

Light signals and wave vectors

Equations (4.6) and (4.7) can also be obtained by describing the light signals using wave
vectors and, as in (4.3), making use of the invariance of their scalar products with the 4-velocities
of Pin and Pacc.

If k is the wave vector associated with a light corpuscle, then −(k ·uin) ≡ ωin is the frequency
measured by Pin and −(k · uacc) ≡ ωacc is that measured by Pacc.

Let us now consider the case where Pin sends signals to Pacc. The components of uacc in S are
Uμ

acc = (1, Vr)/
√
1− V 2

r . The components of k are kμ = ωe
in(1, 1), since Uμ

in = (1, 0). Therefore,

−(k · uacc) ≡ ωr
acc = −ημνk

μUν
acc = ωe

in
1− Vr√
1− V 2

r

= ωe
in

√
1− Vr

1 + Vr
, (4.8)

in agreement with (4.7).
Next we take the case where it is Pacc which sends the signals to Pin. In the inertial frame

S ′ tangent to the world line of Pacc at the moment the signal is emitted, the components of uin

are U ′μ = (1,−Ve)/
√
1− V 2

e . The components of k are k′μ = ωe
acc(1,−1). Therefore,

−(k · uin) ≡ ωr
in = ηijk

′iU ′j
in = ωe

acc
1− Ve√
1− V 2

e

= ωe
acc

√
1− Ve

1 + Ve
, (4.9)

also in agreement with (4.6).

Finally, to test the validity of (4.6)–(4.9), let us do an exact calculation of the time
interval Δτ rin separating the reception (by Pin at rest at X = 1/g) of light signals emitted
by a uniformly accelerated particle Pacc at its proper time interval Δτ eacc, without assuming
that gΔτeacc � 1.
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The world line of Pacc is given in (4.5) and Δτeacc = τe2 − τe1 , where τe1 and τe2 are
the proper times of Pacc when the first and second light signals are emitted. The world line
of the first photon moving toward Pin is T = −X+Xe1 +Te1 = −X+exp(gτe1)/g. It reaches
the world line of Pin at gTr1 = −1+exp(gτe1). We then have gΔTr = exp(gτe2)−exp(gτe1) =
exp(gτe1)[exp(gΔτeacc)− 1]. Since Pin is at rest in S, its proper time τin is identified with the
time T , the time of clocks at rest in S, and we have Δτ rin = ΔTr. Finally, recalling that the
3-velocity of Pacc is V = tanh gτ , we find that, for any time lapse between the emission of
the two signals by Pacc,

gΔτ rin =

√
1 + Ve1

1− Ve1

[exp(gΔτeacc)− 1] =

√
1 + Ve2

1− Ve2

[1− exp(−gΔτeacc)] , (4.10)

which indeed reduces to (4.6) when gΔτeacc � 1.
A calculation just like the preceding one gives the exact formula for the time interval

Δτ racc separating the reception by Pacc of light signals emitted by the particle at rest Pin as
a function of the interval Δτein:

gΔτ racc = −ln

(

1− gΔτein

√
1 + Vr1

1− Vr1

)

= ln

(

1 + gΔτein

√
1 + Vr2

1− Vr2

)

, (4.11)

which reduces to (4.7) if gΔτ racc � 1.
We see from this expression that for a finite emission period Δτein, the period measured by

the accelerated detector Pacc does tend to infinity when Vr2 → 1, that is, when it moves away
from the emitter with a speed approaching the speed of light, in agreement with (4.7). But
(4.7) gives an incorrect result for the manner in which this period tends to infinity, because
from the exact expression (4.11) we have

gΔτ racc ∼ −1

2
ln(1− Vr2). (4.12)

However, it should be borne in mind that these results hold only if the particle Pacc is
accelerated forever!3

3These results are less academic in general relativity, when the horizon is that of a black hole; see, for
example, Misner et al. (1973) and Book 3, Section 6.4.



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 213 — #225

5

Accelerated frames

Labeling the points of Minkowski spacetime using curvilinear coordinates rather than Minkowski
coordinates is mathematically just as simple as in Euclidean space. However, the interpretation of
such a change of coordinates as passage from an inertial frame to an accelerated frame is more subtle.
Here we study some examples and show how, within the framework of special relativity, Newtonian
inertial accelerations turn into mere geometrical quantities.

5.1 Local frames and Fermi coordinates

Review of Newtonian spacetime

In Newtonian mechanics it is natural to consider four types of change of coordinates or
reference frame:

(1) A change of Cartesian frame (rotation of the three axes and translation of the origin),
which leaves velocity and acceleration vectors unchanged;

(2) Passage from one inertial frame to another by means of the Galilean group (uniform
translation of the origin and the three spatial axes), which modifies the velocity but leaves the
acceleration and the law of Newtonian dynamics unchanged;

(3) Passage to an accelerated frame by means of the larger group of rigid displacements (any
rotation of the three axes and translation of the origin), which introduces inertial accelerations
into the law of dynamics;

(4) Passage to curvilinear coordinates in a given Cartesian frame, which leads to writing the
law of dynamics in terms of the covariant derivative.

This relatively complicated situation is due to the structure of Newtonian spacetime: the
coordinate transformations (1) and (4) operate in the Euclidean space E3, while the operations
(2) and (3) define families of frames, one for each leaf of N4 = E3 × R (see Book 1, Part I for
more details).

In pseudo-Euclidean Minkowski spacetime M4, the (linear) Poincaré transformations (which
leave the 4-acceleration and the 4-velocity invariant) unify the change of Cartesian frame (1)
and the passage from one inertial frame to another (2). The set of formulas characterizing
these transformations is (see Section 1.3)

X ′ν = Λ ν
μ (Xμ − dμ); eμ = Λ ν

μ e′ν , ε′ν = Λ ν
μ εμ, (5.1)

where dμ is a constant vector and the Lorentz matrices Λ ν
μ , with constant coefficients, sat-

isfy Λ μ
ρ Λ ν

σ ημν = ηρσ. The vectors and forms eμ and εμ form the bases associated with the
Minkowski coordinates Xμ of the vector space underlying M4 and its dual. These transfor-
mations cannot be used to go from an inertial frame to an ‘accelerated frame’.

One way of going to an accelerated frame is to use the concept of tangent inertial frame
introduced in Section 2.2. Let us consider an accelerated particle Pacc (see Fig. 5.1) whose

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.
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position vector in S is OO′ ≡ d(τ) = dμ(τ)eμ. If τ is its proper time, its 4-velocity u ≡ ḋ =
Uμeμ is constrained by (u · u) ≡ ημνU

μUν = −1. At the point O′ defined by τ we consider
an inertial frame which is tangent to the world line at this point. It is obtained by a Poincaré
transformation

X ′ν = Λ ν
μ (τ) (Xμ − dμ(τ)); eμ = Λ ν

μ (τ) e′ν , ε′ν = Λ ν
μ (τ) εμ (5.2)

such that e′0 = u(τ), which fixes four components of the inverse matrix as a function of the
three independent components of the 4-velocity as Λμ

0 = Uμ(τ). The three vectors of the
spatial basis e′i are determined by choosing the three parameters defining spatial rotations,
for example, the Euler angles (so that the Lorentz matrix Λ ν

μ is determined by a set of six
parameters, as required). Since the 4-acceleration γ = u̇ is orthogonal to u we can choose
e′1 = γ/

√
(γ · γ).

X1

T

u

p

d

O ′

O e1

Pacc

e0

I

II

III

IV

Fig. 5.1 Tangent inertial frame and Fermi coordinates.

Now we consider an arbitrary point p. Its radius vector can be decomposed as Op =
OO′ + O′p or Xμeμ = dμeμ + X ′μe′μ. If p is not too far from the world line of Pacc, there
will exist one and only one instant τ for which O′p is orthogonal to u and for which we have
Xμeμ = dμeμ +X ′ie′i , i = (1, 2, 3). The event p can thus be defined either by its Minkowski
coordinates Xμ, or by specifying τ and X ′i. We shall denote these four coordinates, called
Fermi coordinates, as xμ: x0 ≡ τ, xi ≡ X ′i. They are related to the Xμ as

Xμ = dμ(x0) + Λμ
i(x

0)xi. (5.3)

The coordinates xμ therefore represent the position of a point of Minkowski spacetime in a
local frame whose origin is attached to a particular world line and whose basis vectors vary
from point to point. This frame is the relativistic analog of a frame from the group of rigid
displacements of Newtonian physics. An important point is that the relations Xμ = Xμ(xν)
are not linear and, as we shall see explicitly from some examples, the components of the
metric in the coordinates xμ are �μν �= ημν .
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The Minkowski metric in Fermi coordinates

We assume for simplicity that the accelerated motion of the point O′ in the inertial frame
(T, Z) is vertical, dμ(τ) = (d0(τ), dZ(τ)), where τ is the proper time. It is easy to show that the

basis vectors of the Fermi frame attached to O′ are e′0 = ḋ and e′Z = −d̈/
√

d̈ · d̈ (for d̈Z < 0).
Let us consider a point p. Using the relation Op = OO′ + O′p (that is, Te0 + ZeZ =

d0e0 + dZeZ + T ′e′0 + Z′e′Z) and choosing O′ such that T ′ = 0, it can then be shown that the
transformation from Minkowski coordinates (T, Z) to Fermi coordinates τ ≡ t and Z′ ≡ z is

given by [using the fact that (ḋ · ḋ) = −1]

T = d0(t) + z ḋZ , Z = dZ(t) + z

√

1 + (ḋZ)2. (5.4)

Finally, it can then be shown that the length element of the Minkowski metric is given by

ds2 = −dT 2 + dZ2 = −

⎛

⎝1 +
z d̈Z

√

1 + (ḋZ)2

⎞

⎠

2

dt2 + dz2. (5.5)

5.2 The example of Rindler coordinates

Let us consider a uniformly accelerated particle Pacc in an inertial frame S, that is, in a
system of Minkowski coordinates Xμ = (T,Z) where the length element is given by ds2 =
−dT 2 + dZ2.

The world line of this particle dμ(τ) = (d0(τ), dZ(τ)) is the Z > 0 branch of the hyperbola
Z2 −T 2 = 1/g2, where g is its acceleration. We can write this in parametric form with τ the
proper time of Pacc (see Sections 2.1 and 4.3):

d0(τ) =
1

g
sinh gτ, dZ(τ) =

1

g
cosh gτ

=⇒ Uμ ≡ ḋμ = (cosh gτ, sinh gτ), γμ ≡ d̈μ = g(sinh gτ , cosh gτ).

(5.6)

Let us construct the inertial frames Sg tangent to the world line of Pacc; see Fig. 5.1. The
basis vectors (e′0, e

′
Z) of these frames Sg are derived from the basis vectors (e0, eZ) of S by

Lorentz transformations such that the e′0 are at each instant τ parallel to the 4-velocity u of
Pacc. The e′Z are orthogonal to the e′0, and so [cf. (5.6)]

e′0 = e0 cosh gτ + eZ sinh gτ = u, e′Z = e0 sinh gτ + eZ cosh gτ =
γ

g
. (5.7)

The coordinate transformations (T,Z) �→ (T ′, Z ′) are obtained using the identity T ′e′0 +
Z ′e′Z = d+ Te0 + ZeZ and written as

T ′ = T cosh gτ − Z sinh gτ, Z ′ = −T sinh gτ + Z cosh gτ − 1

g
. (5.8)

Now let us consider a point p constrained to lie in quadrant I of Minkowski spacetime (Z > 0,
−Z < T < Z; see Fig. 5.1). The Fermi coordinates (t ≡ τ , z ≡ Z) of p associated with the
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world line of Pacc satisfy, by definition, T ′ = T cosh gt − Z sinh gt = 0, z = −T sinh gt +
Z cosh gt− 1/g, or

gT = (1 + gz) sinh gt, gZ = (1 + gz) cosh gt

gz = −1 + g
√
Z2 − T 2, gt = argth (T/Z).

(5.9)

The transformation (T,Z) → (t, z), a special case of (5.3) and (5.4), is not linear.
Now that we have completed this construction, we can forget about the scaffolding and

treat (5.9) as defining the passage (in quadrant I) from Minkowski coordinates (T,X) to the
curvilinear (or Gaussian) coordinates (t, x), known as Rindler coordinates.1

Review of curvilinear coordinates

Going beyond the framework of linear transformations involves introducing local bases of

the vector space tangent to each point p of M4:
∂
∂xμ =

(
∂Xν

∂xμ

)
∂
∂Xν and the associated bases

of the cotangent dual space: dxμ = (∂xμ/∂Xν)dXν . These expressions are the exact analog
in the spacetime M4 of the expressions which define coordinate transformations in E3; see
Book 1, Chapters 3 and 4. The transformation laws for the components of vectors, forms, and
tensors follow. For example (see Book 1, Sections 3.1 and 3.2), a vector v will be written as
v = V μeμ ≡ V μ ∂

∂Xμ in Minkowski coordinates Xμ and v = vμ ∂
∂xμ in the coordinates xμ with

vμ =
∂xμ

∂Xν
V ν . (5.10)

Similarly, the length element and the Minkowski metric are given in the new coordinate system by

ds2 = �μν dx
μdxν , � = �μν dx

μ ⊗ dxν , (5.11)

where the components of the metric tensor �μν and its inverse �μρ satisfying �μν �
μρ = δρν are

related to the components ημν of the Minkowski metric in Minkowski coordinates as

�μν = ηρσ
∂Xρ

∂xμ

∂Xσ

∂xν
, �μρ = ηλσ ∂xμ

∂Xλ

∂xρ

∂Xσ
. (5.12)

In the particular case considered here of the transformation (5.9), the vectors of the
natural basis of the tangent space at a point p are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂

∂t
=

∂T

∂t

∂

∂T
+

∂Z

∂t

∂

∂Z
= (1 + gz)

(
cosh gt

∂

∂T
+ sinh gt

∂

∂Z

)

= (1 + gz)(e0 cosh gt+ eZ sinh gt)

∂

∂z
=

∂Z

∂z

∂

∂Z
+
∂T

∂z

∂

∂T
=cosh gt

∂

∂Z
+sinh gt

∂

∂T
=e0 sinh gt+eZ cosh gt.

(5.13)

We can also introduce the non-holonomic basis (hz, ht) (that is, not associated with a coor-
dinate system; see Book 1, Section 4.3) and the associated frame field (θz, θt):

1These were introduced by A. Einstein and N. Rosen in 1935 but popularized by W. Rindler in 1956; see
Rindler (1991).
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hz =
∂

∂z
, ht =

1

1 + gz

∂

∂t
, θz = dz, θt = (1 + gz)dt. (5.14)

In this new system the Minkowski length element is written as [see also (5.5)]

ds2=−dT 2 + dZ2=−
(
∂T

∂t
dt+

∂T

∂z
dz

)2

+

(
∂Z

∂t
dt+

∂Z

∂z
dz

)2

=−(1+gz)2dt2+dz2, (5.15)

and the Minkowski metric (5.11) becomes

� = −dT 2 + dZ2 = −(1 + gz)2dt2 + dz2 = −(θt)2 + (θz)2. (5.16)

The local frames (θt, θz) attached to z = 0 (the world line of Pacc) are just the tangent
inertial frames (e′0, e

′
Z) introduced in (5.7) with2 t = τ .

Z

T

eZ

e0

I

II

IV

z =
co

n
st

t = const

θ0

θz

Fig. 5.2 Rindler coordinates.

Each line of coordinate z = const is a hyperbola of M4 and represents the world line of
a particle of constant 4-acceleration g/(1 + gz). Each line t = const is a space-like straight
line stemming from the origin; see Fig. 5.2.

The Rindler coordinates are manifestly not derived from the Minkowski coordinates (T,Z)
by a Lorentz transformation. Instead we see a resemblance to the passage from Cartesian
coordinates (u, v) to polar coordinates (r, φ : u = r cosφ, v = r sinφ) in Euclidean geometry:

dl2 = dv2 + du2 = r2dφ2 + dr2. (5.17)

The analogy becomes complete if we set 1 + gz = gr, gt = iφ; X = u, T = iv with i2 = −1.

2By analogy with the identification made in Newtonian physics, see Book 1, Section 4.3, the tetrad is
often referred to as a moving frame, which gives rise to colorful expressions found in the literature such as
‘the tetrad carried by a uniformly accelerated observer’ in Misner et al. (1973), p. 169.
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However, we note that while the polar coordinates (r, φ) cover the entire Euclidean plane
(u, v), this is not the case with the Rindler coordinates (t, z), which cover only quadrant I
of the Minkowski plane (T,Z). Going in the reverse direction from the Rindler coordinates
(t, z) to the coordinates (T,Z) by the transformation (5.9) and then extending the domain
of variation of (T,Z) to the entire Minkowski plane is an example of a maximal analytic
extension of a spacetime.

The equation for the world line of a free particle undergoing uniform translation in the
inertial frame S, Z = V T + Z0, becomes the following in a uniformly accelerated frame
[cf. (5.9)]:

g

1 + gz
=

cosh gt− V sinh gt

Z0
. (5.18)

Therefore, the equation for the world line of the particle Pin at rest at Z0 = 1/g in S becomes
1+gz = 1/ cosh gt in Rindler coordinates. However, since gT = tanh gt, this curve represents
the world line of Pin in the interval −1/g < T < 1/g only; see Fig. 5.3.

In addition, a light corpuscle emitted from Pacc at Z = 0 and time te is represented by
a world line of zero length [(1 + gz)dt = −dz] and intersects the world line of Pin at z = zr,
t = tr given by

exp(−2gtr) = 2 exp(−gte)− 1, 1 + gzr = exp(gte)
√
2 exp(−gte)− 1. (5.19)

Armed with these results, it is a simple exercise to redo the calculations of the spectral
shifts and lifetime in Sections 2.3 and 4.3, this time in the Rindler frame.

The Rindler frame and spectral shifts

As an example, let us redo the calculation of Section 2.3 of the duration of the round-trip of
the uniformly accelerated ‘twin’ Pacc in the Rindler frame where the twin is at rest. The twin
world line is z = 0 and the proper time is [cf. (5.15)] τacc ≡ t. The world line of the inertial twin
Pin is given by (5.18) with V = 0, B = Zin or 1+gz = gZin/ cosh gt. The proper time is obtained
by evaluating the length element (5.15) on the world line, which gives dτin = gZindt/ cosh

2 t or
τin = Zin tanh gt. The world lines intersect at ±t0 so that gZin = cosh gt0. The duration of the
round-trip of the accelerated twin Pacc is Δτacc = 2t0. For Pin it is Δτin = 2Zin tanh gt0 =
2 sinh gt0/g. We then recover the result (2.13): gΔτacc = ArgSinh(Δτin/2).

As a second example, let us consider two uniformly accelerated particles Pe and Pr, at rest
at ze and zr in the Rindler frame (see Fig. 5.3). Pe sends to Pr a light signal of duration Δτe.
The coordinate time interval which corresponds to this proper time interval can be read off from
(5.15): Δt = Δτe/(1 + gze). Since Pr is at rest and the metric coefficients do not depend on t,
the coordinate duration of the signal at its arrival at Pr will also be Δt, but the proper time
interval Δτr that Pr observes will be given by Δτr = Δt(1 + gzr) or

Δτr = Δτe
1 + gzr
1 + gze

. (5.20)

Since (1 + gz) is the (00) component of the Minkowski metric in Rindler coordinates, we can
rewrite (5.20) in a more general form which gives the frequency shift when the emitter and
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receiver are at rest in the coordinate system (x0, xi) and the components of the Minkowski
metric �μν are independent of x0:

νrec =

√

�00(em)

�00(rec)
νem. (5.21)

Now if we introduce the accelerations (in S) ge and gr of Pe and Pr, such that ze = 1/ge − 1/g
and zr = 1/gr − 1/g, (5.20) becomes the following with zr = ze + h (or h = 1/gr − 1/ge):

Δτr = Δτe(1 + geh). (5.22)

z

T

Δτrec

Δτe
z

Δτe

Δτr

ze

PemPem
PrecPrec

zr

t

Pacc
Pin

t

z

Fig. 5.3 Spectral shifts in inertial and Rindler frames.

Of course, the same problem can be studied using the Minkowski coordinates (T, Z) instead
of the Rindler ones. Then the equations for the world lines of Pe and Pr respectively at Ze = 1/ge
and Zr = 1/gr at T = 0 are

dμe =

(
1

ge
sinh geτ,

1

ge
cosh geτ

)

, dμr =

(
1

gr
sinh grτ,

1

gr
cosh grτ

)

(with ge > gr). Here Pe sends light signals at its proper time interval Δτe = τe2 −τe1 . The signals
are received by Pr at its proper time interval Δτr = τr2 − τr1 . The world line of the first signal
is T = Z −Ze1 + Te1 . Therefore, ge exp(−grτr1) = gr exp(−geτe1), so that Δτr = (ge/gr)Δτe. As
a consequence, the proper time interval Δτr separating the reception by Pr of the two signals
emitted by Pe at its proper time interval Δτe is indeed given by (5.20) if we set h = 1/gr − 1/ge.

5.3 Rotating reference frames and the geometrization of inertia

We consider an inertial frame S with its Minkowski coordinates Xμ = (T,X, Y, Z) satisfying
ds2 = −dT 2+dX2+dY 2+dZ2 and make a change of coordinate Xμ = (T,X, Y, Z) �→ xμ =
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(t, r, ψ, z) to pass to a frame rotating about the Z axis:

T = t, X = r cos(ψ + f(t)), Y = r sin(ψ + f(t)), Z = z. (5.23)

In this new system the Minkowski length element is written as [see (5.11) and (5.12)]

ds2 = −(1− r2Ω2)dt2 + 2r2Ω dt dψ + dr2 + r2 dψ2 + dz2, (5.24)

where Ω ≡ df/dt is the angular speed of rotation of the frame.

The Sagnac effect (II)

Let us redo the calculation of the Sagnac delay in Section 3.2, now using the curvilinear
coordinates (5.23).

Let a particle Pacc be constrained to follow circular motion of radius r0 and constant fre-
quency Ω in S. The equation of its world line is xμ = (t, r0, 0, 0). The expression for its proper

time as a function of the coordinate time T = t can be read off from (5.24): τP =
√

1− r20Ω
2 t.

Now we consider two light corpuscles P±, one prograde and the other retrograde, con-
strained to follow world lines given by xμ = (t, r0, ω±t, 0), where ω± are (respectively posi-
tive and negative) constants. The coordinate times t± taken by these two light corpuscles to
make a complete circuit (which are also the times measured by clocks at rest in the frame
S) are T± = t± = ±2π/ω±. Their difference measured at the proper time of Pacc is ΔτP =

2π
√

1− r20Ω
2 (ω+ + ω−)/(ω+ω−).

The tangent vectors kμ = k0(1, 0, ω±, 0) must be null vectors: lμνk
μkν = 0 or l00 +2l0ψω± +

lψψω
2
± = 0, from which we can extract [see (5.24)]

ω++ω−
ω+ω−

=
2r20

1−Ω2r20
. We therefore recover the

equations for the Sagnac delay (3.7): ΔT = 4πr20Ω/(1− r20Ω
2) and ΔτP = 4πr20/

√
1− r20Ω

2.

A uniformly rotating disk

Defining the spatial distance dl between two points P and P + dP respectively located at
(r, ψ, z) and (r + dr, ψ + dψ, z) as half the proper time measured by P for the light to make a
round-trip from P to P + dP , we have

dl2 =
r2dψ2

1− Ω2r2
+ dr2. (5.25)

Indeed, the light follows world lines of zero length for which ds2 = 0, and so [cf. (5.24)]

dt = (Ωr2dψ ±
√

r2dψ2 + (1− Ω2r2)dr2)/(1− Ω2r2).

The duration of a round-trip then is 2
√

r2dψ2 + (1− Ω2r2)dr2/(1−Ω2r2). Now, the proper time

τ of P is related to the coordinate t as dτ =
√
1− Ω2r2dt, from which we find (5.25).

Therefore, the circumference C of a circle centered at the origin as a function of its radius r
is given by

C =

∫ 2π

0

r dψ√
1− Ω2r2

=
2πr√

1− Ω2r2
.

We also see from the expression for the metric (5.24) that a particle at r = r0 cannot be at rest
in the rotating frame if r0 > 1/Ω and must necessarily have an angular velocity dψ/dt ≡ ω < 0.
This ‘dragging’ phenomenon is easily explained. In the inertial frame the linear speed of the
particle is r0(Ω + ω), which must remain smaller than the speed of light.
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Now that we have introduced the idea of an accelerated reference frame in special relativity
and given some examples, we can define the concept of inertial acceleration and show that
it is ‘encoded’ in special relativity in the covariant derivative.

Review of covariant differentiation

In general, the equation of the world line of a point particle is given by Xμ = Xμ(τ) in
Minkowski coordinates Xμ and by xμ = xμ(τ) ≡ xμ(Xν(τ)) in a coordinate system xμ =
xμ(Xν). The components of its 4-velocity and its derivative in the coordinates xμ then are

⎧
⎪⎪⎨

⎪⎪⎩

uμ ≡ dxμ

dτ
=

∂xμ

∂Xν
Uν

duμ

dτ
=

∂xμ

∂Xν
γν +

∂2xμ

∂Xν∂Xρ
UνUρ,

where Uν ≡ dXμ/dτ and γμ ≡ dUμ/dτ are the components of the 4-velocity and acceleration in
the Minkowski coordinatesXμ. These expressions are identical to those giving the transformation
of the Newtonian velocity and its derivative under a general coordinate transformation (see
Book 1, Chapter 4), and show that the components (∂xμ/∂Xν) γν of the acceleration in the
coordinates xμ are not the ordinary time derivatives of uμ, but rather their covariant derivatives:
D̃uμ/dτ ≡ duμ/dτ − (∂2xμ/∂Xν∂Xρ)UνUρ, which can also be written as (Book 1, Section 3.5)

D̃uμ

dτ
≡ uνD̃νu

μ = uν
(
∂νu

μ + Γ̃μ
νρu

ρ
)
=

duμ

dτ
+ Γ̃μ

νρu
νuρ with Γ̃μ

νρ ≡ ∂2Xσ

∂xν∂xρ

∂xμ

∂Xσ
. (5.26)

It can further be shown that the connection coefficients or Christoffel symbols Γ̃μ
νρ can be written

as a function of the components �μν = ηρσ
∂Xρ

∂xμ
∂Xσ

∂xν of the Minkowski metric in the coordinates
xμ as

Γ̃μ
νρ =

1

2
�μσ

(
∂�ρσ
∂xν

+
∂�σν

∂xρ
− ∂�νρ

∂xσ

)

. (5.27)

We also recall that the covariant derivative of a 1-form of components jμ is given by (Book 1,
Section 3.2 et seq.)

D̃ρjμ = ∂ρjμ − Γ̃σ
ρμ jσ, (5.28)

and the covariant derivative of the Minkowski metric is zero:

D̃μ�νρ ≡ ∂μ�νρ − Γ̃σ
μν�σρ − Γ̃σ

μρ�νσ = 0. (5.29)

Let us consider a free particle. Its motion is uniform and rectilinear, that is, the compo-
nents Uμ of its 4-velocity u in a system of Minkowski coordinates are constant, and those
of its 4-acceleration are zero: γμ ≡ dUμ/dτ = 0. Its world line is a straight line of M4. In
a general coordinate system xμ the components uμ of the 4-velocity are no longer constant,
but those of its covariant derivative (5.26) are zero because γμ = 0. Therefore, the equation
of motion of a free particle in the coordinates xμ is

D̃uμ

dτ
≡ duμ

dτ
+ Γ̃μ

νρu
νuρ = 0. (5.30)
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This is the equation of a line in M4 in Gaussian coordinates, and it is also the equation
which extremizes the path between two events, and so it is called the geodesic equation. It
generalizes (2.11).

Let us imagine, for example, that we are in a rotating frame where the Minkowski length
element is given by (5.24). Now we make a new coordinate transformation xμ = (t, r, ψ, z) �→
x′μ = (t, x, y, z) so that

t = T, x = r cosψ, y = r sinψ, z = Z. (5.31)

In this coordinate system the Minkowski length element is written as

ds2 = −
(
1− Ω2(x2 + y2)

)
dt2 + 2Ω dt(xdy − ydx) + dx2 + dy2 + dz2. (5.32)

An easy calculation gives the Christoffel symbols from the general expressions (5.26) or (5.27)
(without assuming that Ω is constant):

Γ̃x
tt = −Ω2x− dΩ

dt
y, Γ̃y

tx = −Γ̃x
ty = Ω, Γ̃y

tt = −Ω2y +
dΩ

dt
x (5.33)

(the others are obtained by symmetry or else are zero), so that the equation of motion of a
free particle (5.30) becomes

d2x

dt2
= +2Ω

dy

dt
+Ω2x+

dΩ

dt
y,

d2y

dt2
= −2Ω

dx

dt
+Ω2y − dΩ

dt
x. (5.34)

This can be rewritten in three-dimensional form as

a = −2Ω ∧ v +Ω ∧ (R ∧ Ω)− dΩ

dt
∧R, (5.35)

where we have introduced the quantities R ≡ (x, y, 0), v ≡ dR/dt, and a ≡ dv/dt, and Ω is
a 3-vector parallel to eZ . We recognize (5.35) as the expression for the Newtonian inertial
acceleration, where t = T is the time measured by clocks which are at rest in the inertial
frame S; cf. Book 1, Section 2.5.

The Christoffel symbols therefore simultaneously encode the chosen spatial coordinate
system [here a Cartesian one because at t = const the length element (5.32) reduces to
dx2+dy2+dz2] and the inertial accelerations arising from the fact that the axes (x, y, z) are
rotating relative to the axes (X,Y, Z). Minkowski spacetime thus offers the geometrization
of inertial forces as a sort of bonus. (In Section 10.4 we shall see that this geometrization of
inertial forces also makes it possible to imagine a geometrization of the force of gravitation.)

Inversely, we can ask the question: if the components �μν(x
ρ) of the Minkowski metric are

given in a system of curvilinear coordinates xμ, how can we return to an inertial frame and its
associated Minkowski coordinates Xμ, thereby getting rid of the inertial accelerations? The
answer is simple in principle: the Christoffel symbols Γ̃μ

νρ are known as a function of �μν(x
ρ)

and its inverse matrix from (5.27): Γ̃μ
νρ = 1

2�
μσ(∂ν�ρσ + ∂ρ�σν − ∂σ�ρν). On the other hand,

they are related to the Minkowski coordinates Xμ by (5.26), which can also be written as

∂2Xσ

∂xμ∂xν
= Γ̃ρ

μν

∂Xσ

∂xρ
. (5.36)

Once these linear equations for Xσ(xν) have been solved, we need only to choose the integra-
tion constants, which is done by imposing the condition ηρσ

∂Xρ

∂xμ
∂Xσ

∂xν = �μν . We will be left
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with 10 of them, the parameters of the Poincaré group whose choice determines a particular
inertial frame.

We conclude by noting that, in order to view the 10 functions �μν(x
ρ) as components

of the Minkowski metric, these functions cannot be completely arbitrary—they have to be
expressible in terms of four independent functions Xμ(xν) as �μν = ηρσ

∂Xρ

∂xμ
∂Xσ

∂xν . If this is
not the case, these 10 functions will still characterize a metric, but it will be a metric of a
spacetime which is richer than Minkowski spacetime, that is, a curved spacetime.

5.4 The abandonment of accelerated reference solids

We are now left with the problem of understanding what the curvilinear coordinates xμ

actually represent, or, equivalently, the question of how to realize them by a reference frame
in actual, ‘relative, apparent, and common’ physical space.

This does not pose a conceptual problem in Newtonian physics, where accelerated refer-
ence frames are obtained by rigid displacement, so that they can be realized by accelerating a
reference solid in which, by construction, the distance between any two points remains fixed
and the three axes remain orthonormal over time.

In special relativity the Minkowski coordinate T = X0 represents the time of a clock
which is at rest in the inertial frame S under consideration. On the other hand, the coordinate
t = x0 does not in general represent the time of a clock at rest at xi = const, because we
have postulated that it is the proper time which plays this role. This proper time is given
by τ =

∫ √
1− V 2 dT , where V is the 3-velocity of the clock relative to the inertial frame.

Measured in terms of the coordinates xμ, it is obtained from the length element by setting
dxi = (dxi/dt)dt, which leads to

τ =

∫ √
−ds2 =

∫ √

−�μν
dxμ

dt

dxν

dt
dt =

∫ √
−�00(t, xi) dt, (5.37)

because the 3-velocity dxi/dt of the clock vanishes.
What about the spatial coordinates xi? Can they represent a three-dimensional Cartesian

reference solid? In general, the answer is no.3

The ‘rigidity’ of the Rindler frame

Let us consider, in an inertial frame S with Minkowski coordinates (T,X) (we restrict our-
selves to a single spatial dimension), two adjacent lines with spatial coordinates x(T,X) = x0

and x(T,X) = x0 + Δx. In S they have a velocity V ≡ dX/dT given by dx/dT = ∂x/∂T +
(∂x/∂X)V = 0. In addition, ΔX is their proper distance measured in S, that is, at constant T .
In the inertial frame Sg moving at speed V relative to S where they are momentarily at rest,

their proper distance then is ΔXg = ΔX/
√
1− V 2 (length contraction). A solid can therefore

be defined by requiring that ΔXg be equal to Δx, the distance between the coordinate lines of
the accelerated frame.

The Rindler coordinates satisfy this criterion. The world lines of two adjacent lines are
given by g2(X2 − T 2) = (1 + gx0)

2 and g2(X2 − T 2) = [1 + g(x0 + Δx)]2. Their speed in S
is V = dX/dT = T/X. Their proper distance ΔX measured in S, that is, at constant T , is

3Pauli (1921) gives a clear discussion of the concept of rigid motion introduced by M. Born, as well as its
limitations.
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given by gXΔX = (1 + gx0)Δx. In the inertial frame tangent to their world line it is (length

contraction) ΔXg = ΔX/
√
1− V 2. From this we obtain

ΔXg =
ΔX√
1− V 2

=
(1 + gx0)Δx

gX

1
√

1− T 2/X2
=

(1 + gx0)Δx

g
√
X2 − T 2

= Δx.

In this precise sense the coordinate line x = const can be considered to be a ‘rigid axis’ and
we can imagine a Rindler frame realized by a solid accelerated along the X axis of the inertial
frame S. This feature is peculiar to the Rindler frame. In the general case, it is necessary to
abandon the idea of a ‘rigid’ frame and a reference ‘solid’ unless they are inertial.

Since the concept of accelerated reference solid is rather subtle in the theory of relativity,
we are led to allow any coordinate system xμ to be associated with a physical reference
frame, with the ‘non-rigid’ coordinates xi labeling the position of its points at coordinate
time t = x0, whose physical interpretation in terms of the proper time measured by a clock
has to be specified case by case. Within this larger framework we therefore abandon the
concepts of rigid frame and rigid solid introduced in Newtonian physics.
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Dynamics

E = mc2

Albert Einstein,
Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?

[Does the inertia of a body depend upon its energy content?]
Annalen der Physik, 18, 639–643 (1905)
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6

Dynamics of a point particle

In this chapter, after attributing an inertial ‘mass–energy’ to particles and distinguishing between
the action of an external field and of long-range and short-range internal forces, we present the
4-momentum conservation law for massive particles and light particles in inertial reference frames
and give some examples which illustrate the role played by this law in collisions.

6.1 Free particles

In Section 1.2 we stated that an inertial reference frame is a frame in which a ‘free’ massive
object, that is, an object which appears not to be subject to any force and does not interact
with anything, undergoes uniform rectilinear motion. Thus, the laboratory walls and their
clocks can in some cases serve as an inertial reference frame. In other cases it is necessary to
use a system attached to the center of the Earth, or to the center of the solar system, and
so on.

These rules for constructing an inertial reference frame have allowed us to establish a cor-
respondence between Minkowski frames (mathematical objects) and inertial reference frames
(physical objects).

We have thus been able to illustrate certain properties of relativistic kinematics (for
example, time dilation, the velocity composition law, the Sagnac effect) by experiments (the
muon lifetime and the experiments of Fizeau and Sagnac).

The first law of relativistic dynamics is the translation into mathematics of this physical
concept of a free particle which we have already used; the equation of motion of a free particle
is that of a time-like straight line of M4. In an inertial reference frame it is trivially

d2Xμ

dτ2
= 0 ⇐⇒ dUμ

dτ
= 0, (6.1)

where Uμ ≡ dXμ/dτ is the particle 4-velocity normalized to unity, ημνU
μUν = −1, so that

τ measures its proper time. In coordinates xμ = xμ(Xν) it is written as (see Section 5.3)

D̃uμ

dτ
≡ duμ

dτ
+ Γ̃μ

νρu
νuρ = 0 with Γ̃μ

νρ ≡ 1

2
�μσ(∂ν�ρσ + ∂ρ�σν − ∂σ�νρ), (6.2)

where uμ ≡ dxμ/dτ are the components of the 4-velocity in the new coordinates and D̃uμ/dτ
is its covariant derivative, with the Christoffel symbols Γ̃μ

νρ simultaneously describing the
chosen system of spatial coordinates (for example, spherical coordinates) and the frame
acceleration (for example, a frame undergoing uniform rotation).

As we have seen in Sections 2.2 and 5.3, eqns (6.1) and (6.2) for straight lines of M4

are also the geodesic equations which extremize the proper time taken to travel between two
points.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.
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A free particle in the Rindler frame

In the Rindler coordinates (t, x) the Minkowski metric is written as [cf. (5.16)] ds2 = −(1 +

gx)2dt2+dx2, where g is a constant. The nonzero Christoffel symbols (6.2) are Γ̃t
tx = g/(1 + gx)

and Γ̃x
tt = g(1 + gx). The geodesic equation then becomes

d2t

dτ2
+

2g

1 + gx

dt

dτ

dx

dτ
= 0 ,

d2x

dτ2
+ g(1 + gx)

(
dt

dτ

)2

= 0 .

The first equation can be integrated to give (1 + gx)2dt/dτ = E, where E is a constant, and

the second becomes d2x/dτ2 + gE2/(1 + gx)3 = 0, which we integrate to obtain (dx/dτ)2 −
E2/(1 + gx)2 = C with C = −1 so that −(1 + gx)2 (dt/dτ)2 + (dx/dτ)2 = −1. Therefore,

dx/dt = (1 + gx)
√

1− (1 + gx)2/E2, which has the solution g/1+gx= (cosh gt−A sinh gt)/B

with E = gB/
√
1−A2. We thus recover (5.18) for a straight line in Rindler coordinates, that

is, the trajectory of a free particle.

6.2 Interactions

To establish the laws of dynamics of an interacting body, that is, the equations determining
its world line, it is useful to classify interactions as external fields on the one hand, and
long-range (infinite range) and short-range forces on the other.

If the presence of the body under study P , called the test body, only negligibly modifies
the motion of the bodies with which it interacts, the interaction is considered as an external
field. Then we postulate that the motion of P is given by the second law of relativistic
dynamics, which is written as follows1 in a Minkowski frame S:

mγ = F , or also m
d2Xμ

dτ2
= Fμ. (6.3)

The constant m is an attribute of P , its inertial mass, expressed, for example, in kilograms.
We assume that all massive objects have mass of the same sign, which we choose to be
positive. The vector γ = du/dτ is the 4-acceleration of P . The quantity F is called the
force 4-vector. It is a priori a functional of the world line of P , but we shall require that it
depend only on the position and at most the 4-velocity of P : F = F (p(τ), u(τ)). Therefore,
for given initial conditions, namely, the spatial location and 3-velocity of P in S at τ = τ0,
the integration of (6.3) for known F will determine Xμ(τ), that is, the world line of P . We
note that since γ is orthogonal to the 4-velocity u, (F · u) ≡ FμUμ must vanish, and so (6.3)
involves only three independent components.2

1The law (6.3), which generalizes Newton’s law, was proposed by M. Planck in 1906. Below we shall
discuss two examples of an external force: the force exerted by a scalar field on a mass (Section 10.1), and
the Lorentz force of an electromagnetic field on a charge (Section 11.3).

2The zeroth component of (6.3) is not independent because γ0 = γiVi ≡ γ .V ; cf. Section 2.1. It is written
as

1√
1− V 2

d

dT

m√
1− V 2

= F iVi =⇒ d

dT

(
1

2
mV 2

)
= F .V for |V | 	 1 .

In the nonrelativistic limit it therefore states that the change of the kinetic energy is equal to the work done
by the force.
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We note that the law (6.3) implies that we choose to represent the forces by vectors of
M4 and that they therefore must not depend on either the position or the orientation or the
uniform translational motion of the inertial reference frame in which they are studied. (We
recall that in Newtonian physics nothing requires a priori that the forces be represented by
the same vectors of E3 in different inertial reference frames. The fact that they are or are
not is imposed by experiment and not, as here, by the structure of the theory.)

Also, the law (6.3), which takes the same form in any inertial frame, states that it is
impossible to single out any particular frame. It is the specification of the initial conditions
of the motion in a particular frame which distinguishes that frame.

On the other hand, the equivalence class of inertial reference frames preserves its special
status, as it is only in those frames that the law (6.3) is invariant. In fact, in any coordinate
system the law (6.3) is written in terms of the covariant derivative D̃ as

mD̃u u = F ⇐⇒ m
D̃uμ

dτ
= fμ ⇐⇒ duμ

dτ
+ Γ̃μ

νρu
νuρ =

fμ

m
, (6.4)

where fμ = (∂xμ/∂Xν)F ν and uμ = (∂xμ/∂Xν)Uν are the components of F and the velocity
u in the coordinates xμ, while F ν and Uν are the components in the inertial reference frame
S. Choosing (6.4) rather than (6.3) as the law of dynamics means that we are ‘betting’ that
the forces are represented by the same vectors F in all frames, inertial or not. In the covariant
form (6.4) the law of dynamics, in contrast to (6.3), is then the same in all frames. As we have
seen in Section 5.3, the inertial accelerations due to the fact that the system xμ is accelerated
relative to the inertial reference frame S are encoded in the Christoffel symbols Γ̃μ

νρ.
Now let us turn to the case where the external field approximation is not valid, and

consider the dynamics of a body interacting via long-range forces, which curve the world
lines of all the bodies involved, even if they stay far apart (electromagnetism and gravitation
are two obvious examples of a long-range interaction).

Since we have excluded tachyons, so that any information must travel by signals whose
velocity does not exceed the speed of light, the force Fa(τ) exerted by Pa′ on Pa cannot
depend on events of the world line La′ of Pa′ occurring after the retarded position of P̂a′ ,
the intersection of the light cone originating from pa(τ) and La′ ; see Fig. 6.1a. As far as
the retarded point p̂a′ is concerned, it is itself influenced by the events of La before the
corresponding retarded position, the intersection of the cone originating from p̂a′ and from
La, and so on. The result of this ‘Jacob’s ladder’ is that the force Fa exerted by Pa′ on Pa

no longer reduces to a vector function of only the positions and velocities, but becomes a full
functional of the world lines of the interacting bodies, and it is not possible, except within
the framework of an iterative scheme, to reduce the law (6.3) to a second-order differential
equation.3

Conversely, a force is short-range if the bodies interact only when their straight world
lines intersect. The event point of the intersection is their collision point, and its past cone
includes all the world lines of the incoming particles, while its future cone includes those
of the outgoing particles. The tangents to the world lines are discontinuous at the collision
point (which is what signals that an interaction has taken place). The incoming and outgoing

3For explicit examples of such an iteration scheme, see Section 21.3 for the case of the electromagnetic
interaction and Section 10.4 for the scalar interaction.
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La

pa (τ)

T

X

(a)

Y

Fa

p̂a′ (τ ′)

La′
(b)

Fig. 6.1 Long- and short-range interactions.

particles are not necessarily of the same type, nor are the numbers of incoming and outgoing
world lines necessarily the same; see4 Fig. 6.1b.

In the rest of this chapter we shall focus on short-range interactions.

6.3 The momentum conservation law

Let τ �→ q(τ) be the world line L of a massive object Q with equation Xμ = Xμ(τ) in a
Minkowski frame S of coordinates Xμ. The vector u = dq/dτ , of components Uμ = dXμ/dτ ,
normalized as (u · u) ≡ ημνU

μUν = −1, is its 4-velocity and τ is its proper time.
The fundamental quantity describing the interaction of this object with other objects is

p = mu, whose components are Pμ = mUμ in the inertial reference frame S, (6.5)

where m is its inertial mass. Since the vector u is normalized to unity, we have

p2 = −m2. (6.6)

The components of p are written as [cf. Section 2.1]

P 0 ≡ E =
m√

1− V 2
, P i =

mV i

√
1− V 2

=⇒ P i = P 0V i, (6.7)

where V i ≡ dXi/dT is the 3-velocity of the object in S. In the lowest orders in V we have

P i = mV i +O(V 3), P 0 ≡ E = m+ 1
2mV 2 +O(V 4). (6.8)

Since mV i and 1
2mV 2 in Newtonian physics are the particle momentum and kinetic energy,

the vector p is called the 4-momentum of the particle, with P i its momentum and P 0−m its
kinetic energy (both relativistic). In the (locally) inertial reference frame where the particle

4Of course, the interactions cannot be strictly pointlike. For example, nuclear interactions have a range
L of order 10−5 m. In Sections 10.1 and 10.2 we shall see that if their strength decreases as e−r/L in one
frame, it decreases exponentially in any other inertial reference frame.



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 231 — #243

Chapter 6: Dynamics of a point particle 231

is at rest, the components of the momentum reduce to P 0 = m and P i = 0, so that the mass
m is also (in the units we have chosen) the rest energy, or self energy, of the particle.5

Now let us imagine a light line representing the motion of a light corpuscle.6 By extension
of (6.5) we can also associate with it a 4-momentum proportional to its wave 4-vector:

p = Ck such that p2 = 0, (6.9)

whose components are

P 0 ≡ E = Cω, P i = Cki with ω =
√
kiki =⇒ P i = P 0ci, (6.10)

where ω is the frequency of the associated wave (cf. Section 4.1) and ci has modulus 1. The
quantity P 0 ≡ E is the energy and P i is the momentum of a light corpuscle. The constant C,
which is expressed in kg-s and therefore has the dimension of an action, is the characteristic
of the light corpuscle (just as the mass m is the characteristic of a body moving at a speed
less than c).

If we wish to describe the momentum of a light corpuscle as the limit of that of a particle
whose speed tends to c, V i → ci [cf. (6.7)], we are led to assign a mass m = 0 to it in order
that the particle energy and momentum P 0 and P i remain finite in the passage to the limit.
Therefore, ‘photons’, that is, elementary light corpuscles, have zero mass. This says nothing
about the value of C, but it indicates that it must be the same for all photons.

Let us consider a collision. The total 4-momentum of the incident particles is the sum of
the individual momenta, and the total 4-momentum of the outgoing particles is defined in
the same way.

We postulate that these are equal:

pin ≡
∑

a

pina , pout ≡
∑

a

pouta , pin = pout. (6.11)

This is the law of momentum conservation (that is, of energy and 3-momentum conservation).
We recall that this law is valid only for short-range interactions. We also note that in

general it is not sufficient for determining the individual momenta of the outgoing particles
when those of the incoming particles are known. In order to do this it is necessary to specify
the nature of the short-range force giving rise to the interaction.7

5The expression P 0 = m, more commonly written as E = mc2, quoted at the beginning of Part II of
this book, is probably the most famous formula in physics. The mass–energy equivalence appeared explicitly
for the first time in the article Einstein (1905b), Ist die Trägheit eines Körpers von seinem Energieinhalt
abhängig? (Does the inertia of a body depend upon its energy content?), where Einstein wrote, “If a body
gives off the energy L in the form of radiation, its mass diminishes by L/c2” and “The mass of a body is a
measure of its energy-content; if the energy changes by L, the mass changes in the same sense by L/(9×1020),
the energy being measured in ergs, and the mass in grammes.”

6As already mentioned in Sections 4.1 and 4.2, and as we shall see in detail in Chapters 15 and 16, the
representation of an electromagnetic wave by a single light line is an idealization in the Maxwell theory
of light. However, it allows us to give a very simple explanation of, for example, the Compton effect; see
Section 6.5.

7The law (6.11) is due to G. N. Lewis and R. C. Tolman (1909).
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On the principle of action and reaction

We recall that in Newtonian physics the momentum conservation law of a system of parti-
cles follows from the principle of the equality of action and reaction (Newton’s third law) and
is valid at any time, including during the interaction; see Book 1, Section 7.1. This principle is
not applicable in special relativity owing to the fact that in the absence of a universal time it is
impossible to specify when this equality must hold.

For the same reason, to define the total momentum of a system in the case of long-range
interactions where the particle 4-velocities are not constant, it is necessary to specify the point
on the world lines at which the 4-velocities are evaluated. The simplest approach is to evaluate
them at the time T of a given inertial reference frame. Then the 4-momentum of a system of
particles depends on the chosen frame (just as the 3-velocity of a particle depends on the inertial
reference frame chosen in Newtonian physics). In Sections 10.4 and 12.4 we shall see that it
is the sum of the 4-momenta of the particles and of the field carrying the interaction which is
conserved.

On the other hand, in the case of short-range interactions where the individual momenta
before and after the interaction are constant, the total momenta as well as the law (6.11) do not
depend on the choice of inertial reference frame.

6.4 Collisions

There are innumerable applications of the conservation law (6.11) in particle physics.8 Here
we shall present a few illustrative examples.

First of all, we note that the relation (6.6) can be used to define the effective mass of a
system of particles as

M2
eff ≡ −p2tot = E2

tot − π2
tot, (6.12)

where πtot ≡
∑

a πa and Etot ≡
∑

a Ea =
∑

a

√
π2
a +m2

a. In the present section we shall
use the notation E ≡ P 0 and π for the momentum 3-vector of components P i. According to
(6.11), M2

eff is a relativistic invariant, that is, a scalar which has the same value before and
after the collision in any inertial reference frame.

The center-of-mass (cm) frame is the reference frame in which πtot = 0, so that Meff =
Ecm

tot is the total energy of the system in this frame and

Meff =
∑

a

√
π2
a(cm) +m2

a ≥
∑

a

ma. (6.13)

The equality holds only if π
(cm)
a = 0 for all the particles.

In the special case of a two-particle system the definition (6.12) becomes the following,
using the expressions (6.7) for massive particles and (6.10) for photons:

M2
eff = m2

1 +m2
2 + 2E1E2(1− V1.V2) , M2γ = 2E1E2(1− cos θ) . (6.14)

We see that M2γ = 0 if the two photons propagate in the same direction (θ = 0), even if
there is no reference frame in which they are at rest.

8An introduction to the dynamics of particle collisions can be found in, for example, Langlois (2011) or
Rougé (2005).
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As our first application of the relativistic invariance of p2tot, let us calculate a reaction
threshold. When the sum of the masses of the final state is greater than that of the initial
state, it is necessary to supply some minimum kinetic energy in order for the reaction to occur.
For example, let us consider antiproton production in the reaction p+p −→ p+p+p+ p̄ (O.
Chamberlain and E. Segré, 1955). The energy in the center of mass of the final system must
be at least 4mproton [cf. (6.13)]. If the experiment is performed sending a proton of energy

Eincident =
√

π2 +m2
proton in the laboratory frame towards a fixed target (Etarg = mproton,

π = 0 in the same frame) the relativistic invariant is easily found to be

−p2tot,in =
(∑

p0a

)2
−
(∑

pia

)2
=
(√

π2 +m2
proton +mproton

)2
− π2

= 2m2
proton + 2mprotonEinc .

Therefore, for the reaction to be possible we must have

−p2tot,in = −p2tot,final > 16m2
proton =⇒ Einc > 7mproton. (6.15)

The threshold energy is the minimum kinetic energy of the incident particle needed for
the reaction to occur, Ethr ≡ Einc −m, or Ethr = 6mproton ∼ 5.6 GeV in our example. This
calculation shows the usefulness of the relativistic invariant, because we have calculated it
in the laboratory frame for the initial state and in the cm frame for the final state, thereby
avoiding having to perform Lorentz transformations.

Our second example is the conversion of rays γ into electron–positron pairs (e−, e+). The
reaction γ −→ e− + e+ cannot occur in a vacuum, because π2 = E2 for the incident photon
while in the cm frame the final system has π = 0, so that ptot cannot be conserved. However,
photon conversion is possible in the presence of a nucleus N of mass MN , and the reaction
becomes γ + N −→ N + e− + e+. We have −p2tot,in = (Eincident + MN )2 − E2

incident in the

laboratory frame, where N is initially at rest, and −p2tot,fin = (Ee+ + Ee− + EN )2 in the

cm frame. Given that Ee± ≥ me and EN ≥ MN , we deduce that −p2tot,in = −p2tot,fin ≥
(M + 2me)

2, so that Einc ≥ 2me(1 + me/MN ) ∼ 2me, and there is no need to know the
nucleus motion after the interaction.9

Finally, we should also mention that the relativistic invariant (6.12) can be used to predict
the presence in certain reactions of particles which cannot be detected. For example, it is
observed that a radioactive nucleus N1 is transformed into a nucleus N2 with the emission of
a continuous spectrum of electrons (β decay). This is possible only if the interaction involves
a third decay product. Otherwise, that is, if N1 −→ N2 + e−, we would have

−p2tot,in = M2
N1

= −p2tot,fin =
(√

M2
N2

+ π2
e +
√

m2
e + π2

e

)2
,

because in the cm frame of the final state πN2
= −πe. This relation fixes πe and also the

energy of the emitted electrons Ee =
√

m2
e + π2

e , and no continuous spectrum would be

9Photon conversion into (e+, e−) pairs is used in high-energy astrophysics. Photons of energy greater than
100 keV cannot be detected by telescopes using focusing mirrors. In the EGRET (Energetic Gamma-Ray
Experiment Telescope) instrument installed on the Compton Gamma-Ray Observatory satellite (1991–2000),
the photon is converted in the upper part of the telescope into an electron–positron pair whose energy is then
measured.
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observed. Therefore, there must be at least one more particle in the final state, which in this
case would be an electron antineutrino ν̄e.

6.5 Compton scattering

In this section we shall illustrate the conservation law (6.11) by the Compton experiment,
that is, the collision of a light corpuscle with a particle, and the concept of the quantum of
action that can be derived from it.10

Let us imagine a light corpuscle and a particle characterized by their 4-momenta pγ,in
with (pγ,in · pγ,in) = 0 and pe,in with (pe,in · pe,in) = −m2, where m is the particle mass (see
Fig. 6.2). We work in the inertial reference frame where the particle is at rest at the origin
before the collision and choose the X axis to be parallel to the incident light corpuscle. Then

Pμ
γ,in = Ein(1, 1, 0, 0) , Pμ

e,in = m(1, 0, 0, 0) , (6.16)

where Ein ≡ Cωin is the energy of the incident light corpuscle and ωin is its frequency [cf.
(6.9) and(6.10)]. After the collision the particle acquires a velocity V which by suitable choice
of axes lies in the XOY plane and makes an angle φ with the OX axis:

Pμ
e,out =

m√
1− V 2

(1, V cosφ, V sinφ, 0) . (6.17)

e−
γ

γ

φ

θ
X

Y

Fig. 6.2 Compton scattering.

At this stage we must make our first hypothesis. The conservation law (6.11) does not
forbid the production of a bunch of N light corpuscles in the interaction, but we shall assume
that each incoming corpuscle corresponds to a single outgoing one.11

The conservation law (6.11) then requires that the Z component of the outgoing light
corpuscle momentum be zero. Therefore,

Pμ
γ,out = Eout(1, cos θ, sin θ, 0), (6.18)

10Compton (1923).
11For a discussion of this point see Hernandez (2005).
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where θ is the angle its 3-velocity makes with the OX axis and Eout ≡ Cωout is its energy,
with ωout its frequency after the collision. The law for the remaining components reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ein +m = Eout +
m√

1− V 2

Ein = Eout cos θ +
mV cosφ√
1− V 2

0 = Eout sin θ +
mV sinφ√
1− V 2

.

(6.19)

This is a system of three equations for the four unknowns Eout, φ, V , and θ characterizing
the final system. Choosing θ as a free parameter, after a bit of algebra we find

Eout =
Ein

1 + Ein

m (1− cos θ)
, (6.20)

so that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cotφ = −
(
1 +

Ein

m

)
tan

θ

2
, V =

1√
1 +A2

with A2=

(
Ein

m

)2 [
2+

Ein

m

(
2+

Ein

m

)
(1−cos θ)

]
(1−cos θ)

[
1+ Ein

m (1−cos θ)
]2 .

(6.21)

Comparison of (6.20) and (6.21) with the experimental data (light scattering by a graphite
plate) confirms the collision model that has been used and makes it possible to determine
[by measuring Eout(θ), with Ein known] that the particle scattering the light is an electron,12

m = me. However, (6.20) and (6.21) a priori say nothing about the wavelength of the
scattered light.

However, since Ein = Cωin and Eout = Cωout where C is assumed independent of ω, from
(6.20) we deduce that

λout − λin =
2πC

me
(1− cos θ), (6.22)

where we have introduced the wavelength λ = 2π/ω. This expression (6.22) can be tested ex-
perimentally by measuring λin and λout using spectrographs. The agreement between theory
and experiment confirms the hypothesis and also gives the value of C:

C =
e2

α
≡ � or λout − λin =

h

me
(1− cos θ), (6.23)

where e is the electron charge, α ≈ 1/137 is the fine-structure constant, � is the Planck
constant, and h/me ≡ 2�π/me is the Compton wavelength.

12The electron can be considered as quasi-free because it is loosely bound to the light carbon atom of
graphite. Therefore, as in Newtonian physics, the numerical values of the inertial masses can in principle be
determined by means of collision experiments; cf. Book 1, Section 7.1.
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The Compton experiment is therefore interpreted as a collision between an electron and
a fundamental ‘light corpuscle’, the photon, and the action C is the quantum of action �:

P 0 = �ω, P i = �ωci, PμP
μ = 0 . (6.24)

For the effect to be measurable it is necessary [see (6.23)] that λin be of order h/me, or,
numerically, λin ≈ 2.4 × 10−12 m, which corresponds to hard x-rays or γ-rays. Therefore,
electromagnetic waves of sufficiently short wavelength can be described as light corpuscles
whose world line is a light line.

The quantum of energy E = hν

The idea of a quantum of energy was introduced by Planck in 1900 to explain the spectrum
of a black body, and the hypothesis that light energy is composed of a finite number of quanta
was made by Einstein in 1905 in his explanation of the photoelectric effect discovered by Lénard
in 1902. In his article of 1923, Compton, in contrast to the presentation we have given here, did
not derive the value of the quantum of action from his experiment, but instead used the Einstein
formula E = hν to interpret the results. The term photon was coined by G. N. Lewis in 1926.
Finally, the value of the fine-structure constant is a fundamental experimental quantity which
so far no theory has been able to explain.

In 1924 in his thesis Recherches sur la théorie des quanta [Research on the theory of the
quanta] de Broglie proposed that since a wave vector and a momentum related as pμ = �kμ can be
associated with a photon, the same should be true for any particle of mass m. With any particle
should be associated a wave vector kμ related to the particle 4-momentum as kμ = pμ/�, with
the constant of proportionality � assumed to be the same for all particles. Then k2 = −m2/�2

or ω2 − kik
i = m2/�2. These wave properties of matter were confirmed in 1926 by Davisson

and Germer, who observed that electrons scattered by a crystal form a diffraction pattern on a
screen with the fringe spacing given by the de Broglie formula.

We conclude this chapter by mentioning that the description of a collision between a
photon and an electron in a frame where the electron is initially moving (rather than at rest
as we assumed above) can be obtained by Lorentz transformation of the results given above.
This results in an increase of the photon energy. This is called inverse Compton scattering
and is important in astrophysics.13

The Klein–Nishina and Thomson formulas

The law of total momentum conservation does not provide the direction θ of the outgoing
photon in the Compton experiment. To obtain this it is necessary to describe the interaction
between the photon and the electron during the collision. This falls within the domain of quantum
electrodynamics.14 In 1929, Klein and Nishina used quantum electrodynamics to derive the
effective cross section of the process, that is, the number of photons scattered per unit time in
a solid angle do of direction θ relative to the number of photons per unit time and unit area of
the scattered beam:

dσ

do
=

1

2

(
e2

me

)2

x2 (x+ 1/x− sin2 θ
)
, with x ≡ 1

1 + ε(1− cos θ)
and ε ≡ �ω

me
=

e2ω

αme
. (6.25)

13See, for example, Rybicki and Lightman (1985).
14See, for example, Weinberg (2005).
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Here x = Eout/Ein [cf. (6.20)] and �ω = h/λ is the energy of the incoming photon. The total
effective cross section is

σ≡2π

∫ π

0

dσ

do
sin θ dθ=π

(
e2

me

)2
1

ε3

[
2ε
(
2 + 8ε+ 9ε2 + ε3

)

(1 + 2ε)2
−
(
2 + 2ε− ε2

)
log(1 + 2ε)

]

. (6.26)

In the classical limit of long wavelengths, ε = h/(meλ) → 0 and the Klein–Nishina effective cross
section tends to the Thomson cross section obtained using the Maxwell theory [see Section 18.4]:

dσ

do
→ 1

2

(
e2

me

)2

(1 + cos2 θ) and σ → 8π

3

(
e2

me

)2

. (6.27)

The limit ε → 0 can also be interpreted as follows. The electron action is S = −m
√
1− V 2 T

[this is the three-dimensional version of (2.8)], and the characteristic collision time is T ∼ 1/ω,
where ω is the photon frequency. In addition, V < 1. We therefore obtain the order of magnitude
S/� ∼ m/(�ω) = 1/ε. The classical limit where quantum effects can be neglected and the
Maxwell theory applies then corresponds to

S

�
→ ∞ . (6.28)
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7

Rotating systems

In this chapter we continue our presentation of the laws of relativistic dynamics for systems of point
particles, beginning with the law of angular momentum conservation in collisions. We also formulate
the equations of motion for particles possessing an internal rotation or ‘spin’.

7.1 Angular momentum and center of mass

We consider an ensemble of free particles each characterized by its (constant) momentum
pa. The total momentum p =

∑
a pa does not depend on the inertial frame which is used,

but the angular momentum will depend on the frame, because its definition involves position
vectors between a reference event and events qa on the particle world lines, which are chosen
to be simultaneous in a given frame.

Let us work in a particular inertial frame S where the components of the momenta pa
are Pμ

a . We take the reference event to be the origin O of this frame and choose the events
qa to lie at the intersections of the plane T = const with the particle world lines; see Fig. 7.1.
The components of the position vectors Oqa will be Xμ

a . The angular momentum tensor of
the system in S is

Mμν
S ≡

∑

a

(Xμ
aP

ν
a −Xν

aP
μ
a ) with Xμ

a = (T,Xi
a(T )) . (7.1)

Since P i
a = maV

i
a/
√
1− V 2

a , where ma is the mass of the particle a and V i
a is the 3-velocity,

the spatial components MY Z
S and so on, reduce to the components of the Newtonian angular

momentum 3-vector Mi
O when |Va| � 1 (see Book 1, Section 7.2).

Since the particles are free we have Xi
a = V i

aT + Xi
a0, where Xi

a0 are their positions
at T = 0. In addition, P i

a ∝ V i
a , and, finally, Mij

S is antisymmetric. Therefore, the terms
involving V i

aV
j
a T are eliminated and the spatial components of the angular momentum are

constant:
Mij

S =
∑

a

(Xi
a0P

j
a −Xj

a0P
i
a) . (7.2)

Since P i
a = P 0V i

a , the same occurs for the cross-term components:

M0i
S ≡ T

∑

a

P i
a−
∑

a

Xi
aP

0
a =T

∑

a

V i
aP

0
a−
∑

a

(V i
aT+Xi

a0)P
0
a =−

∑

a

Xi
a0P

0
a . (7.3)

The angular momentum conservation law states that if the particles collide, their angular
momenta Mμν

S will be the same before and after the collision.1

1We recall that in Newtonian physics the angular momentum conservation law follows from the principle of
action and reaction, and is valid also during an interaction if the force is collinear with the particle separation

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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Introducing the total energy P 0 ≡
∑

a P
0
a and the total momentum P i ≡

∑
a P

i
a =∑

a P
0
aV

i
a , we can rewrite (7.3) as

Ri = V iT + Ci
S , where Ri ≡

∑
a X

i
aP

0
a

P 0
, V i ≡ P i

P 0
, and Ci

S ≡ M0i
S

P 0
. (7.4)

Since |V | < 1, this equation can be interpreted as the trajectory of the center of mass in S.
The world line LS has 4-velocity Uμ =

(
1, V i

)
/
√
1− V 2 and intersects the T = 0 plane at

the point qS with coordinates (0, Ci
S); see Fig. 7.1.

Y

X

T

O

qS

LS

ciS

qa q ′
a

Fig. 7.1 World line of a center of mass.

It is important to note (see the demonstration below) that the 4-velocities of the centers
of mass do not depend on the inertial frame chosen, and so their world lines are parallel
straight lines of M4. However, they do not coincide: the point qS′ /∈ LS .

World lines of centers of mass

It is easy to show that centers of mass have the same velocity in all inertial frames. Using
V i
S ≡ P i/P 0 to denote the components in S of the velocity of the center of mass relative to S,

we have
V ′X
S = (V X

S − V0)/(1− V0V
X
S ) = (PX − V0P

0)/(P 0 − V0P
X),

V ′Y
S = V Y

√

1− V 2
0 /(1− V0V

X
S ) = PY

√

1− V 2
0 /(P

0 − V0P
X)

in the frame S ′ moving with speed V0 along the X axis; cf. (2.16). The components in S ′ of
the velocity of the center of mass relative to S ′ will be, by definition, V ′i

S′ ≡ P ′i/P ′0. Since the
4-momentum is a 4-vector we have

P ′0 = (P 0 − V0P
X)/

√

1− V 2
0 , P ′X = (PX − V0P

0)/
√

1− V 2
0 , P ′Y = PY .

vector; see Book 1, Section 7.2. The conservation law in (7.2) and (7.3) does not add anything to the study
of the Compton effect in Section 6.5 because, as is easily shown, in that case it reduces to the conservation
of total momentum.
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Therefore,

V ′X
S′ = (PX − V0P

0)/(P 0 − V0P
X) = V ′X

S , V ′Y
S′ = PY

√

1− V 2
0 /(P

0 − V0P
X) = V ′Y

S ,

or V ′i
S = V ′i

S′ . (Q.E.D.)
Now, to show that the world lines of the centers of mass relative to S and S ′, LS and LS′ ,

are parallel but never coincide, we write the condition for this to occur, namely, qS′ ∈ LS . We
have

C′X
S′ = CX

S

√

1− V 2
0 /(1− V0V

X), C′Y
S′ = CY

S + V0V
Y CX

S /(1− V0V
X),

where
CX

S ≡ −
∑

a

XS
0aP

0
a /P

0, CY
S ≡ −

∑

a

Y S
0aP

0
a /P

0

and similar expressions with primes on all quantities for C′X
S′ and C′Y

S′ . We can now express X ′S′
0a

and Y ′S′
0a as functions of XS

0a and Y S
0a, which gives

X ′S′
0a = XS

0a

√

1− V 2
0 /(1− V0V

X
a ), Y ′S′

0a = Y S
0a + V0V

Y
a XS

0a/(1− V0V
X
a ).

Substituting these expressions into those for C′X
S′ and C′Y

S′ , we find

C′X
S′ = CX

S

√

1− V 2
0 /(1− V0V

X)

and
C′Y

S′ = (CY
S − V0MXY

S /P 0)/(1− V0V
X) 	= CY

S + V0V
Y CX

S /(1− V0V
X).

Therefore, qS′ /∈ LS .

The center-of-mass frame is the inertial frame S (defined up to a rotation of the spatial
axes) in which the total 3-momentum P i =

∑
a P

i
a vanishes. The center of mass is therefore

at rest there (V i = P i/P 0 = 0), and its 4-velocity has components Uμ = (1, 0, 0, 0). We can
choose the origin such that the world line coincides with the time axis: Ci

S = 0.
The cross components of the angular momentum tensor relative to the cm frame are zero

[M0i = 0; cf. (7.3) and (7.4)], and for small velocities their spatial components reduce to
those of the Newtonian angular momentum vector of the center of mass.

7.2 Intrinsic angular momentum

In a frame S ′ related to S by a Poincaré transformation [X ′μ = Λ μ
ρ (Xρ−dρ); cf. Section 1.3],

the components of the angular momentum tensor relative to S are M′μν
S = Λ μ

ρ Λ ν
σ Mρσ

S ,
where Mρσ

S are its components2 in S.
Now let us consider the angular momentum tensor in S ′. Its components M′μν

S′ in S ′ are
[cf. (7.1)] M′μν

S′ ≡
∑

a(X
′μ
a P ′ν

a −X ′ν
a P ′μ

a ), where the P ′μ
a are the momentum components in

S ′. Since P ′μ
a = Λ μ

ρ P ρ
a , we have

M′μν
S′ =

∑

a

Λ μ
ρ Λ ν

σ [(Xρ
a − dρ)P σ

a − (Xσ
a − dσ)P ρ

a ] = M′μν
S − (d′μP ′ν − d′νP ′μ), (7.5)

2A geometric presentation of intrinsic angular momentum can be found in Gourgoulhon (2010).
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where P ′μ are the components of the total momentum of the system in S ′. Therefore, as
stated in the preceding section, the angular momentum in S ′ differs from that in S.

Now we introduce the (covariant) vector JS with components

JμS = −1

2
eμνρσMνρ

S Uσ
cm, (7.6)

where eμνρσ is the Levi-Civita symbol (see below for its properties) and Mνρ
S and Uσ

cm are
the components in S of the angular momentum tensor in S and the 4-velocity of the center of
mass. We note that the vector Jμ has only three independent components because JμU

μ
cm = 0.

Owing to (7.5), in another frame S ′ the components will be

J ′
μS = −1

2
eμνρσM′νρ

S U ′σ
cm = −1

2
eμνρσ

[
M′νρ

S′ + (d′νP ′ρ − d′ρP ′ν)
]
U ′σ
cm

= J ′
μS′ +K ′

μ with J ′
μS′ ≡ −1

2
eμνρσM′νρ

S′ U
′σ
cm

and K ′
μ = −eμνρσd

′νP ′ρU ′σ
cm .

(7.7)

In the cm frame where U ′σ
cm = (1, 0, 0, 0), the components of the vector K are all zero. We

indeed have K ′
0 = −e0ij0d

′iP ′j = 0 and K ′
i = −eiμk0d

′μP ′k = 0 owing to the properties of
the Levi-Civita symbol and because P ′k = 0. The vector K then is a null vector because its
components Kμ = Λν

μK
′
ν will vanish in any frame S. The vector J therefore will not depend

on the frame S in which the angular momentum is defined:

JμS = JμS′ ≡ Jμ . (7.8)

The vector J is the intrinsic angular momentum. In the center-of-mass frame its components
are

J0 = 0, Ji =
1

2
eijkMjk

cm , (7.9)

which is the generalization of Newton’s definition; see Book 1, Section 6.1 [this justifies the
factor of (−1/2) in the definition (7.6)].

The Levi-Civita symbol

The Levi-Civita symbol eμνρσ is the completely antisymmetric pseudo-tensor such that
e0123 = +1. Its indices are raised using the inverse Minkowski metric ημν . Therefore, e0123 =
e0123 = −1. It possesses the following properties:

eμνρσeαβγδ = −det

⎛

⎜
⎜
⎜
⎝

δμα δμβ δμγ δμδ

δνα δνβ δνγ δνδ

δρα δρβ δργ δρδ

δσα δσβ δσγ δσδ

⎞

⎟
⎟
⎟
⎠

, eμνρσeαβγσ = −det

⎛

⎜
⎝

δμα δμβ δμγ

δνα δνβ δνγ

δρα δρβ δργ

⎞

⎟
⎠ , (7.10)
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as well as
eμνρσeαβρσ = −2(δμαδ

ν
β − δμβδ

ν
α), eμνρσeανρσ = −6 δμα ,

and, finally,
eμνρσeμνρσ = −24 .

We recall that the Levi-Civita symbol with three indices eijk (which is completely anti-
symmetric with e123 = 1, and whose indices are raised using the Euclidean metric δij so that
e123 = +1) possesses similar properties:

eijkelmn = δilδjmδkn + δimδjnδkl + δinδjlδkm − δilδjnδkm − δimδjlδkn − δinδjmδkl, (7.11)

which implies that eijke
k
mn = δimδjn − δinδjm, eijke

jk
l = 2δil, and eijke

ijk = 6 (see Book 1,
Section 1.5).

7.3 Spin dynamics

The discussion of the two preceding sections has led us to the definition of the intrinsic
angular momentum of a system of free particles, (7.6) and (7.8).

Now that this definition has been elaborated, we can forget about how we arrived at it
and introduce the concept of a particle, not necessarily free, which possesses not only an
inertial mass, but also an intrinsic angular momentum or spin3 j, a vector orthogonal to its
4-velocity u: (j · u) = 0. In an inertial frame S where its components are Jμ and those of u
are Uμ we have JμU

μ = 0.

Relativistic ‘tops’

In Newtonian physics it is possible to define the concept of a rigid body, an ensemble of
massive points whose relative spatial separations remain constant in time. It is also possible
to introduce a reference frame attached to this solid which is derived from inertial frames by
a transformation belonging to the group of rigid displacements. A vector Ω characterizes the
rotation of this frame, and therefore that of the solid, relative to inertial frames. Concomitantly,
we can introduce the angular momentum vector J of the system relative to its center of mass.
This J is a quantity which is dynamically related to Ω via the inertia tensor of the solid. If Ω
and J are parallel, the body can be regarded as a spherical top, while if they are not, the top is
asymmetric. Newton’s laws of dynamics imply that the angular momentum J is constant if no
torque is exerted on the body. Therefore, no matter what the motion of the center of mass is,
the vector J will keep its orientation fixed relative to inertial frames. If the top is a sphere, its
rotation vector Ω, which can be measured, will also keep its orientation fixed. This corresponds
to a gyroscope; see Book 1, Section 6.1.

In classical (non-quantum) physics, a relativistic ‘particle’ carrying a ‘spin’ j (the relativistic
version of the vector J) is not a fundamental object but rather a composite one, just as in
Newtonian physics. Moreover, it must be an extended object. The order of magnitude of the
spin is j � mrv, where m is the mass of the object, r is its size (the frame this is measured in
is not important here), and v is its linear rotation velocity. Since v < 1 we have r > j/m.

In addition, since the idea of an accelerated rigid body cannot be defined in special relativity
(except in special cases; cf. Section 5.4), it is not possible to directly relate the angular momentum
j to a global angular velocity of the system as in Newtonian physics. The only case where

3It should be clear that the concept of ‘spin’ introduced here has nothing to do with quantum mechanics.
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this is possible is if the ‘particle’ is a sphere (in an inertial frame where it does not spin).
Indeed, from symmetry we can state that its rotational velocity Ω, which is measurable, must
be proportional to j.

In an inertial frame the equation of motion of a particle of mass m carrying a spin
and interacting with an external field therefore splits into two parts: one is the equation
determining the motion of its center of mass p(τ) given in Section 6.2, mγ = F , where
γ ≡ u̇ ≡ dp/dτ is the 4-acceleration, u ≡ dp/dτ with (u · u) = −1 is the 4-velocity, and
F is the force 4-vector. The other is the evolution equation of its spin, which must also be
postulated:

dj

dτ
− u(j · γ) = C with (j · u) = 0 and (C · u) = 0 , (7.12)

or, in component form,

dJμ
dτ

− Uμ(Jνγ
ν) = Cμ with JμU

μ = 0 and CμU
μ = 0 . (7.13)

The term proportional to u is needed in order for j to remain orthogonal to u. The quantity
C is the torque applied to the spin, which like the force must be specified; just like j, it has
only three independent components.4

In the inertial frame tangent to the trajectory where Uμ = (1, 0, 0, 0) we have Jμ = (0, J)
and, as in Newtonian physics, (7.12) reduces to dJ/dt = C, where t is the time measured by
clocks at rest in the tangent inertial frame. If the particle is free (γ = 0), (7.13) also reduces
to dJμ/dτ = Cμ. However, in contrast to the Newtonian prediction, a free spin (C = 0) does
not preserve a fixed direction in an inertial frame if it is accelerated. This is the so-called
Thomas precession, which will be discussed in the following section.

The equations of motion of a spin in any frame are obtained by making the above equa-
tions covariant:

D̃jμ

dτ
− uμ

(

jν
D̃uν

dτ

)

= cμ with jμu
μ = 0 and cμu

μ = 0, (7.14)

where D̃ is the covariant derivative associated with the coordinates xμ, τ is the proper time
of the particle, and uμ is the particle 4-velocity such that �μνu

μuν = −1, �μν being the
components of the Minkowski metric in the coordinates xμ. Finally, jμ = (∂Xν/∂xμ)Jν ,
uμ = (∂xμ/∂Xν)Uν , and cμ = (∂xμ/∂Xν)Cν are the components of the spin j, the velocity
u, and the torque c, Jν , U

ν , and Cν being their components in the Minkowski frame S.

7.4 Thomas precession

Let a particle carrying a spin be constrained to travel along a circular trajectory at constant
speed. How does the orientation of the spin vary in this motion?5

4The concept of a particle carrying a spin was introduced by J. Frenkel in 1926 and the equation of motion
(7.13) is due to M. Mathisson (1937).

We shall see an example of a torque C in Section 13.4.
5The precession of the axes of a solid body moving in a circular orbit was discovered by E. Borel in

1913. He calculated the effect in lowest order in the speeds using the non-commutative composition law for
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Given an inertial frame S and its Minkowski coordinates Xμ = (T,X, Y, Z), the equations
of motion of the particle spin reduce to the following in the absence of a torque [see (7.13)]:

dJμ

dτ
= Uμ

(
Jν

dUν

dτ

)
with JμU

μ = 0 , (7.15)

where Jμ and Uμ are the components of the spin and the 4-velocity in S.
The particle world line is constrained to be Xμ = (T, r0 cosΩT, r0 sinΩT, 0), and the

particle 4-velocity is (cf. Section 2.1) Uμ ≡ dXμ/dτ = Γ(1,−r0ΩsinΩT, r0ΩcosΩT, 0)
with Γ ≡ (1 − r20Ω

2)−1/2 so that UμU
μ = −1. The constraint JμU

μ = 0 gives J0 =
−J0 = r0Ω(JX sinΩT − JY cosΩT ). The equations of motion for the spatial components
are dJZ/dT = 0 and

⎧
⎪⎪⎨

⎪⎪⎩

dJX

dT
= +r20Ω

3Γ2 sinΩT (JX cosΩT + JY sinΩT )

dJY

dT
= −r20Ω

3Γ2 cosΩT (JX cosΩT + JY sinΩT ),

(7.16)

the solution of which such that JY = 0 at T = 0 is6

⎧
⎪⎪⎨

⎪⎪⎩

JX = J1(cosΩT cos ΓΩT + Γ sinΩT sin ΓΩT )

JY = J1(sinΩT cos ΓΩT − Γ cosΩT sin ΓΩT )

JZ = J2 , J0 = −J1r0ΓΩ sin ΓΩT .

(7.17)

After one revolution, at ΔT = 2π/Ω, JY has increased by ΔJY = −J1Γ sin(2πΓ). In the
limit of small speeds we can write Γ ≈ 1+ r20Ω

2/2 and ΔJY ≈ −2πJ1r
2
0Ω

2/2. Therefore, the
3-vector (JX , JY , JZ) rotates about the Z axis (orthogonal to the trajectory) with angular
velocity

ωThomas ≈ −r20Ω
3

2
, (7.18)

where the sign indicates that the rotation is in the direction opposite to the orbital rotation.

Thomas precession and a rotating frame

We consider a particle with a spin constrained to undergo circular motion of frequency Ω in
an inertial frame S. The particle world line is Xμ = (T, r0 cosΩT, r0 sinΩT, 0).

Now we pass to the coordinate system where the particle is at rest: Xμ = (T,X, Y, Z) �→
xμ = (t, r, ψ, z) so that T = t, X = r cos(ψ + Ωt), Y = r sin(ψ + Ωt), and Z = z. Next we set

non-collinear Lorentz transformations. The effect was rediscovered in atomic physics by L. Thomas in 1926,
thus the name Thomas rotation; cf. Section 1.5. It is also sometimes called Wigner rotation in reference to
the work of E. Wigner (1939) on the structure of the Lorentz group. Here we follow the treatment of the
subject by Misner et al. (1973).

6One way of obtaining this is to first rewrite (7.16) in the form dJX/dT = Γ2Ω3r20 f sinΩT , dJY /dT =

−Γ2Ω3r20 f cosΩT with f ≡ JX cosΩT + JY sinΩT . We then differentiate f(T ) twice, which gives

d2f/dT 2 = −Γ2Ω2f , the solution of which is f = A cos ΓΩT+B sin ΓΩT . Therefore, JX cosΩT+JY sinΩT =
A cos ΓΩT +B sin ΓΩT . We differentiate again to obtain JX sinΩT − JY cosΩT = Γ(A sinΩT −B cosΩT ).
The solution (7.17) follows.
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xμ �→ x′μ = (t, x, y, z) with x = r cosψ and y = r sinψ. In this system the spatial coordinates
are Cartesian, the particle world line is x′μ = (t, r0, 0, 0), and the Minkowski line element is
written as (cf. Section 5.3)

ds2 = −(1− Ω2(x2 + y2))dt2 + 2Ω dt(xdy − ydx) + dx2 + dy2 + dz2. (7.19)

In this new frame the covariant components j′μ of the spin are given as a function of its com-
ponents Jμ = ημνJ

ν in S obtained in (7.17) by j′μ = (∂xν/∂x′μ)(∂Xρ/∂xν)Jρ and have the
especially simple expression

j′0 = 0, j′x = J1 cos ΓΩt, j′y = −ΓJ1 sin ΓΩt, j′z = 0, (7.20)

where Γ ≡ (1 − r20Ω
2)−1/2. In the nonrelativistic limit where Γ → 1, the time evolution of the

spin components, of fixed direction in S, is nothing but a reflection of the rotation of the system
xμ = (t, x, y, z).

The result (7.20) can be obtained by direct calculation in the rotating frame C′ = (t, x, y, z).
The Christoffel symbols of the metric (7.19) were given in (5.33) and on the particle world line

are Γ̃x
tt = −r0Ω

2 and Γ̃y
tx = −Γ̃x

ty = +Ω. In addition, the contra- and covariant components
of the 4-velocity are u′μ = Γ(1, 0, 0, 0) and u′

μ = (−1/Γ, 0,ΓΩr0, 0). The constraint j′μu
′μ = 0

implies that j′0 = 0. Finally, recalling [cf. (5.30)] that D̃j′μ/dτ = dj′μ/dτ − Γ̃ν
μρu

′ρj′ν and [cf.

(5.28)] that D̃u′μ/dτ = du′μ/dτ + Γ̃μ
νρu

′νu′ρ, the equations of motion of the spin (7.17) become
dj′z/dt = 0 and

dj′x
dt

= Ω j′y,
dj′y
dt

= −Γ2Ω j′x, (7.21)

the solution of which is indeed (7.20).

Thomas precession and the Gravity Probe B experiment

In the Gravity Probe B (GPB) experiment (2004), gyroscopes were placed in orbit with the
goal of measuring their precession during their motion about the Earth.7

If the Earth’s gravitational field is described using Newton’s theory, by equating the centrifu-
gal and gravitational forces for a circular orbit we find Ω2r0 = GM⊕/r

2
0, where G is Newton’s

constant and M⊕ is the Earth’s mass. Therefore [cf. (7.18)],

ωThomas = − 1

2r0

(
GM⊕
R⊕

)3/2 (
R⊕
r0

)3/2

. (7.22)

Since the gravitational radius of the Earth is GM⊕/R⊕ ≈ 7 × 10−10 with R⊕ ≈ 6400 km and
the satellite altitude is 642 km, we obtain ωThomas ≈ −3.4× 10−13/s ≈ −2.2 arcsec/yr.

The precession measured by the GPB experiment, called the geodetic precession, is ωgeod =
+6.6 arcsec/yr with an accuracy of 1%. The flagrant disagreement between ωgeod and ωThomas

is an indication of the impossibility of incorporating gravity into special relativity. Needless to
say, the measured result is in complete agreement with the prediction of general relativity.

7A detailed description of the experiment can be found at http://einstein.stanford.edu/.
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8

Fields and matter

Here we shall discuss the laws of relativistic dynamics for continuous media, namely, the ‘fields’
which mediate interactions in relativistic theories, and also fluids.

8.1 Equations of motion of a free field

The concept of field introduced by Faraday and formalized by Maxwell lies at the heart of
contemporary physics. The intuitive idea behind this concept is, on the one hand, that mas-
sive bodies, owing to their internal constitution (that is, their charge), impregnate space with
what are called ‘fields’, that is entities which are revealed by the presence of other bodies
possessing the same type of charge. The other aspect of this idea is that the interactions be-
tween these bodies, which determine their motion, are conveyed by these fields. This physical
concept of a field is represented mathematically by one or several functions of points p in
Minkowski spacetime, which we shall call Φ(p).

The phenomenology of a field may vary from one inertial frame to another, but, to satisfy
the principle of relativity, we require—or rather we guess—that the manifestations of a field
in various particular frames are avatars of a single geometrical object, a tensor field, which
are related to each other by Lorentz transformations. (See Section 1.3 for a review of the
tensor transformation laws.)

In a given inertial frame and its associated Minkowski coordinates Xμ, a field configura-
tion is a ‘photograph’ of the field at an instant of time T given by the clocks of the frame,
that is, its spatial components Φ

i1···ip
jμ···jq (X

i)|T . The field dynamics is the time evolution of this
spatial configuration.

The dynamics of a free field, that is, its equations of motion, is determined by specifying
in an inertial frame S a Lagrangian density L(Φ, ∂μΦ), which is a functional of the field and
its derivatives,1 and we choose, from among all the configurations evolving between two given
configurations, those which extremize the action

Sf [Φ(X
μ, s)] =

∫
d4X L(Φ, ∂μΦ) . (8.1)

Here d4X ≡ dX0 d3X = dX0 dX1dX2dX3 defines the volume element of M4 in Minkowski
coordinates and s parametrizes, at a given X0 ≡ T , the various configurations Φ(Xμ, s).
Using the notation δΦ ≡ (∂Φ/∂s)|0 ds and δ∂μΦ ≡ (∂2Φ/∂s∂Xμ)|0 ds = ∂μδΦ for the

1For an introduction to the Lagrangian and Hamiltonian mechanics of a point, see, for example, Book 1,
Chapters 8 and 9.

We also recall that when there is no possible ambiguity regarding the coordinate system which is used, it
will be convenient to denote partial derivatives as ∂Φ

∂Xμ ≡ ∂μΦ ≡ Φ,μ.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.
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variations of Φ and its derivatives in passing from the configuration s = 0 to a neighboring
configuration, the variation of the action δSf ≡ (dSc/ds)|0 ds is written as

δSf =

∫
d4X δL =

∫
d4X

[
∂L
∂Φ

δΦ+
∂L

∂∂μΦ
δ∂μΦ

]

=

∫
d4X

[
∂L
∂Φ

− ∂μ

(
∂L

∂∂μΦ

)]
δΦ+

∫
d4X ∂μ

(
∂L

∂∂μΦ
δΦ

)

=

∫
d4X

[
∂L
∂Φ

− ∂μ

(
∂L

∂∂μΦ

)]
δΦ+

∫
d3X

(
∂L

∂∂0Φ
δΦ

)∣∣∣∣

T2

T1

+

∫ T2

T1

dT

∫

S

∂L
∂∂iΦ

δΦ dSi ,

(8.2)

where S is the boundary of the 3-space (for example, a cube) and dSi is an element of the
surface [dSi = (dY dZ, dXdZ, dXdY ) in Cartesian coordinates]. The first boundary term is
zero because the configurations are fixed at T1 and T2, while the second, obtained by using
Gauss’s theorem, is also zero if we consider configurations which are fixed at spatial infinity
or if restriction is made to configurations which vanish sufficiently rapidly. Therefore, the
equations of motion of the field are the Euler–Lagrange equations

∂L
∂Φ

− ∂μ

(
∂L

∂∂μΦ

)
= 0 . (8.3)

If L is nonlinear in ∂μΦ, these are second-order differential equations.2

8.2 The energy–momentum tensor of a free field

A field Φ and its derivatives ∂μΦ are tensors under Lorentz transformations, that is, are
geometrical objects with an intrinsic definition independent of the inertial frame. For the
equations of motion (8.3) to also satisfy the relativity principle, that is, to be the same in
any inertial frame, it is necessary that the action (8.1), a functional of Φ, be a scalar, that is,
its numerical value for a given configuration must be the same no matter which Minkowski
coordinate system is used to express the components of Φ and its derivatives.

The volume element d4X is invariant under a Lorentz transformation.3 The action will
therefore be a scalar if the integrand, that is, the Lagrangian density L(Φ, ∂μΦ), is itself a

2Equations (8.3) remain of second order if L also depends on ∂μ∂νΦ when the terms containing these
second derivatives take the form of a divergence ∂μV μ, where V μ = V μ(Φ, ∂νΦ), which when transformed
into a surface term using Gauss’s theorem does not contribute to the equations of motion. We indeed have

δ

∫
d4X ∂μV

μ =

∫
d4X ∂μδV

μ =

∫
d4X ∂μ

(
∂V μ

∂Φ
δΦ+

∂V μ

∂∂νΦ
δ∂νΦ

)
= 0

by Gauss’s theorem if the variations of the field configurations and their derivatives, δΦ and δ∂νΦ, are required
to vanish on the boundaries of the domain.

3By definition, the components of the metric ημν are not changed by a Lorentz transformation; its de-
terminant is −1 in the coordinates Xμ or X′μ, and so d4X = dX0dX1dX2dX3 = dX′0dX′1dX′2dX′3 (see
Book 1, Section 2.6). It should be noted that throughout this section not only must the reference frame be
inertial, but also the spatial coordinates must be Cartesian. In Section 8.5 we shall see how to generalize the
definitions below to curvilinear spatial coordinates and to accelerated reference frames.
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scalar, which means that it must not depend explicitly on the coordinates Xμ. Using the
equations of motion (8.3), we then have4

∂L
∂Xμ

=
∂L
∂Φ

∂μΦ+
∂L

∂∂νΦ
∂μ∂νΦ = ∂ν

( ∂L
∂∂νΦ

)
∂μΦ+

∂L
∂∂νΦ

∂μ∂νΦ

= ∂ν

(
∂μΦ

∂L
∂∂νΦ

)
⇐⇒ ∂ν

(
−∂μΦ

∂L
∂∂νΦ

+ δνμL
)

= 0 .

(8.4)

This is an aspect of Noether’s theorem: any invariance of the action, here invariance under
a change of inertial frame, corresponds to a conservation law, that is, the vanishing of the
divergence of some quantity. The quantity defined here is the Noether energy–momentum
tensor, also called the canonical tensor:

Θμ
ν ≡ −∂μΦ

∂L
∂∂νΦ

+ δνμL with ∂νΘμ
ν = 0 . (8.5)

(One reason for the name given to Θμ
ν is that if Φ depends only on the time, then −Θ0

0 =

Φ̇ ∂L
∂Φ̇

− L is identified as the energy as defined in the Lagrangian mechanics of a point; cf.

Book 1, Section 8.3.)5

The tensor obtained by raising an index of the Noether tensor,

Θμν ≡ ημρΘρ
ν = −∂μΦ(∂L/∂∂νΦ) + ημνL,

is not a priori symmetric: Θμν �= Θνμ. It can however be made so. Let us consider the tensor

Tμν ≡ Θμν + ∂ρσ
μνρ, where

⎧
⎨

⎩
∂ρσ

[μν]ρ = ∂[μΦ
∂L

∂∂ν]Φ

σμνρ = −σμρν .

(8.6)

The first condition, where the brackets denote antisymmetrization f[μν] ≡ 1
2 (fμν − fνμ),

guarantees the symmetry of Tμν , Tμν = T νμ, and the second guarantees that it is conserved,
∂νT

μν = 0, because

∂νρσ
μνρ = −∂νρσ

μρν = −∂ρνσ
μρν = −∂νρσ

μνρ =⇒ ∂νρσ
μνρ = 0 . (8.7)

(The first equation follows from the antisymmetry of σμνρ, the second from the symmetry
of the second derivatives, and the third is just a redefinition of the dummy indices.) The
tensor Tμν which is symmetric and conserved is the object that we shall refer to as the
energy–momentum tensor.6

4The precise meaning of the notation is the following. The quantity ∂L/∂X0, for example, is the derivative
of L with respect to X0, with the other coordinates held fixed. If L depends explicitly on X0 [and not only
through Φ(Xμ) and its derivatives], it is necessary to add to (8.1) the derivative of L with respect to X0 for
fixed Φ and ∂μΦ.

5Since it is possible to add a total divergence to the Lagrangian without changing the equations of motion
(cf. footnote 2 of the preceding section), the Noether tensor is not unique. If we add ∂μV μ to L, then we
must add ∂ρ(δνμV

ρ − δρμV
ν) to Θ ν

μ .
6Since the tensor σμνρ is antisymmetric in its last two indices, it a priori possesses 24 independent

components, and the six symmetry conditions (8.6) on Tμν do not determine all of them. In addition, these
symmetry conditions may be imposed only after the field equations are satisfied. In Section 12.4 we shall give
an explicit example of the symmetrization of the Noether tensor.
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We have just seen that the energy–momentum tensors (8.5) and (8.6) are conserved if
the equations of motion are satisfied. Conversely, imposing the condition of conservation of
the energy–momentum tensor implies the equations of motion, with the condition that L not
depend explicitly on the Xμ and that Φ not be constant. We have

∂νΘμ
ν = ∂ν

(
−∂μΦ

∂L
∂∂νΦ

+ δνμL
)

= −∂νμΦ
∂L

∂∂νΦ
− ∂μΦ ∂ν

(
∂L

∂∂νΦ

)
+ ∂μL

= −∂νμΦ
∂L

∂∂νΦ
− ∂μΦ ∂ν

(
∂L

∂∂νΦ

)
+

∂L
∂Φ

∂μΦ+ ∂μνΦ
∂L

∂∂νΦ

= ∂μΦ

(
∂L
∂Φ

− ∂ν

(
∂L

∂∂νΦ

))
,

(8.8)

where on the last line we recognize the left-hand side of the Euler–Lagrange equations (8.3).
Now let us integrate the equation ∂νT

μν = 0 on the hyperplane T = const, that is, over
the entire space V . Using Gauss’s theorem, we find

0 =

∫

V

d3X ∂νT
μν =

∫

V

d3X(∂0T
μ0 + ∂iT

μi) =
d

dT

∫

V

d3X Tμ0 +

∫

S

TμidSi ,

or
d

dT
Pμ = −

∫

S

TμidSi , where Pμ ≡
∫

V

d3X Tμ0,

(8.9)

with S the boundary of the 3-space and dSi its surface element. If the solution Φ of the field
equations falls off sufficiently rapidly at spatial infinity so that the surface integral vanishes,
the field is termed non-radiative and we have

Pμ = const. (8.10)

Therefore, a conservation law allows us to construct conserved quantities, here the field 4-
momentum. Equation (8.10) is the exact analog of the 4-momentum of a free particle being
constant.

Owing to the antisymmetry of σμνρ in the last two indices, we have

Pμ ≡
∫

V

d3X Tμ0 =

∫

V

d3X (Θμ0 + ∂ρσ
μ0ρ) =

∫

V

d3X Θμ0 +

∫

S

σμ0i dSi . (8.11)

Therefore, the 4-momentum of the field is the same when it is defined using the conservation
of Tμν or Θμν , as long as the tensor σμνρ decreases sufficiently rapidly at infinity so that
the surface integral vanishes. Thus in this case we can define the 4-momentum Pμ, which
is constant when the field is non-radiative, whether or not the energy–momentum tensor is
symmetric.

However, only when it is symmetric will we also have

∂ρ(X
μT νρ −XνTμρ) = 0, (8.12)

where Xμ are the coordinates of a point, because ∂νT
μν = 0 and ∂μX

ν = δνμ. Integrating
(8.12) over a 3-volume V of the hyperplane T = const and using Gauss’s theorem, we find
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d

dT
Mμν = −

∫

S

(XμT νi −XνTμi)dSi , where Mμν ≡
∫

V

d3X (XμT ν0 −XνTμ0) , (8.13)

M being the angular momentum tensor of the field. If the field falls off sufficiently quickly
at spatial infinity, it is constant.

Transformation of the 4-momentum

The energy–momentum of a field is represented by the same tensor in any inertial frame
in Minkowski coordinates, and the transformation law of its components Tμν in going from
one Minkowski frame to another is known. On the other hand, the 4-momentum vector Pμ

introduced in (8.9), being defined by an integral over a spatial 3-volume, depends a priori on
the choice of inertial frame (it is the clocks of S which define the T = const cross-sections).

Now let us return to the conservation law ∂νT
μν = 0 and integrate it over a 4-volume M

sandwiched between two space-like hypersurfaces Σ− and Σ+, and bounded laterally by the
time-like ‘cylinder’ B = L× S2, where S2 is the 2-sphere at infinity and L is arbitrarily ‘short’;
see Fig. 8.1. Applying Gauss’s theorem, we find

0 =

∫

M
d4X ∂νT

μν =

∫

∂M
TμνdSν , (8.14)

Σ+

Σ−

L

T

X

Y

n

n

n

S2

Fig. 8.1 4-momentum: integration region.

where ∂M = Σ−+Σ++B and dSν is the 3-surface element on each of the hypersurfaces. If now

∫

B
TμνdSν = 0 ∀ B, then

∫

Σ

TμνdSν ≡ Pμ = const . (8.15)

The 4-momentum Pμ thus constructed, where Σ is an arbitrary space-like hypersurface, does not
depend on the choice of inertial frame. It reduces to (8.9) if Σ ≡ V is the T = const cross-section
of a given frame. In Section 6.3 we saw that the total 4-momentum of a system of free particles
is represented by the same vector in any inertial frame. It is therefore the same for that of a free
field.

On the other hand, the angular momentum depends on the choice of frame just like that of
an ensemble of particles; see Section 7.1.
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8.3 Fluid equations of motion

The kinematics of a fluid, a continuous ensemble of particles gathered into fluid elements, is
described by a velocity field u of components Uμ(Xν) in a Minkowski inertial frame S, whose
integral curves define the world lines, each line q = q(τ) representing the motion of a fluid
element. We shall require that the world lines always be time-like, and we normalize u as
(u ·u) = −1 so that u(q) can be viewed as the 4-velocity u = dq/dτ of the fluid element at q.

The fluid dynamics which describes phenomenologically the internal collisions in the fluid
is postulated to be encoded in a (symmetric) energy–momentum tensor of components Tμν

in S, which can always be decomposed as

Tμν = ε UμUν + (UμQν + UνQμ) + Πμν , (8.16)

where ε(Xμ) is a scalar function, the vector field Qμ(Xν) is perpendicular to Uμ (QμU
μ = 0),

and the tensor Πμν(Xρ) can be further decomposed as

Πμν = πμν + p hμν , (8.17)

where hμν is the projection tensor: hμν ≡ ημν+UμUν (⇒ hμνUν = 0). Here p(Xμ) is a scalar
function and πμν(Xρ) is a traceless, transverse tensor, such that πμ

μ = 0 and πμνUν = 0.
We have therefore exchanged the ten components of Tμν for the two scalars ε and p, the
three independent components of the vector Qμ, and the five independent components of
the tensor πμν . In the frame where the fluid element at Xμ is momentarily at rest so that
Uμ = (1, 0, 0, 0), we have

T 00 = ε, T 0i = Qi, T ij = p δij + πij , T i
i = 3p . (8.18)

A fluid is termed perfect if Qμ = 0 and πμν = 0. Its energy–momentum tensor then is

Tμν = (ε+ p)UμUν + p ημν . (8.19)

The equation of motion of the ‘free’ fluid, that is, a fluid not subject to any external long-
range force,7 is obtained by requiring that its energy–momentum tensor be conserved:

∂νT
μν = 0 . (8.20)

In the case of a perfect fluid, to which we restrict ourselves from now on, this equation
can be expanded as

UμUν∂ν(ε+ p) + (ε+ p)(Uν∂νU
μ + Uμ∂νU

ν) + ∂μp = 0 . (8.21)

Contracting it with Uμ, we first obtain (since UμUμ = −1)

∂ν(ε U
ν) + p ∂νU

ν = 0 , (8.22)

which allows us to rewrite (8.21) as

(ε+ p)Uν∂νU
μ + UμUν∂νp+ ∂μp = 0 . (8.23)

This equation involves only three independent components because it is orthogonal to Uμ.
Therefore, (8.21) is equivalent to the set of equations (8.22) and (8.23).

7We thereby exclude the gravitational interaction as well as charged fluids in an electromagnetic field.
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Equation (8.23) is the relativistic Euler equation. When p � ε and the fluid 3-velocity
V � 1, it reduces to the Newtonian Euler equation dV/dt ≡ ∂V/dt+ (V .∇V )V = −∇p/ε,
where the time T of the inertial frame is viewed as the universal time t of Newton. Equa-
tion (8.22) becomes the continuity (or mass conservation) equation: ∂ε/∂t+∇ . (εV ) = 0; see
Book 1, Section 6.3. Extending the terminology used in Newtonian physics, we shall refer to
ε as the energy density and p as the pressure.

The equation of state of a relativistic fluid

The equations (8.22) and (8.23) are four equations in five unknowns, namely, ε, p, and the
three components of the vector Uμ (constrained by UμUμ = −1).8 To completely determine
the fluid motion it is therefore necessary to have an additional equation, the equation of state,
which relates the pressure and the density. A fluid is barotropic if its pressure depends only on
the density, and the equation of state is usually written in terms of the adiabatic index γ as the
system

dε

dn
=

ε+ p

n
,

dp

dn
= γ

p

n
, (8.24)

where the parameter n is the particle density. Then (8.22) can be rewritten as the particle
number conservation law:

∂μ(nUμ) = 0. (8.25)

If the index γ is constant, the fluid is a polytrope and the system (8.24) can be integrated to give

p(n) = κnγ , ε(n) =
κnγ

γ − 1
+mn, (8.26)

where κ and m are integration constants having the dimensions of mass. In the Newtonian limit
where ε ≈ mn we have p ∝ εγ . On the other hand, in the ultra-relativistic limit (for γ 	= 1)

p → wε with w ≡ γ − 1 . (8.27)

Finally, perturbing the Euler continuity equations (8.22) and (8.23) about the static solution
Uμ = (1, 0, 0, 0), ε = ε0, p = p0, we easily find the equation of motion of the perturbation ε1
(by differentiating the continuity equation with respect to time and eliminating ∇V̇ using the
gradient in the Euler equation):

−∂2ε1
∂T 2

+ c2s 
ε1 = 0, (8.28)

where cs ≡
√

dp/dε|0 is the speed of sound. Therefore, the equation for sound propagation is
the same as in Newtonian physics; see Book 1, Section 17.3. It is not invariant under a change
of inertial frame, which allows determination of the frame in which the fluid is at rest.9

8It is usual to decompose the energy density as ε ≡ ρ + εint, where ρ is the rest-mass density (or proper
energy density) and εint is the internal energy density. The enthalpy is defined as H ≡ ε+ p and the specific
enthalpy is H/ρ. The quantity Qμ is the momentum density (or the heat flux). Finally, πμν is the traceless
anisotropic part of the constraint tensor Πμν .

For a more thorough presentation of relativistic hydrodynamics see, for example, Gourgoulhon (2013). Its
applications in astrophysics are discussed in Mart̀ı and E. Müller (2003). Finally, Ollitrault (2008) discusses
its applications to heavy-ion physics.

9If cs = 1, (8.28) becomes the Klein–Gordon equation and is invariant under a Lorentz transformation;
see Section 9.1. In this case the fluid, whose equation of state is p = ε and which is termed rigid, resembles
the aether or the vacuum. It is pointless to specify whether this ‘medium’ is at rest or not, because the speed
of sound then is always the same.
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8.4 The particle energy–momentum tensor

The main idea of the present chapter is that the dynamics of a ‘continuous medium’, a free
field or fluid, is encoded in its energy–momentum tensor Tμν , from which one we can extract
both the equations of motion by requiring conservation (∂νT

μν = 0), and the conserved
quantities, for example, the 4-momentum Pμ =

∫
d3X T 0μ. Here we shall show that it is

possible to do the same in the case of an ensemble of point particles.
We shall see that the energy–momentum tensor for describing particles in an inertial

Minkowski frame S is

Tμν(Xρ) =
∑

a

m

∫

L

dτ δ4(X
ρ −Xρ(τ))UμUν , (8.29)

where Xμ(τ) is the world line L of the particle a of mass m parametrized by its proper
time τ , Uμ = dXμ/dτ is its speed (with ημνU

μUν = −1), and δ4(X
μ) ≡ δ(T )δ3(X

i) and
δ3(X

i) ≡ δ(X)δ(Y )δ(Z). Here δ the Dirac distribution, a ‘function’ which is zero everywhere
except at the origin and has unit integral,

∫
dXδ(X) = 1; its main properties are given in

Section 9.2.
Since

∫
d3Xδ3(X

i) = 1 and U0 = dT/dτ , we see immediately that

∫
d3X Tμ0 =

∑

a

m

∫

L

dτ δ(T − T (τ))UμU0 =
∑

a

mUμ ≡ Pμ (8.30)

(the velocities are evaluated at the time T ). Therefore, the 4-momentum of the system is
expressed, as desired, as a volume integral over an energy–momentum density.

In addition, given that
∫
dτδ(T − T (τ)) = 1/U0(T ) (see Section 9.2), we see that (8.29)

can also be written as

Tμν =
∑

a

m
UμUν

U0
δ3(X

i −Xi(T )), where U0 =
1

√
1− V 2(T )

, U i =
V i(T )

√
1− V 2(T )

, (8.31)

so that

∂νT
μν = ∂0T

μ0 + ∂iT
μi

=
∑

a

m

[
∂

∂T

(
Uμδ3(X

j −Xj(T ))
)
+ UμV i ∂

∂Xi
δ3(X

j −Xj(T ))

]

=
∑

a

m
dUμ

dT
δ3(X

j −Xj(T )) =
∑

a

m

∫

L

dτ
dUμ

dτ
δ4(X

μ −Xμ(τ))

(8.32)

because ∂
∂T

(
δ3(X

j −Xj(T ))
)
+V i ∂

∂Xi δ3(X
j −Xj(T )) ≡ 0. We thus see that requiring that

the energy–momentum tensor be conserved gives the particle motion, namely, the particle
velocities Uμ are constant.
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To relate the description of an ensemble of particles to that of a fluid, we now rewrite
(8.29) in the form

Tμν = ε UμUν , where ε(Xμ) ≡
∑

a

m

∫

L

dτ δ4(X
μ −Xμ(τ)) . (8.33)

[This amounts to replacing the 4-velocities by a vector field Uμ(Xν), which is possible owing
to the presence of the Dirac distribution.] We also see [cf. (8.19)] that the pressure of a fluid
of free particles is zero (which is to be expected, because the particles, being free, do not
undergo collisions). The equations of motion (8.22) and (8.23) derived from the conservation
of Tμν reduce to

∂ν(ε U
ν) = 0 and Uν∂νU

μ = 0 . (8.34)

Substituting (8.33) for ε, the first of these equations expresses mass conservation
∑

a m =
const (after integrating and using Gauss’s theorem) and the second again states that the
particle velocities are constant.

Let us end by considering an ensemble of particles undergoing collisions, that is, interact-
ing via short-range forces. Between collisions their 3-velocities V i are constant. We assume
that there exists a reference frame in which these velocities are zero on average 〈V i〉 = 0
(this average is either a time average of the velocity of a single particle, or the average
over the angles of the velocities of a large number of particles; they are the same according
to the ‘ergodicity theorem’). In this frame the averages of the non-zero components of the
energy–momentum tensor (8.31) are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε ≡ 〈T 00〉 =
〈
∑

a

m√
1− V 2

δ3(X
i −Xi(T ))

〉

p ≡ 1

3
〈T i

i 〉 =
1

3

〈
∑

a

mV 2

√
1− V 2

δ3(X
i −Xi(T ))

〉

.

(8.35)

Whatever the precise mathematical interpretation of these averages is, we have that in
the nonrelativistic limit (V → 0) and the ultra-relativistic limit (V → 1) the respective
equations of state are

ε � ε0 +
3

2
p , ε � 3p , (8.36)

where ε0 =
∑

a m〈δ3(Xi −Xi(T ))〉 is the energy density of the fluid at rest.
A fluid without pressure is called dust. The Euler equation (8.23) or (8.34) implies that

its flow is uniform and rectilinear. The absence of pressure corresponds to the absence of
collisions between the particles of the fluid, and in this case the congruence of the world lines
of individual particles appearing in (8.29) or (8.33) is identified with the flow itself.

A fluid with the equation of state ε = 3p is called a radiation fluid. As we have just seen,
it is composed of an ensemble of ultrarelativistic particles which could also be photons; see
Section 12.4.

8.5 Conservation laws in an accelerated frame

In a system of curvilinear coordinates the equations of motion of a field or a fluid are derived,
as in a Minkowski frame, from the conservation law for the energy–momentum tensor, but
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using the ‘covariantized’ version, that is, the version with the ordinary derivatives ∂μ replaced

by the covariant derivatives D̃μ:

D̃νT
μν = 0 ⇐⇒ ∂νT

μν + Γ̃μ
ρνT

ρν + Γ̃ν
ρνT

μρ = 0 , (8.37)

where Γ̃μ
νρ are the Christoffel symbols in the chosen coordinates xμ. In order to derive directly

(that is, without going to Minkowski coordinates as in Section 8.2) from (8.37) the fact
that the energy or angular momentum of the system is constant, we need to specify their
geometrical origin, namely, the homogeneity and isotropy of Minkowski spacetime.

Isometries and Killing vectors of M4

Under an infinitesimal change of coordinate xρ → x̃ρ = xρ + ξρ the components �μν(x
ρ) of

the metric in the system {xρ} at the point P of coordinates xρ are related to its components

�̃μν(x̃
ρ) at P in the system {x̃ρ} by the transformation law for 2-fold covariant tensors, namely,

�μν(x
ρ) =

∂x̃ρ

∂xμ

∂x̃σ

∂xν
�̃ρσ(x̃

λ) = (δρμ + ∂μξ
ρ)(δσν + ∂νξ

σ)�̃ρσ(x̃
λ). (8.38)

Now writing in lowest order �̃ρσ(x̃
λ) = �̃ρσ(x

λ) + ξλ∂λ�ρσ, that is, introducing the metric at the

point P̃ which in the system {x̃ρ} has the same coordinates as the point P in the system {xρ},
we find (see Book 1, Section 8.3)

�μν(x
ρ)− �̃μν(x

ρ) = ξλ∂λ�μν + �λμ ∂νξ
λ + �νλ ∂μξ

λ = D̃νξμ + D̃μξν , (8.39)

which defines the Lie derivative of the metric. The displacement P �→ P̃ is an isometry and ξρ

is a Killing vector if the Lie derivative of the metric vanishes, that is, if the Killing equations
D̃μξν + D̃νξμ = 0 are satisfied.

The Killing vectors of M4 are easily obtained using Minkowski coordinates, in which the
Killing equations reduce to ∂μξν + ∂νξμ = 0. The general solution is ξμ = dμ + ωμ

νX
ν , where

dμ and ωμν = −ωνμ are a constant vector and a constant antisymmetric matrix. Therefore,
M4 possesses ten Killing vectors, four corresponding to translations (ξμ(t) = δμt ), three to spatial

rotations, and three to boosts. This is the maximum number of Killing vectors that a space of
dimension four can possess (cf. Book 1, Section 8.3), and so M4 is a maximally symmetric space.

The ten Killing vectors of M4 can be used to derive conserved quantities directly from
the conservation law (8.37). Forming the scalar product with a Killing vector ξμ, we have

0 = ξμD̃νT
ν
μ = D̃ν(ξ

μT ν
μ)− T νμD̃νξμ = D̃ν(ξ

μT ν
μ) (8.40)

because T νμ is symmetric and ξμ is a Killing vector.
Now we integrate this equation, as in (8.14), over a 4-volume M enclosed between two

space-like hypersurfaces Σ− and Σ+ and bordered laterally by the time-like cylinder B =
L×S2, where S2 is the ‘sphere’ at infinity and L is arbitrarily ‘short’ (see Fig. 8.1). Since for
any vector vμ we have

√
−� D̃μv

μ = ∂μ(
√
−� vμ), where � is the determinant of �μν , we find,

using Gauss’s theorem and recalling that the volume element is
√
−� d4x (see, for example,

Book 1, Sections 2.6, 3.6, and 4.6),
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0 =

∫

M
d4x ∂ν(

√
−� ξμT ν

μ) =

∫

∂M
ξμT ν

μdSν ,

with dSμ =
√
−� eμνρσ

∂xν

∂y1
∂xρ

∂y2
∂xσ

∂y3
dy1dy2dy3 =

√
|h|nμd

3y ,

(8.41)

where ∂M = Σ− +Σ+ +B and where eμνρσ is the totally antisymmetric Levi-Civita symbol
with e0123 = 1. The boundary ∂M is defined by the equations xμ = xμ(ya), where h is the
determinant of the metric induced on ∂M and nμ is the unit 4-vector (i.e., �μνn

μnν = ±1)
normal to ∂M pointing outward from the domain.

If the integral over B vanishes, that is, if there is no flux at spatial infinity, then

∫

Σ

ξμT ν
μdSν = const . (8.42)

If ξμ is the Killing vector corresponding to time translations [with components ξμ = (1, 0, 0, 0)
in an inertial frame where

√
−� = 1 and where (8.42) reduces to −

∫
Σ
d3X T 0

0], this constant is
the energy of the system. The other Killing vectors lead to the definitions of the 3-momentum,
the angular momentum, and the center of mass.
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The classical scalar field

Scalar fields are paradigmatic in relativistic field theory. Here we shall present some of their properties
as part of an introduction to the study of the electromagnetic field to be taken up in Part III of this
book. We shall also see how a complex scalar field can confer an effective mass to a ‘gauge’ field.

9.1 The Klein–Gordon equation

In Section 8.1 we gave the Euler–Lagrange equations of motion of a free field without speci-
fying the Lagrangian density L(Φ, ∂μΦ). Here we shall consider the special case of a massive
scalar field ϕ(Xμ) which is real and whose action in an inertial Minkowski frame is given by

Sf =

∫
d4X L with L = −1

2

(
∂μϕ∂μϕ+ μ2ϕ2

)
. (9.1)

To have the action expressed in kg-s, the field ϕ must be in
√

kg/s; μ is in s−1, but μ� is in
kg, which is why the scalar field is termed ‘massive’.

The Euler–Lagrange equation of motion (8.3) governing the dynamics of this free field
then becomes the Klein–Gordon equation:

�ϕ− μ2ϕ = 0 with �ϕ ≡ ∂μ∂μϕ ≡ ∂μ
μϕ = −∂2ϕ

∂T 2
+�ϕ . (9.2)

Here � is the d’Alembertian and � is the Laplacian (in Cartesian coordinates � = δij∂i∂j ≡
∂i
i ; see Book 1, Section 4.6 for its expression in other coordinate systems, for example,

spherical coordinates).1 It can be checked that the Klein–Gordon equation, obtained by
varying a scalar quantity, is indeed invariant under Lorentz transformations. Indeed, under
the transformation Xμ �→ X ′μ = Λ μ

ν Xν we have ∂
∂Xμ = Λ ν

μ
∂

∂X′ν , and so

� ≡ ημν
∂

∂Xμ

∂

∂Xν
= ημνΛ ρ

μ Λ σ
ν

∂

∂X ′ρ
∂

∂X ′σ = ηρσ
∂

∂X ′ρ
∂

∂X ′σ

because ημνΛ ρ
μ Λ σ

ν = ηρσ by the definition of Lorentz rotations.
The Noether energy–momentum tensor is derived from (8.5) and the form of the ac-

tion (9.1):

Tμν ≡ ημρΘν
ρ = ∂μϕ∂νϕ− 1

2
ημν
(
∂ρϕ∂ρϕ+ μ2ϕ2

)
. (9.3)

We see immediately that it is symmetric and easily verify that it is conserved (∂νT
μν = 0)

if the Klein–Gordon equation (9.2) is satisfied. Reciprocally, the conservation of Tμν implies
the Klein–Gordon equation (with the condition that the field ϕ is not constant).

1Instead of the mass term 1
2
μ2ϕ2, it is possible to introduce into the Lagrangian a more general ‘potential’

V (ϕ). The Klein–Gordon equation (9.2) then becomes �ϕ− dV/dϕ = 0 and is no longer linear in ϕ.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.
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The variational derivative and Hamilton’s equations

The action (9.1) of the scalar field is written as Sf =
∫
dT L, where the Lagrangian L is

L =

∫

d3X L with L =
1

2

(
ϕ̇2 − (∇ϕ)2 − μ2ϕ2) .

L is a function of a triple infinity of generalized coordinates, namely, the values of ϕ at each
point Xi of space along with their velocity extensions ϕ̇.

The variational derivative of L with respect to ϕ̇ at a given spatial point Xi reduces to the
ordinary derivative of the Lagrangian density L:

δL

δϕ̇
=

∂L
∂ϕ̇

= ϕ̇ .

The variational derivative of L with respect to ϕ is then given by

δL = δ

∫

d3X L = −
∫

d3X
(
∂iϕ δ∂iϕ+ μ2ϕ δϕ

)
= −

∫

d3X
(
∂iϕ∂iδϕ+ μ2ϕ δϕ

)

= −
∫

S

∂iϕdSi δϕ+

∫

d3X(
ϕ− μ2ϕ)δϕ

after integration by parts and use of Gauss’s theorem. Then since δϕ is taken to be zero on the
boundary of the domain,

δL

δϕ
= 
ϕ− μ2ϕ .

The Klein–Gordon equation (9.2) thus also arises from the Euler–Lagrange equations written in
the form

d

dT

δL

δϕ̇
=

δL

δϕ
. (9.4)

Let us now pass to the Hamiltonian formulation. The conjugate momentum of ϕ and the Hamil-
tonian are

π ≡ δL

δϕ̇
= ϕ̇; H =

∫

d3X H with H ≡ πϕ̇− L =
1

2

(
π2 + (∇ϕ)2 + μ2ϕ2) .

The Hamiltonian is a functional of {ϕ, π} which can be varied in two different ways. First,

δ

∫

dT H =
1

2
δ

∫

dTd3X
(
π2 + (∇ϕ)2 + μ2ϕ2) =

∫

dTd3X
[
πδπ − (
ϕ− μ2ϕ)δϕ

]
, (9.5)

after integrating by parts and ignoring the boundary term. Second (again integrating by parts
and ignoring the boundary term),

δ

∫

dT H = δ

∫

dTd3X (πϕ̇− L) =
∫

dTd3X (ϕ̇δπ − π̇δϕ)− δSf . (9.6)

Equating (9.5) and (9.6), we again find that for the variation of the action to be an extremum,
δSf = 0, the Klein–Gordon equation (9.2) must be satisfied: π = ϕ̇, π̇ = (
ϕ− μ2ϕ).
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Therefore, the equation of motion of the field also follows from the Hamilton equations:

π =
δL

δϕ̇
, π̇ = −δL

δϕ
. (9.7)

It also follows from the Poisson equations2

ϕ̇ = {H,ϕ}, π̇ = {H,π},

where the Poisson bracket of A and B is defined by {A,B} =
δA

δπ

δB

δϕ
− δA

δϕ

δB

δπ
.

9.2 Fourier expansion of the free field

In general, a scalar field ϕ(Xμ), like any real, square-integrable function, can be expanded as

ϕ(T,Xi) =

∫
d3k

(2π)
3
2

ϕk(T ) e
ikiX

i

with ϕ∗
−k(T ) = ϕk(T ), (9.8)

where k is a 3-vector with components ki and the star indicates complex conjugation. The
field ϕk(T ) is the Fourier transform of ϕ(T,Xi) and ϕk(T ) e

ikiX
i

is a Fourier mode.

The Fourier transform

Let f be a square-integrable function of a single variable (i.e.
∫
dx|f(x)|2 is finite). Its Fourier

transform fk ≡ f̂(k) is defined as

f̂(k) =

∫ +∞

−∞

dx√
2π

e−ikxf(x) . (9.9)

In three dimensions f̂(ki) = (2π)−3/2
∫
d3x e−ikix

i

f(xi). If f is a real function (f = f∗), we have

f̂∗(−k) = f̂(k).

The transform of a Gaussian g(x) = α e−βx2

is the Gaussian ĝ(k) = (α/
√
2β)e−k2/4β .

If
∫
dx |g(x)|2 = 1 (i.e. if α2√π =

√
2β), then, on the one hand,

∫
dk |ĝ(k)|2 = 1 also, while

on the other3 ΔxΔk = 1
2
with (Δx)2 ≡

∫
dx |g(x)|2x2 and (Δk)2 ≡

∫
dk |ĝ(k)|2k2.

The Fourier transform of δσ(x) =
e−x2/2σ2

σ
√
2π

is δ̂σ(k) =
e−k2σ2/2

√
2π

, and, inversely, the transform

of C(x) = e−x2σ2/2
√
2π

is Ĉ(k) = δσ(k). Since the Dirac distribution (see below) can be approxi-

mated by δσ(x) with σ → 0, we see that its Fourier transform is a constant, and so we can write,
at least formally,

2The basics of Lagrangian and Hamiltonian mechanics are presented in, for example, Book 1, Chapters 8
and 9.

3To demonstrate these properties of Gaussians we use the fact that I ≡
∫
du e−au2

=
√

π/a, which can

be proved by calculating I2 =
∫
du dv e−a(u2+v2) in polar coordinates.

When the function f(x) is not a Gaussian, its width Δx and the width Δk of its Fourier transform satisfy

the Heisenberg–Kennard inequality: ΔxΔk > 1
2
.
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1 =

∫

dx δ(x) e−ikx and δ(x) =

∫
dk

2π
eikx. (9.10)

Now it is easy to show that if f̂(k) is the Fourier transform of f(x) then, inversely,

f(x) =

∫
dk√
2π

f̂(k)e+ikx .

We can similarly prove the Parseval–Plancherel theorem:
∫
dx f∗

1 (x)f2(x) =
∫
dk f̂∗

1 (k)f̂2(k).

The Dirac distribution

The Dirac distribution δ(x − x0) operates on a ‘well-behaved’ function f(x) (i.e., one that
falls off sufficiently quickly at infinity) to give the value of f(x) at x = x0. We write

∫ +∞

−∞
dx δ(x− x0)f(x) = f(x0)

and interpret δ(x− x0) as a ‘function’ which is zero everywhere except at x0 and whose integral
is 1. It can be approximated by ordinary functions, for example, by the Gaussian δσ(x) =

1

σ
√
2π

e−x2/2σ2

with σ → 0.

In two dimensions δ2(x
i − xi

0) ≡ δ(x− x0)δ(y − y0), and so on, and we have

∫

δn(x
i) dnx =

(∫

δ(x) dx

)n

= 1.

Some properties of the Dirac distribution:

a. δ(ax) = 1
|a|δ(x) and, more generally, δ(f(x)) =

∑
i

1
|f ′(ai)|δ(x− ai), where the ai are the

zeros of f ;

b.
∫
dx δ′(x)f(x) = −f ′(0) (the prime denotes the derivative with respect to x);

c. Θ′(x) = δ(x), where the function Θ(x) is the Heaviside distribution: Θ(x) = 0 for x < 0
and Θ(x) = 1 for x ≥ 0;

d. In the Fourier space we can formally write δ(x) = 1
2π

∫
dp e−ipx; see (9.10);

e. 
(1/r) = −4πδ3(x
i), where Δ denotes the Laplacian.

In the Fourier space whereD(xi) ≡ 1
(2π)3

∫
d3pe−ipix

i

D̄(pi), the equation
D(xi) = −4πδ3(x
i)

gives D̄(pi) = 4π
p2

. We then have4

D(xi) =

∫
d3p e−ipix

i

2π2p2
=

1

2π2

∫

dp sin θ dθ dφ e−ipr cos θ =
2

π

∫

dp
sin pr

pr
=

1

r
.

It can be shown in the same way that the solution of 
ϕ− μ2ϕ = −4πδ3(X
i) is ϕ = e−μr

r
.

4From contour integration or the residue theorem.
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With the field ϕ expanded as in (9.8), the Klein–Gordon equation (9.2) becomes an
ordinary differential equation for each mode ϕk:

ϕ̈k + ω2
kϕk = 0 with ωk =

√
|k|2 + μ2 and |k|2 ≡ kik

i . (9.11)

This equation of motion for the Fourier modes can also be obtained directly starting from
the action (9.1) by substituting into it the field expansion5 (9.8):

Sf =

∫
dT L with L =

∫
d3kLk and

Lk =
1

2

[
ϕ̇kϕ̇

∗
k − (|k|2 + μ2)ϕkϕ

∗
k

]
=

1

2

[
(ϕ̇2

R + ϕ̇2
I)− (|k|2 + μ2)(ϕ2

R + ϕ2
I)
]
.

(9.12)

Therefore, Sf becomes a functional of ϕR ≡ Re[ϕk(T )] and ϕI ≡ Im[ϕk(T )], and the Euler–
Lagrange equations d

dT (∂Lk/∂ϕ̇R) = ∂Lk/∂ϕR again give (9.11).
The momenta conjugate to ϕR and ϕI are πR ≡ ∂Lk/∂ϕ̇R = ϕ̇R and πI ≡ ∂Lk/∂ϕ̇I =

ϕ̇I , and so the Hamiltonian H =
∫
d3k (πRϕ̇R+πIϕ̇I)−L becomes (writing πk = πR+iπI)

H =

∫
d3kHk with

⎧
⎪⎨

⎪⎩

Hk =
1

2

[
π2
R + π2

I + (|k|2 + μ2)(ϕ2
R + ϕ2

I)
]

=
1

2

[
πkπ

∗
k + (|k|2 + μ2)ϕkϕ

∗
k

]
,

(9.13)

and the Hamilton equations ϕ̇R,I = ∂Hk/∂πR,I , π̇R,I = −∂Hk/∂ϕR,I again give the equa-
tion of motion (9.11).

The equation of motion (9.11) is just that of the harmonic oscillator, for which the general
solution guaranteeing that the field is real can be written as

ϕk(T ) = ak
e−iωkT

√
2ωk

+ a∗−k

eiωkT

√
2ωk

with ωk =
√

|k|2 + μ2 , (9.14)

where ak is an integration constant. (The factor 1/
√
2ωk, which appears a bit incongruous

here, proves useful when one embarks on quantizing the field.) Each mode ϕk(T )e
ikiX

i

is

5Using the properties of the Fourier transform and the Dirac distribution given above, we have
∫

d3X ϕ2 =

∫
d3Xd3k d3k′ ϕkϕk′e

i(k+k′).X/(2π)3

=

∫
d3k d3k′ϕkϕk′δ3(k + k′) =

∫
d3k ϕkϕ−k =

∫
d3k ϕkϕ

∗
k,

where (k.X) ≡ kiX
i. Similarly,

∫
d3X ϕ̇2 =

∫
d3k ϕ̇kϕ̇

∗
k. Finally,

∫
d3X (∇ϕ)2 = −

∫
d3X d3k d3k′ (k.k′)ϕkϕk′e

i(k+k′).X/(2π)3 = −
∫

d3k d3k′(k.k′)ϕkϕk′δ3(k + k′)

= +

∫
d3k k2ϕkϕ−k = +

∫
d3k k2ϕkϕ

∗
k .

It is important to note that this Fourier expansion is possible only because the Klein–Gordon equation is
linear and the action is quadratic in ϕ. If the mass term is replaced by a more general potential V (ϕ), cf.
footnote 1 above, the Fourier expansion will make sense only after linearization of the equation of motion
�ϕ− dV/dϕ = 0 about a minimum of V (ϕ) (so that ω is real).
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thus a ‘monochromatic’ plane wave, that is, a wave with wave vector k. The relation between
the frequency ωk and the 3-vector k is the dispersion relation.

All in all, the square-integrable general solution of the Klein–Gordon equation (9.2) is,
after rewriting the integral in the second term in (9.14) with ki → −ki,

ϕ(T,Xi)=

∫
d3k

(2π)
3
2

(
ak

e−iωkT

√
2ωk

eikiX
i

+a∗k
eiωkT

√
2ωk

e−ikiX
i

)
with ωk=

√
|k|2 + μ2 . (9.15)

Therefore any linear superposition of monochromatic plane waves such as (9.15) solves the
Klein–Gordon equation and represents a wave packet which is more or less compact depending
on how spread out the function ak is about the value k0. This wave packet propagates at the
group velocity cig = dωk/dki = ki/ωk, which is equal to the speed of light if μ = 0, and less
than the speed of light otherwise; see Book 1, Section 17.3.

The energy–momentum tensor (9.3) can also be expanded in Fourier modes, and, using
footnote 5, we find that the Hamiltonian and the energy of the field coincide when the
equations of motion are satisfied:

P 0 ≡
∫
d3X T 00 = H when H =

1

2

∫
d3k ωk(aka

∗
k + a∗kak) =

∫
d3k ωk |ak|2, (9.16)

where ωk =
√

|k|2 + μ2 is the frequency of each oscillator, |ak|2 ≡ a∗kak, and the last equality
ceases to be valid when the coefficients ak become non-commuting quantum operators.

9.3 Complex fields, charge, and symmetry breaking

Now let us consider the following action, a functional of the complex scalar field φ(Xμ):

Sφ =

∫
d4XLφ , where Lφ = −∂μφ

∗∂μφ− V (φ∗φ) . (9.17)

The Euler–Lagrange equation of motion ∂μ(∂Lφ/∂∂μφ
∗) = ∂L/∂φ∗ can be written as

�φ− dV

dφ∗ = 0 . (9.18)

After multiplying by φ∗ and subtracting the complex conjugate of the resulting expression,
we find that the Wronskian or current Θμ is conserved:

∂μΘ
μ = 0 with Θμ ≡ −i(φ∂μφ∗ − φ∗∂μφ) . (9.19)

Integrating over spacetime and following the same arguments as in deriving (8.9), we find
that if the field falls off sufficiently rapidly at spatial infinity the charge

Q ≡ −i

∫
d3X(φ φ̇∗ − φ∗φ̇) (9.20)

will be a constant of the motion (Q is expressed in kg-s and so has the same dimensions
as �).
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The same result can be obtained using the Noether theorem. We see that the action and
the Lagrangian density (9.17) as well as the equation of motion (9.18) are invariant under
the transformation [of the U(1) type] φ �→ φ eiα = φ(1+ iα+ · · ·), where α is a real constant.
We then have

0 = δSφ =

∫
d4XδLφ = −

∫
d4X ∂μ(δφ

∗∂μφ+ δφ ∂μφ∗)

+

∫
d4X

[
δφ∗
(
�φ− dV

dφ∗

)
+ δφ

(
�φ∗ − dV

dφ

)]
= −α

∫
d4X ∂μΘ

μ,

if the equation of motion is satisfied and because δφ = iαφ, which again leads to the result
that the charge Q is a constant.

Now let us write φ = (φ1 + iφ2)/
√
2, where φ1 and φ2 are real.

If the potential is V = μ2φ∗φ = 1
2μ

2φ2
1 +

1
2μ

2φ2
2, the equation of motion becomes a set of

two linear Klein–Gordon equations (�φ1 − μ2φ1 = 0, �φ2 − μ2φ2 = 0), the general solution
of which in Fourier space was given in (9.15) (where ϕ → φ1 or φ2 and ak → a1k or a2k).
Performing the calculations of Section 9.2, footnote 5, we can write the Hamiltonian (9.16)
and the charge (9.20) as

H =

∫
d3k ωk(|a1k|2 + |a2k|2), Q = −i

∫
d3k (a1∗k a2k − a1ka

2∗
k ), (9.21)

or, after the Bogoliubov transformation a1k = (ak + bk)/
√
2, a2k = −i(ak − bk)/

√
2,

H =

∫
d3k ωk(|ak|2 + |bk|2), Q = −i

∫
d3k (|ak|2 − |bk|2) . (9.22)

Within the framework of quantum field theory the coefficients ak and bk respectively be-
come the ‘annihilation operators’ of a positively charged ‘particle’ and a negatively charged
‘antiparticle’.

Let us now consider the case where the potential takes the form of a ‘Mexican hat’:

V (φ∗φ) = V0 − μ2φ∗φ+ λ(φ∗φ)2 (9.23)

with λ > 0; see Fig. 9.1. Its minimum is located on the circle φ2
1+φ2

2 = μ2/λ; in the language
of quantum field theory the ‘vacuum’ is ‘degenerate’.6 We expand it about a particular point
on this circle, for example, φ2 = 0, setting φ2 = ϕ2 and φ1 = μ/

√
λ + ϕ1. The Lagrangian

density (9.17) is then written as Lφ = − 1
2 (∂μϕ1)

2 − 1
2 (∂μϕ2)

2 − V (ϕ1, ϕ2) with

V (ϕ1, ϕ2) = V0 −
μ4

4λ
+ μ2ϕ2

1 + μ
√
λϕ1(ϕ

2
1 + ϕ2

2) +
λ

4
(ϕ2

1 + ϕ2
2)

2 . (9.24)

Since this is just a rewriting, the symmetry of the action (under the transformation φ �→
φ = φ eiα) is of course preserved, as well as the constancy of the charge Q defined in (9.20).
However, if we truncate the series at the quadratic term,

6The minimum value of the potential is Vmin = V0−μ4/(4λ). The equations of motion and their solutions
do not depend on it, but this potential energy density has a ‘weight’ owing to the mass–energy equivalence
(E = mc2), and ‘gravitates’ owing to the equivalence principle; see Section 10.4. This is the cosmological
constant problem, which is still unresolved.
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Lφ = −1

2
(∂μϕ1)

2 − 1

2
(∂μϕ2)

2 − Vquad with Vquad(ϕ1, ϕ2)=V0 −
μ4

4λ
+ μ2ϕ2

1 , (9.25)

this will no longer be true: in the language of quantum field theory, the symmetry (which
is termed ‘global’ because α does not depend on the point) is ‘spontaneously broken’. The
equations of motion then reduce to linear Klein–Gordon equations:

�ϕ1 − 2μ2ϕ1 = 0 , �ϕ2 = 0 . (9.26)

The first of these describes a scalar field of mass
√
2μ, and the second a massless scalar field,

the Nambu–Goldstone boson.7

0

 φ1

 φ2

V(φ)

Fig. 9.1 The Goldstone potential.

9.4 The BEH mechanism

The fact that global symmetry breaking leads to the appearance of a massless, and therefore
long-range, scalar field (see Section 10.1) is problematic because such a field is not observed
experimentally. However, as we shall see, the BEH mechanism8 will make it ‘disappear’.

To see this we consider the coupling of the complex scalar field with action given in (9.17)
and (9.23) to a massless vector field Aμ with a Maxwellian action (see Section 12.3)

SA =

∫
d4XLA, where LA = −1

4
FμνF

μν with Fμν ≡ ∂μAν − ∂νAμ . (9.27)

The action SA is invariant under the transformation Aμ �→ Aμ + ∂μα/q, where α is an
arbitrary dimensionless function of the coordinates and the constant q� has the dimensions
of electric charge. The action (9.17) and (9.23) of the field φ is, as we have seen, invariant
under the transformation φ �→ φ eiα, where α is a constant.

We still need to construct the action of the interaction.

7The paradigmatic model of the ‘spontaneous breaking of a global symmetry’ presented here is due to J.
Goldstone (1961).

8Named for its inventors, Englert and Brout (1964) and Higgs (1964).
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If we require that the total action be invariant when the constant α becomes a function
of the coordinates, it is easily seen that it is necessary to replace the ordinary derivative of
φ, ∂μφ, in the action (9.17) and (9.23) by the ‘covariant’ derivative ∂μφ− iqAμφ, so that the
total action is written as

S =

∫
d4X L with

L=−(∂μφ
∗+iqAμφ

∗)(∂μφ−iqAμφ)−
(
V0−μ2φ∗φ+λ(φ∗φ)2

)
− 1

4
FμνF

μν .

(9.28)

Therefore, requiring that the ‘global symmetry’ becomes local necessitates the introduction
of the field Aμ, which for this reason is called a gauge field, and also dictates the form of the
interaction term.

Let us write φ as φ = (φ1+iφ2)/
√
2 and, as in Section 9.3, expand the action to quadratic

order about a particular point of the potential minimum setting φ1 = μ/
√
λ+ϕ1 and φ2 = ϕ2.

We then obtain
⎧
⎪⎪⎨

⎪⎪⎩

Lquad = −V0 +
μ4

4λ
− 1

2
(∂μϕ1)

2 − μ2ϕ2
1 −

1

2
M2W 2

μ − 1

4
GμνG

μν

with M ≡ qμ√
λ
, Wμ ≡ Aμ − ∂μϕ2

M
, and Gμν ≡ ∂μWν − ∂νWμ .

(9.29)

In this Lagrangian we again find the ‘cosmological constant’ V0 − μ4/(4λ) and the massive
field ϕ1 in the absence of coupling [cf. (9.25)], but we also see, on the one hand, that the
massless Nambu–Goldstone boson ϕ2 has disappeared, while, on the other, the effective gauge
field Wμ has acquired a mass M� = qμ�/

√
λ and is not coupled to ϕ1.

The BEH mechanism which we have sketched here within the framework of scalar elec-
trodynamics makes it possible, when generalized to the electroweak theory, to give a mass to
the gauge bosons W± and Z discovered at CERN in 1983. The BEH boson ϕ1 (sometimes
called the Higgs particle) was discovered in 2012, also at CERN. It has a mass of 125 GeV.

On the ‘renormalizability’ of the theory

The redefinition of the field made in (9.29) (Aμ �→ Wμ) is due to P. Higgs. It amounts to
subjecting the field Aμ to a particular type of gauge transformation (α = −q ϕ2/M), termed
‘unitary’. It has the advantage of explicitly eliminating the Nambu–Goldstone boson, but the
resulting theory of a massive scalar field and a massive gauge field (called a Proca field when it
is a vector field; see Section 14.3), which are decoupled (to quadratic order), is not an a priori
‘renormalizable’ quantum field theory. The choice of the ‘Landau gauge’ made by F. Englert
and R. Brout indicates that the theory is ‘renormalizable’, but then it is the unitarity (that
is, the gauge invariance of the gauge boson) which is no longer manifest. The tour de force of
G. t’Hooft and M. Veltmann in 1972 was to show that the theory is in fact both unitary and
renormalizable to all orders.9

9To learn more, see Englert (2012) and, for example, de Wit (2008).
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The Nordström theory

In the preceding chapter we described a free scalar field and a scalar field interacting with other
fields. Now we turn to the description of the interaction of a scalar field with particles which ‘feel’
it, that is, ‘charged’ particles. If the field is massless, and therefore long-range, and if the particle
charge corresponds to its inertial mass, we have what is known as the Nordström theory, a coherent
theory of gravity which, however, disagrees with experiment.

10.1 The coupling of a scalar field to a particle

As in Section 9.1, we consider a real scalar field of ‘mass’ μ whose action in an inertial
Minkowski frame can be written as

Sf =
1

4πG

∫
d4X L with L = −1

2

(
∂μϕ∂μϕ+ μ2ϕ2

)
. (10.1)

For Sf to be expressed in kg-s, and if ϕ is dimensionless, the constant G must have the same
dimensions as the Newton constant (that is, s/kg), while the constant μ is expressed in s−1.

Just as for a free particle of inertial massm, the equation of motion of a particle interacting
with the external field ϕ can be obtained from a variational principle if an interaction term
is added to the free-particle action.

Since the world line of a free particle is a geodesic of M4 (see Sections 2.2 and 5.3) which
extremizes its length, its action is

Sl[ps(λ)] = −m

∫
dλ (−ημνẊ

μ
s Ẋ

ν
s )

1/2, (10.2)

where m is its inertial mass and Xμ
s (λ) is the world line of the path s in a Minkowski frame

of coordinates Xμ. As for the interaction term of the action it can be written, for example, as

Si[ps(λ)] = −mg

∫ λ2

λ1

dλU [ϕ(Xμ
s )]

√
−ημνẊ

μ
s Ẋν

s , (10.3)

where U [ϕ] is an a priori arbitrary function of ϕ(Xμ) and mg is a constant characterizing the
coupling of the particle to the field and has the dimensions of a mass if U is dimensionless.
(We note that just as for the action of a free particle, Si is invariant under reparametrization.)
The calculation of the variation of Si[ps(λ)] when the path between the two points is varied
is basically the same as that of Section 2.2:
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δSi = mg
U ημνẊ

νδXμ

√
−ηρσẊρẊσ

∣∣
∣∣∣∣

λ2

λ1

−mg

∫ λ2

λ1

dλ

⎡

⎣ d

dλ

⎛

⎝ U ημνẊ
ν

√
−ηρσẊρẊσ

⎞

⎠+

√
−ημνẊμẊν ∂μU

⎤

⎦ δXμ .

(10.4)

The equation of motion of the particle in the field ϕ extremizes the sum of the actions:
δ(Sl+Si) = 0. Choosing the parameter λ to be the proper time τ such that ημνẊ

μẊν = −1,
the equation of motion in the Minkowski inertial frame S is then written as

m
dUμ

dτ
= Fμ with Fμ = − mg

1 +
mg

m U (∂μU + UμUν∂νU) . (10.5)

(We check that FμU
μ = 0.)1

Now to obtain the equation of motion of the field ϕ created by the particle, we again use
a variational principle, this time extremizing with respect to configurations ϕ the action of
the field coupled to the particle, namely, Sf [ϕ] + Si[ϕ], where Sf is the Klein–Gordon action
(10.1) and the interaction term (10.3) becomes Si[ϕ] = −mg

∫
dλU(ϕ)(−ημνẊ

μẊν)1/2.
Since now we must vary Si with respect to the field ϕ [and not the path Xμ(λ)], we can

fix the parametrization of the source world line in the action. We take it equal to the proper
time λ = τ , ημνẊ

μẊν = −1. Therefore, Si[ϕ] = −mg

∫
dτ U(ϕ). We still need to transform

this integral into an integral over spacetime. For this we write mg as mg = mg

∫
d4X δ4(X

μ−
Xμ(τ)), where δ4(X

μ) ≡ δ(T )δ3(X
i), each δ being a Dirac delta distribution; see Section 9.2.

The interaction term is then rewritten as

Si[ϕ] = −mg

∫
d4X dτ U(ϕ)δ4(Xμ −Xμ(τ)) . (10.6)

The extremization of Sf [ϕ] + Si[ϕ] then follows immediately and leads to the Klein–Gordon
equation coupled to a point source:

�ϕ− μ2ϕ = 4πGmg

∫
dτ

dU
dϕ

δ4(X
μ −Xμ(τ)) . (10.7)

Now let us work in a frame where the source is at rest at the origin. Its proper time then is
that of the frame, τ = T , and (10.7) reduces to

�ϕ− μ2ϕ = 4πGmg
dU
dϕ

δ3(X
i) . (10.8)

The static, spherically symmetric solution of (10.8) is obtained using the fact that the
d’Alembertian in this case reduces to the Laplacian, and in spherical coordinates the Lapla-
cian reduces to �f = (r2f ′)′/r2, where the prime denotes differentiation with respect to

1The Lorentz force obtained by coupling the particles to a vector field (the ‘electromagnetic potential’ Aμ)
which determines the motion of an electric charge is another example of an external force (cf. Section 11.3
below).
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the radial coordinate r. If the interaction is linear, that is, if U = ϕ, the solution which in
the sense of a distribution converges at infinity (but which is not square-integrable) is (see
Section 9.2)

ϕ = −Gmg

r
e−μr. (10.9)

If μ = 0, the interaction is long-range (that is, of infinite range), otherwise it is short-range
with range L ≡ μ−1.

If the interaction is not linear, U can be given in the form of a Taylor series expansion

U = ϕ+ 1
2a2ϕ

2 · · · , (10.10)

where the coefficient a2 is a priori arbitrary. Then (10.8) is solved by iteration. The first
iteration again gives the solution (10.9). In the next order dU/dϕ = 1 + a2ϕ, where ϕ =
−Gmge

−μr/r diverges at the origin, and so the right-hand side of (10.8) is no longer defined.
This problem, which is inherent in nonlinear theories, is ‘solved’ by renormalizing dU/dϕ to
1, so that for any function U we can take (10.9) as the renormalized solution of (10.8).

Short-range interactions

The solution (10.9) was obtained in a particular frame in which the source of the field is at
rest at the origin. In a different inertial frame the source will be undergoing uniform rectilinear
motion. As we shall see in detail in Section 17.1, the solution (10.9) can be written in any inertial
frame as

ϕ(Xμ) = −Gmg

R
e−μ�R , where R ≡ −Uμl

μ
R with lμR ≡ Xμ−Xμ

R and ημν l
μ
RlνR = 0 . (10.11)

Here Uμ is the 4-velocity of the field source in the frame S and lμR is the null vector pointing
from Xμ toward the past and intersecting the world line of the source at Xμ

R (see Fig. 10.1).
Using the fact that ∂μl

ν
R = δνμ + (Uν lμ/)R (see Section 17.1), we can verify that (10.11) is

indeed the solution of the Klein–Gordon equation.

X

Xμ
T

R,�R

RX

l

Uμ

μ

μ

Fig. 10.1 Retarded quantities.

We also see that the exponential falloff of the field is preserved: a short-range interaction in
an inertial frame is short-range in any other frame.
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We note that the value at the point Xμ of the field ϕ (also called the Liénard–Wiechert
potential; Section 17.1) depends on the retarded position Xμ

R of the source, whether or not μ
is zero, that is, whether or not the interaction propagates at a speed equal to or less than the
speed of light. This is not contradictory because the solution (10.9) is static: it was ‘established’
throughout space in the infinitely distant past and the retardation effects have been ‘erased’.

10.2 The field–matter system

The action which completely describes the dynamics of a system of particles as well as of the
scalar field that they create and to which they are coupled is the sum of the action of the
free particles, the particle–field interaction term, and the free-field action:

Stot = −
∑

a

m

∫
dλ

√
−ημνẊμẊν −

∑

a

mg

∫
dλU(ϕ)

√
−ημνẊμẊν

− 1

8πG

∫
d4X
(
∂μϕ∂

μϕ+ μ2ϕ2
)
,

(10.12)

where the interaction term is also written as Si[ϕ]=−
∑

a mg

∫
d4XdτU(ϕ)δ4(Xμ −Xμ(τ)),

and where U is a function of ϕ to be specified. The extremization of (10.12) relative to
variations of the path Xμ

s (λ) gives the equations of motion for each particle a [cf. (10.5)],
and its extremization with respect to variations of the field configuration gives the Klein–
Gordon equation coupled to sources [cf. (10.8)]. Let us rewrite these:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m
dUμ

dτ
= Fμ with Fμ = − mg

1 +
mg

m U (∂μU + UμUν∂νU)

�ϕ− μ2ϕ = 4π
∑

a

Gmg

∫
dτ

dU
dϕ

δ4(X
μ −Xμ(τ)) .

(10.13)

The equations (10.13) are the analog of the Lorentz and Maxwell equations in electromag-
netism; see Sections 11.3 and 12.3. They form a complete system determining both the motion
of the sources and the field configuration once the function U(ϕ) is specified along with the
initial conditions and at infinity.

The energy–momentum tensor of the field is, cf. (9.3),

T field
μν =

1

4πG

[
∂μϕ∂νϕ− 1

2
ημν
(
∂ρϕ∂ρϕ+ μ2ϕ2

)]
.

Let us calculate its divergence taking into account the presence of sources. First of all we have

∂νT
μν
field =

∂μϕ

4πG

(
�ϕ− μ2ϕ

)
, (10.14)

which, taking into account the field equation in (10.13), becomes

∂νT
μν
field =

∑

a

mg

∫
dτ ∂μU δ4(X

μ −Xμ(τ)) . (10.15)
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Now using the equation of motion of the particles in (10.13) to replace ∂μU and noticing
that Uν∂νU = U̇ , (10.15) can be rewritten as

∂νT
μν
field = −

∑

a

m

∫
dτ δ4(X

μ −Xμ(τ))
dUμ

dτ

−
∑

a

mg

∫
dτ δ4(X

μ −Xμ(τ))
d(UμU)

dτ
.

(10.16)

In the first term on the right-hand side we recognize the divergence of the energy–momentum
tensor of point particles; cf. Section 8.4, (8.29) and (8.32). The second term is also written
as the divergence of an energy–momentum tensor of the interaction. In the end we have

∂μ(T
μν
field + Tμν

mat)=0,

where Tμν
mat=

∑
m

∫
dτ δ4(X

μ−Xμ(τ))UμUν
(
1+

mg

m
U
)
.

(10.17)

Integrating over the 3-volume V of the hyperplane T = const, we find, following (8.9),

d

dT
Pμ = −

∫

S

Tμi
field dSi, where Pμ ≡ Pμ

field + Pμ
mat

with Pμ
field ≡

∫

V

d3X Tμ0
field and Pμ

mat ≡
∑

a

(
1 +

mg

m
U
)
mUμ.

(10.18)

(It is understood that the 4-velocities Uμ as well as the function U are evaluated at the points
where the world lines and the hypersurface X0 = T intersect.) Therefore, in the absence of
radiation, that is, flux through the boundary S of V , the total momentum Pμ, the sum of the
field momentum, the particle momenta, and the interaction momentum, is constant owing
to the field and particle equations (10.13).

Let us take the case where P i = 0. Then P 0 ≡ Min is the rest energy, that is, the inertial
mass of the field–source system.

Since T 00
field = 1

8πG

(
ϕ̇2 + (∇ϕ)2 + μ2ϕ2

)
, it is written as

Min =
1

8πG

∫

V

d3X
(
ϕ̇2 + (∇ϕ)2 + μ2ϕ2

)
+
∑

a

(
1 +

mg

m
U(ϕ)

) m√
1− V 2

. (10.19)

Therefore, the inertial mass of an interacting system is the sum of the inertial masses
∑

am
of its ‘fundamental’ constituents (or the constituents treated as being fundamental), their
kinetic energy

∑
am(U0 − 1), the interaction energy2

∑
amg UU0, and the energy of the

field they create P 0
field. If the system radiates, this mass will not be constant. Moreover, it is

not manifestly positive. Finally, we note that it must be ‘renormalized’ because the field ϕ
and the function U are evaluated everywhere, including at the particle positions, where they
diverge. The definition of the inertial mass of an interacting system is therefore much more
involved in special relativity than in Newtonian physics, where it reduces to the sum of the
inertial masses of the constituents.

2This term is absent in electromagnetism; see Section 12.4.
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Short-range interactions and collision laws

If the scalar field ϕ is massive (μ 	= 0), its range is limited to the vicinity of the particles; cf.
(10.9). The same will generally be true of U(ϕ). Therefore, the force in (10.13) of a particle a′

on a particle a will operate only if the two particles are separated by a distance L < μ−1. They
are free before and after this collision.

For the same reason, the energy–momentum tensor of the field is not significantly different
from zero except in a small region near the particles where the conservation law (10.18) reduces to
the conservation of the total momentum of the particles studied in Section 6.3: Pμ =

∑
mUμ =

const (ignoring the divergent terms in Pμ
field ≡

∫
d3XTμ0

field and in the momentum of the interaction∑
mg UUμ).

Equation (10.19) then reduces to the equation Min =
∑

m/
√
1− V 2 (it is understood that

∑
mVa/

√
1− V 2 = 0). The definition of the inertial mass of a system therefore poses no difficulty

when the constituents interact via a short-range force.

10.3 The Nordström force

Let us return to (10.13) giving the equation of motion of a particle of ‘charge’ mg coupled to
a scalar field ϕ by means of a function U . If we try to describe gravity by such a ‘potential’,
then mg will be the passive gravitational mass of the body P (and m will be its inertial
mass). The experimental fact that all bodies ‘fall’ in the same way in a gravitational field
forces us to choose mg = m. The equation of motion in (10.13) then becomes (G. Nordström,
1912)

dUμ

dτ
= − 1

1 + U (∂μU + UμUν∂νU) . (10.20)

When the velocities are small and U � 1, (10.20) reduces to Newton’s second law dV/dT =
−∇U and, to recover Newtonian gravity, we must have U = −GM/r in lowest order, where
r is the distance to the source (which is at rest in the reference frame in question), M is its
gravitational mass (or active gravitational mass), and G is Newton’s constant. The field ϕ
then is massless, μ = 0; cf. (10.9).

The fact that (10.20) is a kinematical rather than dynamical equation (because the mass
of the bodies subject to the field does not appear in it) is called the weak equivalence principle.
We may ask whether or not it also applies to light corpuscles. One or the other must be true:
either light is insensitive to gravity and propagates on the cones of M4, or it obeys (10.20).
However, the result in both cases is the same, because the world line of an ultra-relativistic
particle always approaches a light-like line (see the explicit calculation below). This means
that the light coming from a distant source will not be deflected by a source at rest in an
inertial frame. Since observations confirm the bending of light predicted by general relativity,
we conclude that gravitation cannot be described by a scalar field theory formulated within
the framework of special relativity.

Light deflection

When the function U depends only on the radial coordinate r, the solution of (10.20) follows
step by step that of the Kepler problem in the Newtonian theory (see Book 1, Sections 12.2
and 17.1). The motion is planar and we use polar coordinates: X = r cosφ, Y = r sinφ. We first
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find that ∂0U = 0 and U j∂jU ≡ Ẋ∂XU+ Ẏ ∂Y U = U̇ (where the dot denotes differentiation with
respect to the proper time τ).

The zeroth component of (10.20) is then written as (1+U)T̈ = −U̇ Ṫ , the solution of which is

(1+U)Ṫ = E, where E is a constant. The combination (Ÿ cosφ−Ẍ sinφ) gives (1+U)(2ṙφ̇+rφ̈) =

−rφ̇ U̇ , which can be integrated by inspection to give (1 + U)φ̇ = L/r2, where L is a second

constant of integration. Finally, the normalization of the 4-velocity (−Ṫ 2+ ṙ2+r2φ̇2 = −1) gives

ṙ2. We note that the particle 3-velocity is given by (ṙ2 + r2φ̇2)/Ṫ 2 and tends to V 2
∞ = (E2−1)/E2

at infinity.
Next, following Binet, we set r = 1/u, form the ratio ṙ2/φ̇2, and then take the derivative

with respect to the angle φ. This gives

(
du

dφ

)2

+ u2 =
1

L2

[
E2 − (1 + U)2

]
=⇒ d2u

dφ2
+ u =

1

p
(1 + U)dU

dϕ
, (10.21)

where we have introduced the variable ϕ ≡ −GM/r and set p ≡ L2/GM .
At this point we must specify the ϕ dependence of the function U . At lowest order it must

correspond to the Newtonian potential −GM/r ≡ ϕ, and so the second equation in (10.21)
reduces to the Newtonian equation d2u/dφ2 + u = 1/p, the solution of which is the hyperbola
r = p/(1+ e cosφ) with 1+ e = L2/(GMr0), where r0 is the minimum distance of approach (for
example, the solar radius).

We still need to express L2 as a function of the speed of the particle at infinity. Since
the initial conditions are dr/dφ = 0 at φ = 0, the first expression in (10.21) gives L2/r20 =
E2 − (1 + U|0)2 ≈ 1

1−V 2
∞

if U|0 � 1 and V∞ → 1. Therefore, e ≈ (r0/GM)(1− V 2
∞)−1 (instead

of the Newtonian result e ≈ r0/GM ; cf. Book 1, Section 17.1). The hyperbola is therefore very
close to the straight line r cosφ = r0. Its asymptotes are determined by 1 + e cosφa = 0 or
φa � ±π/2 + 1/e and the particle is deflected by an angle Δφ = 2/e or

Δφ =
2GM

r0
(1− V 2

∞) → 0 . (10.22)

Therefore, as announced, an ultra-relativistic particle is not deflected in the scalar theory of
gravity.

Advance of the perihelion

In the Nordström theory of the gravitational field, the equation of motion of a particle
reduces to (10.21), where u = 1/r and p is a constant of integration. In addition, if the source
remains at the origin of an inertial frame, then U = ϕ+ 1

2
a2ϕ

2 · · · with ϕ = −GM/r. When the
mass M of the source (the Sun, for example) is much larger than that of the particle (Mercury,
for example), this external-field model is suitable for describing the dynamics of the system.

In lowest order the solution of (10.21) reduces to the Keplerian ellipse u = (1 + e cosφ)/p,
where p ≡ a(1− e2), a being the major axis and e the eccentricity. In the next order (10.21) is
written as

d2u

dφ2
+ u(1 + C) =

1

p
, where C =

GM(1 + a2)

p
. (10.23)

The solution is u = 1+e cos(
√
1+Cφ)

(1+C)p
, the equation of an ellipse which precesses by an angle

Δω = 2π/
√
1 + C − 2π in each revolution, where C is small so that:
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Δω = −ΔωRG
(1 + a2)

6
, where ΔωRG ≡ 6πGM

a(1− e2)
. (10.24)

ΔωRG is the value confirmed by observation and predicted by general relativity. We therefore
see that we can choose a2 (= −7) such that the Nordström theory correctly predicts the advance
of the perihelion (see Fig. 10.2). (However, we recall that it predicts an incorrect result for the
deflection of light rays, as we have seen.)

X

Y Δω

Fig. 10.2 Precession of the perihelion.

10.4 Inertial and gravitational masses of a two-body system

Let us consider two point particles orbiting each other using the Nordström theory which
describes gravity by means of a massless scalar field ϕ. According to the ‘weak equivalence
principle’, their gravitational masses are equal to their inertial masses, m = mg. When their
velocities are small the gravitational field they create is also weak and is the solution of the
Klein–Gordon equation (10.13). The latter then reduces to the Poisson equation with U ≈ ϕ,
or �ϕ− μ2ϕ = 4πG

∑
a mδ3(X

i −Xi(T )), the solution of which is the quasi-static Newton
potential ϕ = −

∑
a Gm/r if μ = 0, where r is the distance between the frame origin and

the mass m. Therefore, the inertial mass of the system (10.19),

Min =
1

8πG

∫
d3X

(
ϕ̇2 + (∇ϕ)2 + μ2ϕ2

)
+
∑

a

(
1 +

mg

m
U(ϕ)

) m√
1− V 2

,

reduces in this particular case to

Min =
1

8πG

∫
d3X (∇ϕ)2 +

∑

a

m

(
1 +

1

2
V 2 + ϕ

)
+O(G2) . (10.25)

[Since the motion is Newtonian, in lowest order we have V 2 = O(G).]
The first term in (10.25) is the opposite of the Newtonian potential energy (see Book 1,

Section 11.4). We calculate it by integrating by parts and using the Poisson equation. Up to
a surface term we have
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1

8πG

∫
d3X (∇ϕ)2 = − 1

8πG

∫
d3X ϕ�ϕ

=
1

2

∑

a

ma

∫
d3Xδ3(X

i −Xi
a(T ))

∑

b

Gmb

rb
=

Gmamb

R
,

(10.26)

where R is the distance between the two bodies and we have ignored the divergent terms.
The second term in (10.25), again ignoring divergent terms, is

∑

a

m

(
1 +

1

2
V 2 + ϕ

)
= ma +mb +

1

2
maV

2
a +

1

2
mbV

2
b − 2

Gmamb

R

= ma +mb +
1

2

mamb

ma +mb
V 2 − 2

Gmamb

R

= ma +mb −
3

2

Gmamb

R
,

(10.27)

where the last line is evaluated in the center-of-mass system and for circular motion (see
below and Book 1, Chapter 11). Adding (10.26) and (10.27), we then find that in the lowest,
Newtonian, order the inertial mass of the system is the sum of the masses of the constituents:
M = ma+mb. However, in the next order it is necessary to add the contributions of the field
energy (10.26) as well as the kinetic and interaction energies (10.27) of the particles, which
gives

Min = ma +mb −
1

2

Gmamb

R
+O(G2) . (10.28)

The extra term turns out to be equal to the sum of the Newtonian potential and kinetic
energies. Equation (10.28) is an illustration of the mass–energy equivalence.

Now let us calculate the gravitational mass of this system of two particles orbiting each
other. For this we need to find the gravitational field created by the system far away in the
post-Newtonian order, which means solving the Klein–Gordon equation (10.13) (with μ = 0)
iteratively:

�ϕ = 4π
∑

a

Gm

∫
dτ

dU
dϕ

δ4(X
μ −Xμ(τ)) (10.29)

with U = ϕ+ 1
2a2ϕ

2 + · · ·.
To lowest order in G, where U = ϕ, the solution of (10.29) is the retarded Liénard–

Wiechert potential given in (10.11): ϕ(Xμ) = −
∑

a Gm/R, where R ≡ −(Xμ −Xμ
R)UμR,

with Xμ
R the intersection of the past cone with apex at the point Xμ and the world line of

the particle m, and Uμ
R the velocity at this point; see Fig. 10.3.

At the next order in G, dU
dϕ (X

μ) = 1−
∑

a Gma2/R, which we ‘renormalize’ to dU
dϕ (z

μ(τ))

= 1−Gm′a2/ρ when evaluating it on the world line of m at the point zμ(τ). Here ρ is defined
by ρ ≡ −(zμ − ẑ′μ)Û ′

μ, with ẑ′μ the intersection of the past cone with apex zμ and the world

line of m′, and Û ′μ the velocity at this point. Therefore, to this order3 the solution of
(10.29) is

3In Section 17.2 we shall see how to obtain the solution using the retarded propagator.
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Xμ

U ′μ

z′μˆ

RU

T

X Y

μ
l
μ

RX
μ

U
μ

zμ

ρ

R,�R

ˆ

Fig. 10.3 Retarded quantities.

ϕ(Xμ) = −
∑

a

Gm

R
+
∑

a

G2mm′a2
R ρR

+O(G3) . (10.30)

Later on in Chapter 20 we shall give a detailed derivation of ϕ far from the system and for
small velocities in the similar case of electromagnetism. The main steps in the (elementary)
calculation are the following.

Y

X

O

rn
i

rR ni
R

zi
R

zi
R0

Z

XR
i  at TR

Xi at T

Fig. 10.4 Three-dimensional decomposition of retarded quantities.

(1) We change over to three-dimensional notation where, for example (see Section 17.1
and Fig. 10.4),

R = rR(1− nR .VR)/
√

1− V 2
R

with rR = T − TR and rRni
R = Xi −Xi

R.
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(2) We introduce an origin inside the system and write rRnR = r n−zR, where r n is the
radius vector of the point with component Xi of length r and zR is the radius vector of the
mass m at TR; see Fig. 10.4. At lowest order in z/r we have rRnR = r n. Then we expand
the potential to order 1/r and order V 2

R (see Section 20.2).
(3) Finally, we take all the quantities at the time TR0

such that T − TR0
= r is the time

taken by the gravitational field (which propagates at the speed of light) to go from the origin
to the point in question [at the required order VR = VR0

+ V̇R0
(n .zR0

), where zR0
and VR0

are the radius vector and the 3-velocity of the mass m at the time TR0
; see Section 20.2].

The result, to be compared with (20.9), is (where RN is the separation 3-vector between
the two bodies and R is their distance)

ϕ = −
∑

a

Gm

r

{

1 + (n .VR0
) +

[
(n .V̇ )(n .z) + (n .V )2 − 1

2
V 2

]

R0

}

+2
Gmamba2

rR
+O(G3) .

(10.31)

The final step is to go to the center-of-mass frame where za = −mbRN/M and zb =
maRN/M with M = ma + mb. At the order considered the motion of the two masses is
Newtonian: V̇ = −GMN/R2 and V2 = GM/R [where V = (RN)˙], and so, taking the aver-
age over an orbital period (cf. Section 18.1), we have (n .V)2 − (GM/R)(n .N)2 = 0.

With all the calculations done, the gravitational potential (10.30) evaluated far from a
system of two bodies slowly orbiting around each other and taking the average over an orbital
period is given by

ϕ = −GM

r
with M ≡ ma +mb −

1

2

Gmamb

R
(1 + 4a2) . (10.32)

Here M is the gravitational mass (or active gravitational mass) of the system. We see that it
is equal to the inertial mass of the system given in (10.28) if a2 = 0, that is, if the coupling
of the field ϕ to the particles is linear: U = ϕ (at least in the order studied). Therefore, the
linear Nordström theory of gravity satisfies, like general relativity, what is called the strong
equivalence principle.4

Inertia and gravitation

A feature specific to the gravitational interaction (called the equivalence principle in general
relativity) is that all bodies ‘fall’ in the same way in a gravitational field. The equations of
motion, such as Newton’s equation (a = −∇U) or its relativistic analog in the Nordström
theory [(10.20), which we rewrite below] do not involve the mass of the body subject to the field
and therefore are kinematical rather than dynamical equations. The same property is found in
inertial forces: the equation of motion of a free particle, whether in an inertial frame or not, does
not depend on its mass.

4However, we recall that this is its only virtue, because, in conflict with observation, it does not predict
any bending of light rays; cf. Section 10.3. In addition, for a2 = 0 it predicts a lag of the perihelion instead of
the observed advance, cf. Section 10.3. Finally, it predicts a spin precession which disagrees with the observed
geodetic precession; cf. Section 7.4.
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However, as we have seen in Section 5.3, in special relativity inertial accelerations are ‘ge-
ometrized’, because they are encoded in the Christoffel symbols of the Minkowski metric.

We can therefore also envision the geometrization of gravitation, that is, its absorption into
the Christoffel symbols. However, the Christoffel symbols of the Minkowski metric can always
be made to cancel out everywhere, by going from an accelerated frame to an inertial Minkowski
frame where they all vanish. In order not to efface gravity everywhere, the Christoffel symbols
encoding gravity must therefore be associated with metrics which are richer than the Minkowski
metric, so that they cannot be made to vanish everywhere by a change of coordinates. The spaces
associated with such metrics are curved spaces.

Let us take the example of the equation of motion (10.20) of a particle in a gravitational
field in the Nordström theory:

dUμ

dτ
= − 1

1 + U (∂μU + UμUν∂νU), (10.33)

where Uμ ≡ dXμ/dτ are the components of the particle 4-velocity in an inertial frame, τ is
its proper time, and U is the gravitational potential, which is Newtonian at lowest order. As is
easily verified (A. Einstein and A. Fokker, 1914), this equation can be rewritten as

Duμ

dτ̄
≡ duμ

dτ̄
+ Γμ

νρu
νuρ = 0 with Γμ

νρ ≡ 1

2
gμσ(∂νgρσ + ∂ρgσν − ∂σgνρ), (10.34)

where gμν ≡ (1 + U)2ημν , so that Γμ
νρ = (δμν ∂ρU + δμρ ∂νU − ∂μUηνρ)/(1 + U), and the velocity

uμ ≡ dXμ/dτ̄ = Uμ/(1 + U) is such that gμνu
μuν = −1. This rewriting is important because

it shows that the Nordström equation of motion (10.33) is actually the geodesic equation in a
spacetime whose metric, with coefficients gμν in the coordinates Xμ, is not the Minkowski metric
(a metric g = Ω � where Ω is a function of the points is said to be conformal to the Minkowski
metric). Indeed, there is no change of coordinates which can reduce the Γμ

νρ given in (10.34) to
zero [because ‘at best’ (10.34) reduces to (10.33) and not to dUμ/dτ = 0]. The spacetime in
which the motion of a particle is a geodesic (that is, ‘free’) in the Nordström gravitational field
is therefore a curved space.

We have seen that the Nordström theory is refuted by observation. To arrive at a geomet-
rical theory which satisfactorily describes gravitation, it is necessary to consider, as is done in
general relativity, spacetimes which differ from Minkowski spacetime by more than a simple
multiplication by a conformal factor.
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Part III

Electromagnetism

The velocity of transverse undulations in our hypothetical medium, calculated from the
electro-magnetic experiments of MM. Kohlrausch and Weber, agrees so exactly with the
velocity of light calculated from the optical experiments of M. Fizeau, that we can scarcely
avoid the inference that light consists in the transverse undulations of the same medium
which is the cause of electric and magnetic phenomena.

James Clerk Maxwell, On physical lines of force. Philosophical Magazine, Volumes 21 & 23
Series 4, 1861, Part III, Prop. XVI
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11

The Lorentz force

Here we shall begin our study of the Maxwell theory by defining the electromagnetic potential and
field as well as the force exerted by an external field on a particle carrying an electric charge. We
will integrate the equation of motion for the cases of uniform rectilinear and circular motion.

We shall follow the four-dimensional approach, which is more efficient and transparent, but will
also give the main results in 3-vector notation.

11.1 The electromagnetic potential and field

In the Maxwell theory the fundamental mathematical quantity representing electromagnetic
phenomena is a field of covariant vectors (or a field of 1-forms), the electromagnetic potential,
with components Aμ(X

ν) in a given inertial frame with Minkowski coordinates Xν .
A quantity derived from the potential plays a central role because it is this quantity

rather than the potential itself which directly represents observable phenomena: this is the
Faraday tensor or electromagnetic field tensor, defined as

Fμν ≡ ∂Aν

∂Xμ
− ∂Aμ

∂Xν
≡ ∂μAν − ∂νAμ ≡ Aν,μ −Aμ,ν , (11.1)

where in the last equality we have used the notation f,μ ≡ ∂μf ≡ ∂f
∂Xμ .

We note that if Aμ is replaced by Aμ + ∂μg, where g(Xμ) is some function, Fμν remains
unchanged. This is a first glimpse of the gauge invariance of the Maxwell theory.

A contravariant vector can be associated with the potential by raising the index using the
coefficients of the inverse Minkowski metric: Aμ ≡ ημνAν (or A0 = −A0, A

i = Ai). Similarly,
the Faraday tensor, which is antisymmetric and 2-fold covariant (a 2-form), can be associated
with tensors of the type

(
1
1

)
which are mixed or 2-fold contravariant: Fμ

ν ≡ ημρFρν (so that
F 0

μ = −F0μ) and Fμν ≡ ημρηνσFρσ = −F νμ. Another useful quantity is the dual of the
Faraday tensor:

∗Fρσ ≡ 1

2
Fμνeμνρσ , (11.2)

where eμνρσ is the Levi-Civita symbol.1

1Note that ∗∗Fμν = −Fμν . The properties of the Levi-Civita symbol were given in Section 7.2. The ones
which will be most useful here are

eijke
k
ml = δimδjl − δilδjm, eijke

jk
l = 2 δil and e0123 = e123 = +1.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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Let us introduce the commonly used three-dimensional notation.
Since it is antisymmetric, the Faraday tensor possesses six independent components which

we denote as

F0i ≡ −Ei , Fjk ≡ Bieijk , (11.3)

or, equivalently,
∗F0i = +Bi ,

∗Fjk = Eieijk . (11.4)

Here Ei is the electric field, Bi is the magnetic field, and eijk is the Levi-Civita symbol. The
fields Ei and Bi can also be expressed as a function of the purely spatial components of Fμν

and its dual as

⎧
⎪⎨

⎪⎩

Bk = +
1

2
F ijeijk ⇐⇒ B1 = +F23, B2 = −F13, B3 = +F12

Ek = +
1

2
∗F ije

ijk ⇐⇒ E1 = +∗F23, E2 = −∗F13, E3 = +∗F12 .

(11.5)

In addition, it is usual to split up the potential as

Aμ ≡ (Φ, Ai) , (11.6)

where Φ ≡ +A0 = −A0 is the Coulomb potential and Ai is the magnetic potential. The
definition (11.1) can then be rewritten as

Ei = −∂0Ai − ∂iΦ , Bi = eijk∂jAk . (11.7)

Finally, we can introduce the 3-vectors (A,E,B), whose components (Ai, Ei, Bi) transform
as A′i = R i

j A
j , etc., under a rotation of the spatial axes of a given inertial Cartesian frame.

Then (11.7) can be written in the 3-vector form

E = −∂A

∂T
−∇Φ , B = ∇∧A . (11.8)

Review of three-dimensional vector calculus

The vector product of two vectors A and B is a vector denoted by A ∧ B with components
(A ∧ B)i = eijkA

jBk. The scalar product is A .B ≡ δijA
iBj = AiBi. The gradient operator is

denoted ∇ and has components ∂i, and the Laplacian is the operator 
 = ∇.∇.
The following expressions can then be proved as an exercise (see also Book 1, Sections 2.6,

3.6, and 4.6):

∇∧∇f ≡ 0, ∇.∇∧A ≡ 0, ∇∧ (fA) = f∇∧A+∇f ∧A,

∇.(A ∧B) = −A.∇∧B +B.∇∧A,

∇∧ (A ∧B) = (B.∇)A− (A.∇)B +A∇.B −B∇.A,

∇∧∇ ∧A = −
A+∇∇.A, ∇(A.B) = A.∇B +B.∇A+B ∧∇ ∧A+A ∧∇ ∧B,

A.(B ∧ C) = C.(A ∧B), A ∧ (B ∧ C) = (A.C)B − (A.B)C, (A ∧B)2 = A2B2 − (A.B)2.
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11.2 Transformation of the field under a Lorentz rotation

Since the potential is required to be a vector so that electromagnetic phenomena satisfy
the principle of relativity, it transforms as a vector under a special Lorentz transformation:
A′

μ = Λν
μAν and A′μ = Λ μ

ν Aν , where Λ μ
ν is the Lorentz matrix and Λν

μ is its inverse; cf.
Section 1.3. The Faraday tensor transforms as

F ′
μν = Λρ

μΛ
σ
ν Fρσ, F ′μ

ν = Λ μ
ρ Λσ

ν F
ρ
σ, F ′μν = Λ μ

ρ Λ ν
σ F ρσ. (11.9)

The first thing we can deduce is that the scalar FμνF
μν and the pseudo-scalar ∗F ρσFρσ are

invariants2:
FμνF

μν = F ′
μνF

′μν , ∗F ρσFρσ = ∗F ′ρσF ′
ρσ . (11.10)

Let us rewrite this in three-dimensional notation.
Under a special Lorentz transformation representing the change from an inertial reference

frame S to a frame S ′ undergoing uniform translation at speed V0 relative to S along the
X1 axis, the components of the vector Aμ transform as

Φ′ =
Φ− V0A1√

1− V 2
0

, A′
1 =

A1 − V0Φ√
1− V 2

0

, A′
2 = A2 , A′

3 = A3 . (11.11)

The electric and magnetic fields then become
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E′
1 = E1 , E′

2 =
E2 − V0B3√

1− V 2
0

, E′
3 =

E3 + V0B2√
1− V 2

0

B′
1 = B1 , B′

2 =
B2 + V0E3√

1− V 2
0

, B′
3 =

B3 − V0E2√
1− V 2

0

.

(11.12)

Finally, (11.10) can be written in 3-vector form as3

E2 −B2 = E′2 −B′2, E.B = E′.B′ . (11.13)

Therefore, in the change of inertial frame from S to S ′, a purely electric field E (i.e., with
B = 0) will transform into a pair (E′, B′ = −V0 ∧ E′), and a purely magnetic field B will
transform into a pair (B′, E′ = V0 ∧B′). Reciprocally, if in a frame S ′ the fields E′ and B′

are orthogonal, there will exist another frame S moving in a direction perpendicular to E′

and B′ in which either E (if |E′| < |B′|) or B (if |B′| < |E′|) is zero. On the other hand, if E
and B are orthogonal and have the same modulus in one frame, they will remain orthogonal
and will have the same modulus in any other inertial frame, according to (11.13). These
transmutations of electric field into magnetic field and vice versa are clearly just kinematic
effects arising from the change of inertial frame.

2We also see that ∗F ρσFρσ is a 4-divergence:

∗F ρσFρσ ≡ 1

2
eμνρσF

μνF ρσ = 2eμνρσ(∂μAν)(∂ρAσ) = 2∂μV
μ with V μ ≡ eμνρσAν ∂ρAσ .

3More precisely, FμνFμν = 2(B2 − E2) and ∗F ρσFρσ = 4E.B. The pseudovector V μ ≡ eμνρσAν ∂ρAσ

splits into V 0 = −A.B, V i = −ΦBi + eijkAjEk. In order to show in the three-dimensional formalism that
∗F ρσFρσ is a divergence, i.e., that ∂0V 0 + ∂iV

i = 2E.B, we need to use the first group of Maxwell equations
(see Section 12.1) as well as the definitions of E and B as functions of Φ and A. On the other hand, the proof
is immediate in the four-dimensional formalism; see footnote 2.
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11.3 The equation of motion of a charge

An electric charge is an elementary object of inertial mass m whose motion is affected by
the presence of an electromagnetic field created by other charges. This charge is quantified
by a number q. If Xμ(τ) is its world line in a Minkowski frame S and Uμ ≡ dXμ/dτ is its
velocity (with UμUμ = −1), its equation of motion is postulated to be the Lorentz equation

m
dUμ

dτ
= Fμ with Fμ = q Fμ

ν U
ν . (11.14)

Here Fμν is the Faraday tensor due to the other charges and Fμ is the Lorentz force.4

This law of motion can also be obtained from a variational principle. Let us choose the ac-
tion of a charge to be the sum of the free-particle action (that is, Sl[ps(λ)] =

−m
∫ λ2

λ1
dλ
√

−ημνẊ
μ
s Ẋν

s ; cf. Sections 2.2 and 10.1) and the interaction term

Si[ps(λ)] = q

∫ λ2

λ1

dλAμẊ
μ
s , (11.15)

where Aμ = Aμ(X
ν
s (λ)) is evaluated on the world line of the path s in an inertial frame

S with Minkowski coordinates Xμ and Ẋμ
s ≡ dXμ

s /dλ. The calculation of the variation of
Si[ps(λ)] when the path between the two points is varied is the same as in Sections 2.2 and
10.1:

δSi = q

∫ λ2

λ1

dλ(AμδẊ
μ + ẊμδAμ)

= qAμδX
μ
∣
∣λ2

λ1
− q

∫ λ2

λ1

dλ(Ẋν∂νAμ − Ẋμ∂νAμ)δX
μ

= −q

∫ λ2

λ1

dλ (∂νAμ − ∂μAν)Ẋ
νδXμ = q

∫ λ2

λ1

FμνẊ
ν δXμdλ .

(11.16)

The equation of motion of the charge extremizes the sum of the actions: δ(Sl + Si) = 0.
Choosing the parameter λ to be the proper time τ so that Ẋμ ≡ Uμ, the variation of Sl

reduces to δSl = −m
∫
(dUμ/dτ) δX

μdτ , and we thus find that the motion is governed by5

(11.14).
We have required Aμ to be a covariant vector, that is, that it transform as A′

μ = Λν
μAν

under a Lorentz rotation. The Faraday tensor Fμ
ν is mixed and therefore becomes F ′μ

ν =
Λ μ
ρ Λσ

ν F
ρ
σ. The Lorentz force Fμ = qFμ

ν U
ν , the contraction of a mixed tensor and the

velocity vector, then is also a vector: F ′μ = Λ μ
ρ F ρ. Finally, the acceleration vector γμ ≡

dUμ/dτ becomes γμ = Λ μ
ρ γρ, so that after multiplication by Λν

μ the Lorentz equation has
the same form in S ′ as in S: mγ′ν = F ′ν .

Let us rewrite this in three-dimensional notation.

4We have FμUμ = 0 due to the antisymmetry of Fμν . In addition, qFμν , that is, qE or qB, has the
dimensions of a force and is therefore expressed in kg·s−1 (since we have set |c| = 1).

5We note that the action (11.15) is invariant under reparametrization. This is essential in order for the
choice of parametrization of the world lines to remain free.
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In terms of the 3-velocity and 3-acceleration V i ≡ dXi/dT and ai ≡ dV i/dT , the Lorentz
force and the acceleration become

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F 0 =
q√

1− V 2
E.V , F i =

q√
1− V 2

(
Ei + (V ∧B)i

)

dU0

dτ
=

V.a

(1− V 2)2
,

dU i

dτ
=

ai

1− V 2
+

V i(V.a)

(1− V 2)2
,

(11.17)

which makes it possible to write the spatial components of the Lorentz equation (11.14) in
various forms, for example,

ma = q
√

1− V 2 (E + V ∧B − V (V.E)) ,

where m
d

dT

(
V√

1− V 2

)
= q (E + V ∧B) .

(11.18)

The zeroth component is also written as

mV .
d

dT

V√
1− V 2

= q E .V . (11.19)

In another inertial frame S ′ the equation of motion is (11.18), where all the physical quantities
and variables are primed, including the time T ′, which is the time measured by a clock at
rest in S ′.

‘Fictitious time’ vs. ‘pure and simple’ time

Within the framework of Newtonian physics, the time T appearing in the three-dimensional
versions of the Lorentz equation (11.18) is the absolute time. If we go to another inertial frame
S ′ moving with velocity V0 relative to the first, the Galilean transformation law for the 3-
velocities requires that V �→ V ′ = V − V0, a �→ a′ = a, and the right-hand side of (11.18),
which depends on the 3-velocity of the charge, does not satisfy the principle of relativity if E
and B are represented by the same 3-vectors in the two frames (E′ = E, B′ = B). It will take
a different form depending on V0, and the problem will be to understand in which particular
inertial frame it will have the form (11.18). For it to preserve the same form in S ′ to first order
in the 3-velocities V0 et V , we must take

E �→ E′ = E + V0 ∧B +O(V 2
0 ) and B �→ B′ = B − V0 ∧ E +O(V 2

0 ) .

The electric and magnetic fields (in contrast to, for example, Newton’s gravitational field) will
then not be represented by the same 3-vectors in two different inertial frames.

To preserve the invariance of the equation of motion (11.18) under Galilean transformations
at higher orders in the 3-velocities, we need to be more clever. Following H. A. Lorentz, we

introduce a ‘fictitious’ time T ′ = T/
√

1− V 2
0 and a contraction of the bodies in the direction of

their motion, in short, as shown by H. Poincaré, we ‘pretend’ to pass from one inertial frame to
another as given by the Lorentz formulas, while the ‘true’ formula is actually the Galilean one:
X ′ = X − V0T , where T is the absolute time of Newton.

The viewpoint is radically different in special relativity. The times T and T ′ are, according
to Einstein’s equations, ‘purely and simply’ the ‘true’ times, and the time dilation and length
contraction are just kinematic effects which no longer need to be explained by the dynamics
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of charged objects. The Lorentz transformation law follows from the new representation of
spacetime, and the invariance of the equations of electromagnetism in going from one inertial
frame to another is manifest if we write them in terms of Minkowski vectors and tensors, as we
have seen above.6

The Lagrangian and Hamiltonian of a charge in a field

The action of a charge in an external field is [cf. (11.15)]

S = −m

∫

dτ + q

∫

AμU
μdτ ≡

∫

LdT with L = −m
√

1− V 2 − qΦ+ q A .V , (11.20)

where the Lagrangian L is a function of the 3-velocity V of the charge and its position (through
the spatial dependence of the potentials Φ and A). The conjugate 3-momentum associated with
V is defined as

π ≡ ∂L

∂V
=

mV√
1− V 2

+ q A, (11.21)

and it is easy to see that the Euler–Lagrange equation dπ/dT = ∇L does again give the Lorentz
equation (11.18) [using the fact that dA/dT = ∂A/∂T+V .∇A along with the relation ∇(A.V ) =
V.∇A+ V ∧∇ ∧A and the definitions (11.8) of E and B].

Equation (11.21) can be inverted to give V in terms of π, and we find that the Hamiltonian
H of the charge, defined as H ≡ π.V − L, is expressed as a function of the position and π as

H =
√

m2 + (π − qA)2 + qΦ . (11.22)

The Hamilton equations ∂H/∂π = V , ∇H = −dπ/dT then also give the Lorentz equation
(11.18).

See, for example, Book 1, Chapters 8 and 9 for an introduction to the Lagrangian and
Hamiltonian formalisms.

11.4 Charge in a uniform and constant field

As examples of the solution of the Lorentz equation, we shall discuss the elementary situations
where the electromagnetic field reduces, in a given inertial frame, to either a uniform constant
electric field or magnetic field, that is, a field independent of both time and position.

Let us imagine a charge in an inertial frame S moving along the lines of an electric
field parallel to the X axis. The only nonzero component of the Faraday tensor then is
F 01 ≡ E = const, and the modulus of the acceleration γμ ≡ dUμ/dτ of the charge will be a
constant owing to the Lorentz equation (11.14):

γμγμ =
q2

m2
(Fμ

νU
ν) (FμρU

ρ) =
q2

m2

(
F 0

1 F01 (U
1)2 + F 1

0 F10 (U
0)2
)

=
q2E2

m2

(
−(U1)2 + (U0)2

)
= g2 with g ≡ qE

m
.

(11.23)

6For a historical approach to electrodynamics see, for example, Darrigol (2000) and Darrigol (2005).
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It is easy to understand this result when we realize that in inertial frames tangent to the
charge world line, the electric field is not changed by the Lorentz transformation, as can be
read off from (11.12): E′

1 = E1.
The Lorentz equation reduces to dU1/dτ = (q/m)F 1

0U
0 ⇐⇒ Ẍ = gṪ , and, similarly,

T̈ = gẊ with UμU
μ = −1, that is, Ṫ 2 = 1 + Ẋ2. We therefore have Ẍ = g

√
1 + Ẋ2,

which can be integrated to give Ẋ2 = g2(X − X0)
2 − 1. The solution of the latter is X =

X0+cosh[g(τ −τ0)]/g. Therefore, after the constants of integration are chosen the trajectory
of the charge will be (see also Section 2.1)

(
T =

1

g
sinh gτ , X =

1

g
cosh gτ

)
⇐⇒ X =

1

g

√
1 + g2T 2 . (11.24)

Charge in a critical electric field

We consider the case where the field E acts over a distance Lmin = 2m/(qE), the value
beyond which quantum mechanics7 predicts the possibility of pair production of a particle and
its antiparticle of mass m and charges q and −q from the vacuum. We then have gLmin ≡
(qE/m)Lmin = 2. If the initial 3-velocity of the charge is zero, its value when leaving the

field is obtained from (11.24) and is V =
√
3/2, or V ≈ 0.87c. Its final energy is mU0

final =
m cosh gτfinal = mgLmin = 2m.

This being the case, pair production is only important if, in addition to acting over a distance
L > Lmin, the field is of the order of the Schwinger critical value Ecrit = m2/(q�), where � is
the Planck constant.8 For an electron

Ecrit = m2α/e3 ≈ 2.4× 1017kg1/2s−3/2 ≈ 1.3× 1018V/m.

[For comparison, the Coulomb field at the Bohr orbit of the hydrogen atom is given by EBohr =
e/a2

Bohr, where aBohr = e2/(mα2) is the Bohr radius, and so we have Ecrit = EBohr/α
3 ≈

2.5× 106EBohr.]
The minimum distance over which this critical field must act in order to have pair production

is Lmin = 2m/(qEcrit) = 2�/m. For an electron

Lmin = 2e2/(mα) = 2.6× 10−21 s = 7.7× 10−13 m (or Lmin = 2αaBohr).

The energy gained per unit length L � Lmin by a charge in a critical field is m(U0 − 1)/L =
m(gcritL− 1)/L ≈ mgcrit = m2/�. For an electron,

m2/� = m2α/e2 = 7.1× 10−10 kg/s = 1.3× 109 GeV/m,

to be compared with the hundreds of MeV/m accessible at present-day linear accelerators.9

7See, for example, Berestetskii, Lifshitz, and Pitaevskii (1971).
8In the units we are using, the Planck constant is given by � = e2/α, where α is the fine-structure constant

(α ≈ 1/137) and e is the electron charge. Numerically, � = 1.2 × 10−51 kg·s = 1.05 × 10−34 J·s. The Bohr
radius discussed below is aBohr = e2/(mα2) = 5.29× 10−11 m.

9Electron–positron pair production has been observed in relativistic heavy ion collisions, see A. Belkacem
et al. (1993), as well as in laser beam collisions, see D. L. Burke et al. (1997). A detailed description of these
processes can of course only be obtained using quantum electrodynamics.
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Now let us consider a charge traveling in a constant magnetic field B along the Z axis.
The only nonzero component of the Faraday tensor then will be F12 ≡ B, and the Lorentz
equation will reduce to

dU0

dτ
= 0,

dU1

dτ
= ω U2,

dU2

dτ
= −ω U1,

dU3

dτ
= 0 with ω ≡ qB

m
, (11.25)

the solution (satisfying UμUμ = −1) of which is, for appropriate choice of the time origin,

T =
ω

Ω
τ , X = r0 sinωτ , Y = r0 cosωτ , Z = UZτ

with Ω =
ω

√
1 + r20ω

2 + U2
Z

,
(11.26)

where r0 and UZ are integration constants. The charge therefore travels along a helix of
radius r0 and pitch 2πUZ/ω about the magnetic field, at an angular velocity ω measured
using its proper time and Ω measured using the time T of the inertial frame. We note that
Ω can also be written in terms of the 3-velocity V i ≡ dXi/dT as

Ω = ω
√
1− V 2 (11.27)

because V 2 = (r20ω
2 + U2

Z)/(1 + r20ω
2 + U2

Z). For V → 1 we must have r0 ω → ∞ (for finite
UZ), and from (11.26) we see that the frequency Ω measured at the time T of the inertial
frame then tends to 1/r0. The energy per unit mass is U0 ≡ 1/

√
1− V 2 = ω/Ω and, if it is

large, we have ω/Ω ≈ r0 ω = (q/m)r0B.
When the charge is an electron, the quantity ω ≡ eB/m is referred to as the cyclotron

frequency, and Ω ≡ ω
√
1− V 2 is the synchroton frequency. The distance r0 in terms of the

3-velocity is obtained from (11.26) and (11.27):

r0 =
V sin θ

ω
√
1− V 2

with VZ ≡ V cos θ. (11.28)

This is the Larmor radius.

Synchrotron motion

In large modern accelerators like LEP at CERN, the electron energy P 0 can reach 100 GeV,
corresponding to an energy per unit mass (or celerity) P 0/m ≡ U0 ≡ 1/

√
1− V 2 ≈ 2 × 105.

Using θ = π/2, for a radius r0 = 5 km, (11.28) gives ω ≈ 1.2 × 1010/s and (11.27) gives
Ω ≈ 6 × 104/s. Finally, from (11.25) we find the value of the (effective) magnetic field: B ≈
3.7× 106 kg1/2/s3/2 ≈ 0.05 tesla.

Another example: the magnetic field of the muon storage ring at CERN where the time-
dilation experiment of J. Bailey et al. was performed in 1979 was B = 1.472 tesla. Since the muon
has the same charge as the electron and a mass 206.7 times heavier, (11.25) gives ω ≈ 1.25×109/s.

For a ring radius of r0 = 7 m, (11.28) gives (with θ = π/2) the celerity 1/
√
1− V 2 ≈ 29.26,

and so, from (11.26) and (11.27) we have T/τ = ω/Ω = 1/
√
1− V 2 ≈ 29.26. The muon lifetime

measured at the laboratory time T is about 30 times longer than its proper lifetime, as was
verified with an accuracy of 0.1 % (see Section 2.2).
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The Maxwell equations

In this chapter we present the Maxwell equations determining the electromagnetic field created by
an ensemble of charges, and also derive them from a variational principle. We study their invari-
ances: gauge invariance and invariance under Poincaré transformations, which allows us to derive
the conservation laws for the total charge of the system and also for the system energy, momentum,
and angular momentum.

12.1 The first group of Maxwell equations

The six components of the (antisymmetric) Faraday tensor Fμν are not all independent
because they are expressed as a function of the four components of the potential Aμ: Fμν =
∂μAν − ∂νAμ. Moreover, since one of the four components of the potential can be chosen
arbitrarily without changing Fμν (this is the ‘gauge invariance’ mentioned in Section 11.1),
there are 6− (4− 1) = 3 constraints on the components of Fμν . It can be verified that they
satisfy the following identity, referred to as the first group of Maxwell equations:

∂μFνρ + ∂νFρμ + ∂ρFμν ≡ 0 ⇐⇒ eμνρσ∂νFρσ ≡ 0 ⇐⇒ ∂ν
∗Fμν = 0 (12.1)

(there are three, not four, independent components because the divergence vanishes:
eμνρσ∂μνFρσ ≡ 0).

The identity (12.1) can be written in terms of the electric (F0i = −Ei) and magnetic
(Fjk = Bieijk) fields as

∂iB
i = 0 , eijk∂jEk = −∂0B

i , (12.2)

or, in 3-vector notation,

∇.B = 0 , ∇∧ E = −∂B

∂T
. (12.3)

The first equation in (12.3) is Gauss’s law of magnetism, and the second is Faraday’s law of
induction. Since Gauss’s law is included in Faraday’s law [in the sense that ∂(∇.B)/∂T =
∂i0B

i ≡ 0; cf. (12.2)], there are indeed only three constraint equations.

12.2 Current and charge conservation

A continuous ensemble of moving charges is characterized by a current vector, jμ(Xν). The
action describing, in an inertial frame Xν , the interaction of this current with an electro-
magnetic field is chosen to be of the form

Si =

∫
Aμj

μ d4X , (12.4)

where d4X ≡ dX0dX1dX2dX3 is the volume element in Minkowski coordinates Xμ and the
integral runs over all of spacetime.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001

B
o
o
k
2



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 290 — #302

290 Book 2. Part III: Electromagnetism

The Lorentz force Fμ = qFμ
νU

ν acting on a point charge is invariant under the gauge
transformation Aμ → Aμ + ∂μg (where g is arbitrary) which leaves the electromagnetic field
tensor Fμν = ∂μAν −∂νAμ unchanged; see Section 11.1. In order for the action (12.4), which
gives rise to the force acting on a charge distribution, to be invariant also, we must have

0 = Si(Aμ + ∂μg)− Si(Aμ) =

∫
jμ∂μg d

4X =

∫
∂μ(gj

μ) d4X −
∫

g ∂μj
μ d4X . (12.5)

The first term vanishes owing to the Gauss theorem for any function g which vanishes on
the boundary of the integration region, while the second term must vanish ∀ g, and so

∂μj
μ = 0 , (12.6)

which is the law of current conservation. Integration over a 3-volume V of the hyperplane
T = const gives

∫
d3X ∂0j

0 +
∫
d3X ∂ij

i = 0, or, using Gauss’s theorem,

dQ

dT
= −
∫

S

ji dSi , where Q ≡
∫

V

j0d3X. (12.7)

The quantity d3X = dX1dX2dX3 is the 3-volume element and S is the 2-surface bounding
V with surface element dSi. When there is no flux through S, that is, when the charge
distribution remains confined, the total charge Q of the system contained in V is constant.
This is an application of Noether’s theorem (see Sections 8.2 and 9.3): any invariance of
the action (here, gauge invariance) is associated with a conserved quantity (here, the total
charge).1

The current which describes point charges is

jμ =
∑

a

q

∫

L

dτ δ4(X
ν −Xν(τ))Uμ, (12.8)

whereXμ(τ) is the world line L of the particle a of charge q parametrized by its proper time τ ,
Uμ = dXμ/dτ is the particle velocity (ημνU

μUν = −1), and δ4(X
μ) ≡ δ(T )δ(X)δ(Y )δ(Z),

with δ the Dirac delta distribution [a ‘function’ which vanishes everywhere except at the
origin and has unit integral

∫
dXδ(X) = 1; see Section 9.2]. Since

∫
d4X δ4(X

μ) = 1, the
interaction part of the action (12.4) is indeed that of point charges; cf. (11.15):

Si ≡
∫
d4XAμj

μ =
∑

a

q

∫
d4X dτ δ4(X

ν −Xν(τ))AμU
μ =
∑

a

q

∫
dτ AμU

μ . (12.9)

Moreover, since
∫
d3X δ3(X

μ) = 1 and U0 = dT/dτ , we have
∫
d3X j0 =

∑

a

q

∫
dτ δ(T − T (τ))U0 =

∑

a

q = Q . (12.10)

The total charge of the system is thus expressed, as desired, as a volume integral of a current.
It can also be shown that ∂μj

μ = 0 using the fact that ∂0δ(X−X(T )) = −(dX/dT )(∂δ(u)/∂u)

1To show that Q is a scalar and therefore constant in any inertial frame, we proceed as in Section 8.2,
integrating (12.6) over a four-volume M sandwiched between two space-like hypersurfaces. If the flux through
the lateral ‘cylinder’ is zero, we have

∫
Σ jμ dSμ ≡ Q = const. When Q is written in this form the fact that

it is independent of the choice of reference frame is manifest. If Σ ≡ V is the hypersurface T = const of an
inertial frame, we recover (12.7).
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with u = X−X(T ), and so on (the calculation was discussed in detail in Section 8.4 in proving
the conservation of the energy–momentum tensor of point particles).

In the three-dimensional version the components of the current jμ,

j0 ≡ ρ =
∑

a

q δ3(X
j −Xj(T )) , ji =

∑

a

q V iδ3(X
j −Xj(T )) , (12.11)

where V i is the 3-velocity, coincide with the Newtonian definitions of the charge density and
current. (However, it should be noted that it is ρ dτ/dT and not ρ which is a 4-scalar.)

12.3 The second group of Maxwell equations

A charge distribution described by the current vector jμ in the inertial frame with coordinates
Xμ creates an electromagnetic field which we here postulate to be governed by the second
group of Maxwell equations:

∂νF
μν = 4πjμ, (12.12)

where Fμν = ∂μAν −∂νAμ is the Faraday tensor and Aμ is the potential describing the field.
They are invariant under the gauge transformations Aμ → Aμ + ∂μg and include the current
conservation law ∂μj

μ = 0 because Fμν is antisymmetric.
These equations also follow from a variational principle. Let us choose the action of the

field to be the sum of the interaction term (Si =
∫
Aμj

μ d4X) and the following functional
of the potential:

Sf = − 1

16π

∫
FμνF

μν d4X, (12.13)

where d4X ≡ dX0dX1dX2dX3 and the integral runs over all of spacetime. If we vary, as in
Section 8.1, the potential Aμ, we obtain

δ(Si + Sf) =

∫
d4X

(
jμδAμ − 1

8π
Fμν(∂μδAν − ∂νδAμ)

)

= − 1

4π

∫
∂μ(F

μνδAν)d
4X − 1

4π

∫
d4X (∂νF

μν − 4πjμ) δAμ .

The first term transforms into a surface integral according to Gauss’s theorem. The Maxwell
equations (12.12) therefore extremize the action for any variation of the potential configura-
tion which vanishes on the domain boundary. These are the Euler–Lagrange equations (8.3)
associated with2 Sf + Si.

The Maxwell equations can also be written as a function of the potential as

�Aμ − ∂μ(∂νA
ν) = −4πjμ, (12.14)

where � is the d’Alembertian, � ≡ ημν∂μ∂ν ≡ − ∂2

∂T 2 + �, and � ≡ δij ∂2

∂Xi∂Xj is the
Laplacian.

2The choice (12.13) for the action is necessitated by the fact that it must lead to the Maxwell equations,
which are verified experimentally, but it is not unique. For example, the addition to the integrand of a (gauge-
invariant) term ∗FμνFμν does not modify the equation of motion because this pseudo-scalar is a divergence
(see Section 11.2, footnote 2) whose variation is zero.

A remark about the dimensions: the choice (12.13) for the action, as well as the Maxwell equations (12.12)
which follow from it, implies that FμνFμν , that is, E2 and B2 have the dimensions of an energy density and
are therefore expressed in kg/s3 (since we have set |c| = 1).
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Since (12.14) is linear, its general solution is the sum of the general solution of the
homogeneous equation (jμ = 0) describing electromagnetic waves (see Chapters 15 and 16
below), and a particular solution of the complete equation.

The choice of gauge

As we have already seen and will see many times below, the Maxwell equations are not
changed by gauge transformations Aμ → Ãμ = Aμ + ∂μg, where g is an arbitrary function of
the coordinates Xμ. Gauge fixing means choosing a particular g.

Once a solution Aμ of (12.14) is known, we can, for example, choose g such that ∂0g = −A0

(which defines it up to a function of the spatial coordinates). We then have Ã0 = 0, which defines
the temporal gauges or Hamiltonian gauges. In other words, we can solve (12.14) by requiring
that A0 = 0.

Alternatively, we can choose g such that 
g = −∂iA
i so that ∂iÃ

i = 0. This is what is called
the Coulomb gauge or radiation gauge (sometimes also the transverse gauge). It is unique if we
require that g be regular everywhere and vanish at spatial infinity.

We should also mention the existence of the axial gauge defined by A3 = 0.
Finally, we can require that ∂μÃ

μ = 0, which means that g must satisfy �g = −∂μA
μ, the

solution of which is g = g0 + h, where g0 is a particular solution and h is a harmonic function
solution of �h = 0. The ensemble of resulting potentials Ãμ = Aμ + ∂μg0 + ∂μh form the Lorenz
gauges.3 They preserve the manifestly Lorentz-invariant form of the Maxwell equations.

The Maxwell equations (12.12) can be written in three-dimensional form in terms of the
electric and magnetic fields (F 0i = Ei, Fij = eijkB

k) as

∂iE
i = 4πj0 , −∂0E

i + eijk∂jBk = 4πji , (12.15)

or in 3-vector notation as

∇.E = 4πρ , ∇∧B =
∂E

∂T
+ 4πj , (12.16)

where ρ ≡ j0 and j are the (Newtonian) charge density and the current 3-vector. The
first equation (12.16) is Gauss’s law, and the second, where the term ∂E/∂T is called the
displacement current, is the Ampère–Maxwell law.

Lorentz invariance

Using the relation ∇ ∧ ∇A = −
A + ∇∇ .A, we easily find that the complete Maxwell
equations, ∇.B = 0, ∇∧ E = −∂B/∂T [cf. (12.3) and (12.16)], imply that

−∂2E

dT 2
+
E = 4π

(
∂j

∂T
+∇ρ

)

, −∂2B

dT 2
+
B = −4π∇∧ j . (12.17)

As we shall see in detail in Chapter 15, the electric and magnetic fields outside the charges (i.e.,
where j = ρ = 0) travel at unit velocity (or velocity c, numerically equal to the speed of light),
as verified by H. Hertz. This is why Maxwell concluded that light is an electromagnetic field.

3(Ludvig Valentin) Lorenz, and not, as is sometimes erroneously written, (Hendrik Antoon) Lorentz.
For more details about the passage from one gauge to another see, for example, Jackson (2002).
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All the experiments on electromagnetism require that the equations (12.17) have the same
form in any inertial frame because, in contrast to what happens, for example, with sound (see
Book 1, Section 17.3), it turns out to be impossible to find a frame in which an ‘aether’ car-
rying light waves is at rest. However, in the Newtonian framework E and B are 3-vectors
and T is the absolute time, and it is problematical to require that the equations (12.17) re-
main invariant in passing from one inertial frame to another if such passage is governed by
Galilean transformations (except by requiring that the fields not be represented by the same
3-vectors in two different frames, and introducing a ‘fictitious’ time, and so on, as mentioned in
Section 11.3.)

On the other hand, when expressed in tensor form eμνρσ∂νFρσ = 0 [cf. (12.1) and (12.12)],
the Maxwell equations preserve by construction the same form under Lorentz transformations,
which in special relativity describe the passage from one inertial frame to another. Hence, the
solution of (12.17) in the vacuum is a wave packet (see Chapter 15 below) propagating at the
speed of light in any Minkowski frame, in agreement with experiment. It is therefore useless to
specify whether or not the medium in which the waves propagate is at rest, and the rigid fluid
corresponding to the aether (see footnote 9 of Section 8.3) is relegated to limbo.

Duality and magnetic charges

The complete Maxwell equations are, cf. (12.12) and (12.1),

∂νF
μν = 4π jμ, ∂ν

∗Fμν = 0 , (12.18)

where ∗Fρσ ≡ 1
2
Fμνeμνρσ and Fμν = ∂μAν − ∂νAν . To write them in a more symmetric form,

we can follow Dirac (1931) and make the generalization

∂νF
μν = 4π jμe , ∂ν

∗Fμν = 4πjμm , (12.19)

where we assign the particles, aside from their mass, a magnetic charge along with the electric
charge. (In this case the Faraday tensor can no longer be derived from a potential Aμ, except out-
side the magnetic charges.) Written in the form (12.19), the field equations possess a symmetry
referred to as duality. If for a constant θ we write

F̃μν = Fμν cos θ − ∗Fμν sin θ

(which implies that ˜∗Fμν = ∗Fμν cos θ + Fμν sin θ), the equations (12.19) will preserve the same

form ∂ν F̃
μν = 4π j̃μe and ∂ν

˜∗Fμν = 4πj̃μm as long as new currents are defined as

j̃μe = jμe cos θ − jμm sin θ , j̃μm = jμm cos θ + jμe sin θ .

Dyons are particles whose electric and magnetic charges are proportional to each other: jμm =
jμe tanϑ. Such particles are equivalent to particles without a magnetic charge because j̃m can
be eliminated by the dual transformation θ = −ϑ, so that (12.19) becomes (12.18). Finally, a
particle with zero electric charge is called a magnetic monopole.

The existence of dyons or magnetic monopoles has up to now not been confirmed.4

4A complete discussion of electromagnetic duality is given by Figueroa-O’Farrill (1998).

B
o
o
k
2



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 294 — #306

294 Book 2. Part III: Electromagnetism

12.4 The field energy–momentum tensor

As we saw in Section 8.2, we can associate with any Lagrangian density L, which is a
functional of a field Φ but does not depend explicitly on the coordinates, a Noether energy–
momentum tensor Θ ν

μ given by Θ ν
μ ≡ −∂μΦ

∂L
∂∂νΦ

+ δνμL. In electromagnetism the role
of the field Φ is played by the potential Aμ and the Lagrangian density is [cf. (12.13)]
L(Aμ) = −(1/16π)FμνF

μν . We therefore find

Θ ν
μ =

1

4π

(
FμρF

νρ − 1

4
δνμ F

ρσFρσ

)
+

1

4π
F νρ∂ρAμ . (12.20)

From Section 8.2 we also know that this tensor is conserved (∂νΘ
ν
μ = 0) if the field equations,

which in the present case are the Maxwell equations in the vacuum (∂νF
ρν = 0), are satisfied.

Since the divergence of the last term in (12.20) is zero owing to the field equations and the
antisymmetry of Fμν , we shall define the energy–momentum tensor of the electromagnetic
field as

Tμν =
1

4π

(
FμρF

ρ
ν − 1

4
ημν F

ρσFρσ

)
, such that ∂νT

μν = 0 if ∂νF
ρν = 0 , (12.21)

which has the advantage of being symmetric and gauge-invariant.5 The tensor (12.21) has
zero trace Tμ

μ = 0, and it can also be written as

Tμν =
1

8π
(FμρF

ρ
ν + ∗Fμρ

∗F ρ
ν ) . (12.22)

Let us now take into account the presence of the charges giving rise to the field. Using
only the antisymmetry of Fμν and the first group of Maxwell equations ∂ρ

∗Fμρ = 0, we have

∂ρT
μρ = − 1

4π
Fμ

ρ ∂νF
ρν . (12.23)

Reciprocally, if we require that the energy–momentum tensor of the field be conserved, i.e.,
that ∂νT

μν = 0, the identity (12.23) then implies that ∂νF
μν = 0. In other words, the

conservation of the energy–momentum tensor of the electromagnetic field implies the second
group of Maxwell equations outside the charges.

If we require that the Maxwell equations be satisfied in the presence of charges ∂νF
ρν =

4πjρ, we will have
∂ρT

μρ = −Fμ
ρj

ρ . (12.24)

Replacing jρ by its expression (12.8) and using the Lorentz equation mdUμ/dτ = q Fμ
ν U

ν ,
we can rewrite (12.24) as

∂ρT
μρ = −

∑

a

m

∫
dτ δ4(X

ν −Xν(τ))
dUμ

dτ
. (12.25)

5Since, modulo the Maxwell equations, F νρ∂ρAμ = ∂ρσμνρ with σμνρ = AμF νρ, we see that Θμν and
Tμν differ by only a total divergence, which does not modify the definition of the field momentum as long as
it falls off sufficiently rapidly at infinity; see (8.11).

We also note that the addition to the Lagrangian density of the divergence ∗FμνFμν mentioned above in
footnote 3 will lead to an energy–momentum tensor different from (12.20).
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We recognize the divergence of the energy–momentum tensor of massive particles on the
right-hand side [cf. Section 8.4, (8.29) and (8.32)]. Hence, we finally have

∂μ(T
μν + Tμν

part) = 0, where Tμν
part =

∑

a

m

∫
dτ δ4(X

μ −Xμ(τ))UμUν . (12.26)

This conservation law should be compared with that obtained in (10.17) in the case of a
scalar interaction.

Integration over a 3-volume V with Cartesian volume element d3X of the hyperplane
T = const of a given inertial frame gives

d

dT
Pμ = −

∫

S

TμidSi , where Pμ ≡ Pμ
field + Pμ

charges

with Pμ
field ≡

∫

V

d3X Tμ0 and Pμ
charges ≡

∑

a

mUμ ,

(12.27)

where the 4-velocities Uμ are evaluated at the points where the world lines intersect the hy-
persurface X0 = T . Therefore, in the absence of radiation (that is, flux through the boundary
S of V ), the total momentum Pμ, the sum of the momenta of the field and the charges, will
be constant owing to the Maxwell and Lorentz equations.6

Let us consider the case P i = 0. Then P 0 ≡
∑

a mU0 + P 0
field is the rest energy, that is,

the inertial mass of the system. If the system radiates, this mass is not constant.
We can similarly obtain the loss of angular momentum of the ensemble of the field and

the particles which create it. In the center-of-mass frame where the total 3-momentum P i

vanishes, the total intrinsic angular momentum is given by [cf. (7.9) and (8.13)]

Ji =

∫
d3X eijkX

j(T k0 + T k0
part), (12.28)

where Xj ≡ rnj are the components of the radius vector of length r of the reference point.
Its time derivative is

dJi
dT

=

∫
d3X eijkX

j∂0(T
k0 + T k0

part) = −
∫

d3X eijkX
j∂l(T

kl + T kl
part)

= −
∫
d3X ∂l[eijkX

j(T kl + T kl
part)] +

∫
d3X eilk(T

kl + T kl
part)

= −r

∫
eijkn

jT kl dSl,

(12.29)

where we have used the conservation law (12.26), integrated by parts, and exploited the
symmetry of the energy–momentum tensors. Then we used Gauss’s theorem and the fact
that there are no charges at infinity.

Since the surface of the sphere at infinity grows as the squared distance r to the charges
and the energy–momentum tensor is quadratic in the fields, we see from (12.27) that the

6In Section 8.2 we saw how this momentum transforms in a change of inertial frame. See also footnote 1
of this chapter.
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system will radiate if the Faraday tensor falls off as 1/r. For the radiated angular momentum
to be finite [cf. (12.29)], it is necessary that this 1/r2 radiation part of the energy–momentum
tensor, Tμν

rad, be such that eijkn
jT kl

raddSl vanish. To obtain the radiation rate it is necessary
to know the Faraday tensor to order 1/r2 inclusive [see also (12.34) below].

Let us now go to the three-dimensional notation.
It is usual to write

T 00 ≡ W, T 0i ≡ Si, T ij ≡ σij , (12.30)

where W is known as the energy density of the field, Si as the Poynting vector, and σij as
the constraint tensor. In terms of the electric and magnetic fields we have

W =
E2 +B2

8π
, S =

E ∧B

4π
,

and σij =
1

4π

(
−EiEj −BiBj +

1

2
δij(E

2 +B2)

)
.

(12.31)

The isotropic pressure p of the field is defined as p = 1
3σ

i
i and is related to the energy

density as
W = 3 p . (12.32)

The ‘equation of state’ of an electromagnetic field is therefore the same as that of a gas of
ultrarelativistic particles;7 cf. (8.36).

The energy and momentum of an interacting system given by (12.27) can be written as

P 0 =
1

8π

∫
d3X (E2 +B2) +

∑

a

m√
1− V 2

,

P =
1

4π

∫
d3X E ∧B +

∑

a

mV√
1− V 2

.

(12.33)

If P = 0, P 0 ≡ Min is the inertial mass of the system. It is a priori positive, but must
be ‘renormalized’ because the field (E, B) must be evaluated everywhere, including at the
charges where it diverges. We have already seen this in the case of the scalar interaction, cf.
Section 10.2, and will see it again in Section 13.1 and Chapter 4 below.

Finally, the energy and angular momentum radiated per unit time given by (12.27) and
(12.29) are written as follows using (12.31) for T ij :

dP 0

dT
= − r2

4π

∫
(E ∧B).n do ,

dJ

dT
=

r3

4π

∫
n ∧ [(E.n)E + (B.n)B]do, (12.34)

where r is the distance from the center of mass to the sphere at infinity and do is the element
of solid angle [do = sin θdθdφ in spherical coordinates, where the components of the unit
vector n entering into the definition of dSi are n = (sin θ cosφ, sin θ sinφ, cos θ)].

7Starting from the Maxwell equations (∇∧B = ∂0E + 4πj and ∇∧ E = −∂0B), it is easy to see that

∂W

∂T
+∇.S = −j.E ,

which is just the 3-vector version of the zeroth component of (12.24). It is important, however, to avoid
writing the left-hand side in four-dimensional form [i.e., ∂μWμ with Wμ = (W,Si)], because W i = T 0i are
the components of a tensor and do not transform as a vector under Lorentz transformations; see (12.35)–
(12.37) below. Moreover, j.E is not a scalar of M4.
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Transformation of the energy–momentum tensor

In the special Lorentz transformation (1.7) representing the passage from the inertial frame
Xμ to another X ′μ undergoing uniform translation with velocity V0 relative to the first along
the X1 axis, the components of the 2-fold covariant tensor Tμν transform as T ′

μν = Λρ
μΛ

σ
ν Tρσ.

We then have

W ′ =
W − 2V0S

1 + V 2
0 σ

11

1− V 2
0

, (12.35)

S′1 =
S1(1 + V 2

0 )− V0W − V0σ
11

1− V 2
0

, S′2 =
S2 − V0σ

12

√
1− V 2

0

, S′3 =
S3 − V0σ

13

√
1− V 2

0

, (12.36)

σ′11 =
σ11 − 2V0S

1 + V 2
0 W

1− V 2
0

, σ′12 =
σ12 − V0S

2

√
1− V 2

0

, σ′13 =
σ13 − V0S

3

√
1− V 2

0

, (12.37)

and σ′22 = σ22, σ′23 = σ23, σ′33 = σ33. Note that Tμν transforms as the product of the compo-
nents of two vectors, because it is symmetric.
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Constant fields

In this chapter we review the basic ideas of electrostatics (Coulomb’s law) and magnetostatics (the
Biot–Savart law). We study the motion of a charge in a Coulomb field in detail. Then we discuss
the Rutherford scattering formula which established the ‘planetary’ model of the atom, the Bohr–
Sommerfeld quantization which displayed the limits of the theory, and, finally, the spin coupling
explaining the atomic fine structure.

13.1 Coulomb’s law

Let us consider charges in an inertial frame S which are at rest or at least have velocities
small enough to be negligible compared to the speed of light. The associated current is
jμ = (ρ(Xi), 0), and we shall be interested in static solutions of the Maxwell equation (12.14)
for the potential [that is, �Aμ − ∂μ(∂νA

ν) = −4πjμ]. A particular solution of the spatial
components of the equation is Ai = 0 (we are therefore working in the Coulomb gauge; see
Section 12.3) corresponding to zero magnetic field. The time component of the potential then
reduces to the Poisson equation

�Φ = −4πρ . (13.1)

(This equation should be compared with the equation for the gravitational potential in Book
1, Section 11.3, or with the static Klein–Gordon equation of Section 10.2.) If we have a
distribution of point charges qa, then ρ is given by (12.11), ρ =

∑
a qaδ3(X

i −Xi
a(T )), and

the solution is [using the fact that �(1/r) = −4πδ3(X
i); cf. Section 9.2]

Φ =
∑

a

qa
ra

=⇒ E ≡ −∇Φ =
∑

a

qa
r3a

la , (13.2)

where la, the length of ra, is the 3-vector from the charge qa to the reference point and has
components lia = Xi −Xi

a. The solution (13.2) for the electric field is Coulomb’s law.
The energy of the field created by this distribution, P 0

field =
∫
d3X T 00, reduces to [cf.

(12.30) and (12.31)]

P 0
field =

1

8π

∫
d3X E2 = − 1

8π

∫
d3X E .∇Φ

= − 1

8π

∫
d3X∇ .(EΦ)− 1

8π

∫
d3X Φ�Φ,

(13.3)

where we have used only the fact that E = −∇Φ. The first term of the last equation vanishes
owing to Gauss’s theorem, because the solution of the field equations (13.2) is such that (EΦ)
falls off as 1/r3 for a confined charge distribution. It should be noted that P 0

field, the integral
of a positive-definite density (E2), is positive.
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Then from (13.1) and (13.2) we find

P 0
field = − 1

8π

∫
d3X Φ�Φ =

1

2

∫
d3X Φρ =

1

2

∑

a

qaΦa, (13.4)

where Φa is the potential created by all the charges at Xα
a (the location of the charge qa),

including the charge qa itself: Φa =
∑

a′ qa′/raa′ , where raa′ is the spatial separation of the
charges a and a′. This expression diverges because it contains a self-energy term (a′ = a). It
is usual to ignore such divergent terms and work with the so-called electrostatic energy

P 0
electrostatic =

1

2

∑

a

qa
∑

a′ �=a

qa′

raa′
=

∑

a,a′ with a<a′

qaqa′

raa′
. (13.5)

In contrast to P 0
field, this energy is not necessarily positive.

The ‘classical’ electron radius

The Coulomb potential Φ created by a single charge with spherical symmetry will depend

only on the distance r to the center, and so the Poisson equation (13.1) becomes d2Φ
dr2

+ 2
r

dΦ
dr

=
−4πρ. If in addition ρ is constant for r ≤ r0 and zero beyond this radius, the integration can be
done by inspection and we find (see, for example, Book 1, Section 15.2)

Φ(r) =
Q

2r0

(

3− r2

r20

)

for r ≤ r0 and Φ(r) =
Q

r
for r ≥ r0 . (13.6)

Here we have excluded a 1/r term in the expression for the potential in order that the potential
remain finite at r = 0, and we have imposed the condition that the potential and its derivative
be continuous at r = r0. Finally, Q ≡ (4π/3)ρr30 is the total charge of the distribution.

The energy of the field created by this charge is P 0
field = 1

2

∫
d3X Φρ or, substituting (13.6)

for Φ,

P 0
field =

3

5

Q2

r0
. (13.7)

If the electron is viewed as such a charged sphere and if we assume that its mass m is entirely
electromagnetic in origin, m = P 0

field, then from (13.7) we find its radius:

re =
3e2

5m
, where

e2

m
≈ 9.4× 10−24 s ≈ 2.8× 10−15 m . (13.8)

The quantity re is called the classical electron radius. The proton radius is smaller than this
by a factor of about 2000, and for the sake of comparison we recall that the Bohr radius is
aBohr = e2/(mα2) with α ≈ 1/137.1

1The discovery of the electron spin (G. Uhlenbeck and S. Goudsmit, 1925) put an end to the idea, espoused
by H. A. Lorentz, that the electron mass could be entirely electromagnetic in origin. Indeed, the requirement
that the angular momentum of a sphere, of order mreveq, be of order � = e2/α implies a velocity at the
equator veq of order 1/α or 137 times the speed of light.
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13.2 Quadrupole expansion of the potential

The Coulomb potential generated by a static charge distribution2 of density ρ at a point
P with radius 3-vector R (of length r when the origin is chosen to lie at the center of the
distribution) is given by (see Book 1, Section 14.1)

Φ(R) =

∫
ρ(R′)

|R−R′|dV
′ =

1

r

∫
ρ(R′)

√
1− 2R′·R

r2 + r′2

r2

dV ′, (13.9)

where R′ is the radius vector of a point P ′ of the distribution (r′ is its length) and dV ≡√
dete d3x, dete being the determinant of the Euclidean metric coefficients in the coordinates

xi. If r � r′, i.e., if the point P is far outside the charge distribution, it is possible to expand
Φ(R) as

Φ(R) =
1

r

∫
ρ(R′)dV ′ +

R

r3
·
∫

ρ(R′)R′dV ′

+
1

2r5

∫
ρ(R′)

[
3(R ·R′)2 − r2r′2

]
dV ′ +O

(
1

r4

)
,

(13.10)

which can be rewritten in the following form in terms of the Cartesian coordinates Xi of P :

Φ(Xi) =
Q

r
+

diX
i

r3
+

DijX
iXj

2r5
+O
(

1

r4

)
. (13.11)

Here Q ≡
∫
ρ(R′)dV ′ =

∑
a qa is the total charge and di is the dipole moment of the

distribution:

d ≡
∫

ρ(R′)R′dV ′ or also d =
∑

a

qaRa . (13.12)

We see here that d will depend on the choice of coordinate origin unless Q = 0, and that it
coincides with the center of mass of the distribution if the charge-to-mass ratio is the same
for all the charges: qa/ma = const. Finally, Dij is the quadrupole moment:

Dij ≡
∫

ρ(R′)(3X ′
iX

′
j − r′2δij)dV

′ or also Dij =
∑

a

qa(3X
i
aX

j
a − δijr2a), (13.13)

where X ′i are the Cartesian components of the position vector R′ and Xi
a are the coordinates

of the radius vector of the charge qa of length ra.

13.3 A charge in a Coulomb field

The motion of a charge q in the Coulomb field of a charge Q held fixed at the origin of an
inertial frame is governed by the Lorentz equation, which can be written in 3-vector notation
as [see (11.18) and (13.2)]

2Or a distribution of slowly moving charges for which Maxwell’s equations always reduce approximately
to �Φ = −4πρ.
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d

dT

mV√
1− V 2

=
qQ

r3
R , (13.14)

where R is the radius 3-vector of length r of the charge and V = Ṙ (the dot denotes the
derivative with respect to T ).

The problem can be solved like the Kepler problem (see Book 1, Section 12.1 et seq.). By
symmetry, the motion is planar and we take R = (r cosφ, r sinφ). Taking on the one hand
the vector product of (13.14) with R and, on the other, the scalar product with V , we obtain
the conservation laws for the specific angular momentum L and energy E of the system:

φ̇√
1− V 2

=
L
r2

,
1√

1− V 2
= E − qQ

mr
(13.15)

with V 2 = ṙ2 + r2φ̇2. When the motion is circular (r = r0, ṙ = 0, and r̈ = 0), after a bit of
algebra we find the frequency Ω ≡ φ̇:

Ω =
−qQ/mr0√

2r0

[

−1 +

√

1 +
4

(−qQ/mr0)2

]1/2

=⇒ Ω ∼
√
−qQ/mr0

r0
when − qQ

mr0
→ 0, and Ω ∼ 1

r0
when − qQ

mr0
→ ∞ . (13.16)

In the case of the hydrogen atom for which Q = −q = e and using r0 ≡ aBohr = e2/mα2, we
find −qQ/mr0 = α2 � 1 and Ω ≈ mα3/e2.

Bound motion in a Coulomb field

When the motion of the charge q in the Coulomb field (13.14) is not circular, we can extract
the first integrals from (13.15):

ṙ2 = 1− (1 + L2/r2)

(E − qQ/mr)2
, φ̇ =

L
r2(E − qQ/mr)

. (13.17)

Then we apply the Binet method: we form the ratio ṙ2/φ̇2, set u = 1/r, and differentiate, which
gives

d2u

dφ2
+ u

[

1−
(

qQ

mL

)2
]

= −
(

qQ

mL

)(
E
L

)

. (13.18)

From this for −qQ > 0 and |qQ/(mL)| < 1 we find the solution satisfying (13.17):

r =
p

1 + e cos ν
with ν ≡ (φ− ω̃)

√

1−
(

qQ

mL

)2

. (13.19)

Here ω̃ is an integration constant and the parameter p and eccentricity e are given by
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p =
L

(−qQ/mL)
1

E

[

1−
(

qQ

mL

)2
]

, e2 =
1

E2

[

1 +
E2 − 1

(qQ/mL)2
]

. (13.20)

If e < 1 this trajectory is an ellipse which precesses by an angle of Δω in each revolution (see
Fig. 10.2) with

Δω =
2π

√

1−
(

qQ
mL
)2

− 2π . (13.21)

The time dependence is also easily obtained. We find that it can be written in the quasi-
Newtonian form (for e < 1; see Book 1, Section 12.2)

⎧
⎪⎨

⎪⎩

r = a(1− e cos η)

tg
ν

2
=

√
1 + e

1− e
tg

η

2

with n(T − T0) = η − et sin η, (13.22)

where T0 is an integration constant, ν is given in (13.19), and the major axis is a ≡ p/(1− e2).
The ‘mean motion’ n and the new eccentricity et are given by

a =
(−qQ/m)E

1− E2
, n =

(
1− E2

) 3
2

(−qQ/m)
, et = e E2, (13.23)

where e is a known function of E and L; cf. (13.20).
For completeness, we need to relate the proper time τ of the charge to the time T in the

frame using dT/dτ = 1/
√
1− V 2. From (13.15) and (13.22) we find

n(τ − τ0) =

√
et
e
(η − e sin η) . (13.24)

The Rutherford effective cross section

The trajectory of a charge in a Coulomb field (when qQ < 0 and |qQ/(mL)| < 1, the situation
to which we restrict ourselves) is given by (13.19), where the parameter p and the eccentricity e
are related to the specific energy E and angular momentum L of the charge as in (13.20). If e > 1
this trajectory reduces to a shifted hyperbola (see Fig. 13.1). A bit of trigonometry shows that
it has outgoing asymptote Y cosφout = Xsinφout − ρ and incoming one Y cosφin = Xsinφin + ρ
(if φout < π), with φin and ρ defined as

tg

⎡

⎣φout

√

1−
(

qQ

mL

)2
⎤

⎦ = −
√

e2 − 1 , φin =
2π

√

1− (qQ/mL)2
− φout ,

ρ =
p

√
e2 − 1

√

1− (qQ/mL)2
.
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X

Y

χ

φe

ρ

φs

Fig. 13.1 Scattering by a Coulomb field.

Here ρ is the impact parameter, that is, the distance to the center at which the particle
would have passed had it not been deflected. The modulus of the asymptotic 3-velocity of the
charge is related to its energy as E = 1/

√
1− V 2∞. With a bit of algebra we can write L and

e2 − 1, and therefore the angle φout, as functions of ρ and V∞ as

tg

[

φout

√

1− 1

x2

]

= −V∞
√

x2 − 1 , where x ≡ V∞√
1− V 2∞

ρ

(−qQ/m)
. (13.25)

The deflection angle of the charge is (see Fig. 13.1) χ = 2π − (φin − φout) or

χ = 2φout − π

(
2x√
x2 − 1

− 1

)

. (13.26)

If n is the density of charges of speed V∞ which cross, per unit time and unit area, the cross
section perpendicular to the incident beam, then there will be 2πρ dρn particles in the ring lying
between ρ and ρ+ dρ. The effective cross section σ is defined as

dσ = 2πρ dρ = 2πρ
dρ

dχ
dχ = ρ

dρ

dχ

1

sinχ
do =

ρ

sinχ dχ
dρ

do , (13.27)

where do = 2π sinχdχ is the element of solid angle of the opening χ. Therefore, using (13.25) to
replace ρ by x, we have

dσ

do
= −

(
qQ

m

)2
1− V 2

∞
V 2∞

x
d
dx

cosχ
, (13.28)

where χ is known as a function of x from (13.26).
For large x we have tgφout ∼ −xV∞ and χ ∼ 2φout − π, and (13.28) can be simplified to

∣
∣
∣
∣
dσ

do

∣
∣
∣
∣ ∼

(
qQ

2m

)2
1− V 2

∞
V 4∞

1

sin4 χ
2

. (13.29)

This expression includes the Rutherford formula (that is, the nonrelativistic case V∞ � 1 with
xV∞ and therefore χ finite):
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∣
∣
∣
∣
dσ

do

∣
∣
∣
∣ ∼

(
qQ

2mV 2∞

)2
1

sin4 χ
2

, (13.30)

and its relativistic generalization for small deflection angles [V∞ = O(1) and large x or small χ]:

∣
∣
∣
∣
dσ

do

∣
∣
∣
∣ ∼

(
2qQ

m

)2
1− V 2

∞
V 4∞

1

χ4
. (13.31)

The formula obtained by Rutherford in 1911 explained the results of the experiments performed
by Geiger and Marsden in 1909 to measure the deflection of α particles by a thin gold foil.
The underlying planetary model of the atom then replaced the ‘plum-pudding’ model of J. J.
Thomson, in which the electrons move in a distribution of positive charge of the size of the atom
(see Section 18.4).

Sommerfeld quantization

The equations of motion of a charge in a Coulomb field can also be obtained by varying the
action of the system; cf. (11.20):

S = −m

∫

dτ + q

∫

AμU
μdτ ≡

∫

LdT with L = −m
√

1− V 2 − qQ

r
. (13.32)

Since in spherical coordinates V 2 = ṙ2 + r2φ̇2, the conjugate momenta associated with φ and r
are

pφ ≡ ∂L

∂φ̇
=

mr2φ̇√
1− V 2

, pr ≡ ∂L

∂ṙ
=

mṙ√
1− V 2

, (13.33)

and the Lagrange equations, ṗφ = ∂L/∂φ and ṗr = ∂L/∂r, indeed lead to (13.17) and (13.18)

[using V.
(
V/

√
1− V 2

).
= r

(
ṙ/

√
1− V 2

). − rṙφ̇2/
√
1− V 2].

The order of magnitude of the action (13.32) is −(qQ/r0)T , where T is the characteristic

time of the system, that is, the period of rotation of the charge q: T ∼ 1/Ω with Ω ∼
√

−qQ/mr30
in the nonrelativistic limit; cf. (13.16). If we take its ratio to the quantum of action � = e2/α,
for an electron (q = −e) in the field of a proton (Q = e) we find

S

�
∼ α

√
mr0

e
=⇒ S

�
∼ 1 for r0 = aBohr ≡

e2

mα2
. (13.34)

As we have already mentioned at the end of Section 6.5, quantum effects become important when
the action becomes comparable to �, that is, when the orbital radius is comparable to the Bohr
radius, while the orbital velocity is still small compared to the speed of light: ΩaBohr = α2 � 1.

Generalizing the orbital quantization prescription of Bohr to take into account the fine
structure of the hydrogen atom, Sommerfeld in 1916 imposed the requirement that, for an
electron (q = −e) in the field of a proton (Q = e),

∫ 2π

0

pφ dφ = 2πnφ � , 2

∫ rmax

rmin

pr dr = 2πnr � , (13.35)

where nφ and nr are integers. Since pφ = mL and pr = m
√

A+ 2B/r + C/r2 with A =

−(1− E2), B = e2E/m, and C = e4/m2 − L, the Sommerfeld conditions lead to
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L =
nφe

2

mα
, E =

⎡

⎣1 +

⎛

⎝ α

nr +
√

n2
φ − α2

⎞

⎠

2⎤

⎦

− 1
2

= 1− α2

2n2
+

α4

2n4

(
3

4
− n

nφ

)

+O(α6) , (13.36)

where n ≡ nr + nφ.
By a mischievous accident, the Sommerfeld formulas are the same (with nφ replaced by

j + 1/2) as those which solve the Dirac equation, which includes the electron spin.3 Thus the
energy of the transition between the 2s and 2p states corresponding to nr = 1 and nφ = 1 and
2 (or j = 1/2 and j = 3/2) is E22 − E21 = meα

4/32, in agreement with experiment.

13.4 Spin in a Coulomb field

As we have seen in Section 7.3, a particle can be assigned, in addition to its mass, a spin
4-vector Jμ orthogonal to its 4-velocity (JμU

μ = 0), the equation of motion of which in an
inertial frame was given in (7.13):

dJμ
dτ

− Uμ(Jνγ
ν) = Cμ ,

where γμ is the 4-acceleration and Cμ is a possible torque which is also orthogonal to Uμ.
If no torque is applied but the particle is constrained to undergo circular motion of

radius r0 and frequency Ω, then, as we saw in Section 7.4, the spin precesses at the Thomas
frequency, which for small velocities is [cf. (7.18)] ωThomas = −r20Ω

3/2. If this particle is an
electron in its Bohr orbit, that is, if r0 = e2/(mα2) and [see Section 13.3] Ω ≈ mα3/e2, then
ωThomas ≈ −mα5/(2e2).

Now let us consider a particle of charge q in an external electromagnetic field. Its ac-
celeration is given by the Lorentz force γμ = (q/m)Fμ

νU
ν . We assume in addition that the

particle carries a spin and this spin is coupled to the field. Just like the Lorentz force, the
torque Cμ must be postulated; a natural choice (which agrees with experiment) is

Cμ =
gq

2m
(FμνJ

ν + Uμ U
ρJνFρν), (13.37)

where the constant g is the Landé factor. The first term is of the same type as the Lorentz
force, and the second guarantees that CμU

μ = 0. Substituting these expressions for Cμ and
γμ into the equation of motion, we obtain the BMT equation (V. Bargmann, L. Michel, and
V. L. Telegdi, 1959):

dJμ
dτ

=
q

m

[ g
2
FμνJ

ν +
(g
2
− 1
)
Uμ U

ρJνFρν

]
with JμU

μ = 0 . (13.38)

From experiment (for example, the anomalous Zeeman effect) we have g = 2 for an
electron (excluding quantum electrodynamical corrections).

Now let us consider an electron in a circular orbit in a Coulomb field. Its world line
is Xμ(T ) = (T, r0 cosΩT, r0 sinΩT, 0) and the condition JμU

μ = 0 implies that J0 =

3See, for example, Weinberg (2005) and Granovskii (2004).
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−r0Ω(J
X sinΩT − JY cosΩT ). The Faraday tensor on the world line reduces to FX0 =

(QΩ/r20) cosΩT and FY 0 = (QΩ/r20) sinΩT . Therefore, (13.38) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

dJX

dT
= xΩΓf(T ) cosΩT ,

dJY

dT
= xΩΓf(T ) sinΩT

with f(T ) ≡ JX sinΩT − JY cosΩT , Γ ≡ 1
√

1− r20Ω
2
, and x ≡ −qQ

mr0
.

(13.39)

This system can be solved exactly like (7.17) and we find JZ = const and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

JX =J1

[
1√

1− xΓ
sinΩT sin(ΩT

√
1− xΓ)+cosΩT cos(ΩT

√
1− xΓ)

]

JY =J1

[
− 1√

1− xΓ
cosΩT sin(ΩT

√
1− xΓ)+sinΩT cos(ΩT

√
1− xΓ)

]
.

(13.40)

At T = 0 the spin lies in the XOZ plane, and after one revolution, at T = 2π/Ω, JY has

increased by −J1
sin(2π

√
1−xΓ)√

1−xΓ
≈ 2π J1xΓ

2 if xΓ � 1, so that the angular velocity of the spin

precession is

ω ≈ xΓΩ

2
=

1

2

(
−qQ

mr0

)
Ω

√
1− (r0Ω)2

. (13.41)

In the case of an electron in its Bohr orbit at r0 = e2/mα2 we have (Ωr0)
2 = x = α2 � 1,

and so ω ≈ +mα5/(2e2), in perfect agreement with the observed fine structure of hydrogen.4

13.5 The Biot–Savart law

Let us consider a confined charge distribution in a given inertial frame, and study the average
or staticmagnetic field that it creates. Since the time average of any time derivative vanishes,5

Maxwell’s equation (12.16) for the magnetic field (that is, ∇ ∧ B = ∂0E + 4πj) reduces to
Ampère’s law

∇∧B = 4πj, (13.42)

where the steady current 3-vector j describes the charge distribution ‘on the average’. This
equation implies that (see Section 11.1 for a review of vector calculus)

∇.j = 0, (13.43)

which is the averaged version of the current conservation law.

4See, for example, Itzykson and Zuber (2006).
We note that ω = −ωThomas = 1

2
ωSO = ωLarmor, where ωThomas is the precessional velocity of a spin

which is not coupled to the field, ωSO is the precession obtained assuming that the spin of modulus �/2
is coupled to the magnetic field existing in the inertial frame tangent to the electron, and ωLarmor is the
precessional velocity of an orbital angular momentum in the same field. The story of these factors of 2 can
be found in Basdevant (2007).

5Actually, ∂0f ≡ 1
T

∫ T
0

∂f
∂T

dT =
f(T )−f(0)

T
→ 0 when T → ∞ if f(T ) remains bounded.
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Since B = ∇ ∧ A, (13.42) can also be written in the Lorenz gauge (∂μA
μ = 0; see

Section 12.3) as6

∇.A = 0 , �A = −4πj . (13.44)

The second expression in (13.44) is a Poisson equation whose solution at the point P given
by the radius 3-vector R is (cf. Section 13.1)

A =

∫
j(R′)

|R−R′|dV
′ =⇒ B =

∫
j(R′) ∧ (R−R′)

|R−R′|3 dV ′ , (13.45)

where R′ is the radius vector of a point P ′ of the distribution. The solution obtained above
for the magnetic field is called the Biot–Savart law.

Let us now consider the situation far from the distribution.
We can write |R−R′| = r(1−R.R′/r2) · · ·, where r is the length of the radius vector R,

and so we have

A
i
=

1

r

∫
dV ′ j′

i
+

1

r3
Xj

∫
dV ′ j′

i
X ′

j +O
(

1

r3

)
, (13.46)

where the prime on the current indicates that it is evaluated at X ′i.
At this point it is convenient to specify the properties of the 3-vector j and to note that

for any function f(Xi) we have7 ∫
dV j

i
∂if = 0 . (13.47)

We thus deduce that the 3-vector j does not possess any component normal to the 2-surface S,
with surface element dSi = nidS, bounding the distribution. Indeed, (13.47) can be rewritten
as follows, after integration by parts and using Gauss’s theorem and the fact that the average
current has zero divergence:

∫

S

f (j
i
ni)dS = 0 =⇒ j

i
ni|S = 0 (13.48)

because the function f is arbitrary. Then, choosing f = Xj and f = XjXk, we see from
(13.47) that ∫

dV j
j
= 0 ,

∫
dV (j

j
Xk + j

k
Xj) = 0 . (13.49)

The first term of the magnetic potential (13.46) therefore vanishes, a feature which we can
attribute to the absence of a magnetic charge (see Section 12.3). Now from the second term
of (13.46) we subtract half the second integral in (13.49) so that

6The calculations of this section are most easily done using three-dimensional notation (where, for example,

(13.42) is written as eijk∂jBk = 4πj
i
) and using wherever possible the property of the Levi-Civita symbol

eijkeklm = δilδ
j
m − δimδjl .

7This property can be proved, at least formally, as follows. If the distribution is described as an ensemble
of point charges, we have (before the averaging; see Section 12.1) ji(T,Xi) =

∑
a qaδ3(Xi − Xi

a(T ))V i
a .

The average of ji is hard to define, but we can write
∫
dV ji∂if =

∑
a qa∂if Va = 0 because Va = 0.

Equation (13.47) then follows if we argue that the average of the integral is equal to the integral of the
average.
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Xj

∫
dV ′ j′

i
X ′

j =
1

2
Xj

∫
dV ′(j′

i
X ′

j − j′
j
X ′

i) . (13.50)

If we define the magnetic moment of the distribution as

Mi ≡ 1

2
eijk
∫

dV ′X ′
j j

′
k or also M ≡ 1

2

∫
dV ′R′ ∧ j′, (13.51)

it is easily shown using the properties of the Levi-Civita symbol that

Xj

∫
dV ′ j′

i
X ′

j = eijkMjXk . (13.52)

In the end, the magnetic potential can be written as

A
i
=

1

r3
eijkMjXk +O

(
1

r3

)
or also A =

M∧R

r3
. (13.53)

From this it is easy to derive the magnetic field by setting8 ni ≡ Xi/r:

B =
3n(M.n)−M

r3
+O
(

1

r4

)
. (13.54)

The magnetic moment

When the charges are point charges, the magnetic moment defined in (13.51) becomes

M =
1

2

∑

a

qR ∧ V, (13.55)

where Ra and Va are the radius vectors and velocities of the charges. If the charge-to-mass ratio
is the same for all the particles, qa/ma = q/m, then M = (q/2m)J , where J =

∑
a mR ∧ V is

the angular momentum of the system. It is therefore constant if the system is isolated.
The situation is the same in the case of only two charges, whatever their ratios qa/ma are.

In fact, in the system of the center of mass ρ where, to the order in which we are working,

R = m′ρ/M and R′ = −mρ/M , we have M = 1
2

qm′2+q′m2

mm′M J with J = μρ∧ ρ̇ and M = m+m′,
μ = mm′/M .

8We can as before make the expansion

B
i
= eijk∂jAk = eijke mn

k ∂j

(MmXn

r3

)
= (δimδjn − δinδjm)Mm ∂j

(
Xn

r3

)

= −Mi

r3
+

3XiMmXm

r5
.
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14

The free field

Here we shall study the structure of Maxwell’s equations in the vacuum and the action from which
they are derived while emphasizing the consequences of their gauge invariance. Gauge invariance,
on the one hand, allows one of the components of the magnetic potential to be chosen freely and, on
the other, imposes a constraint on the initial conditions such that in the end the general solution has
only two ‘degrees of freedom’. We then develop the Hamiltonian formalisms in the Maxwell theory
and compare them to the formalisms using non-gauge-invariant or massive vector fields.

14.1 Two degrees of freedom

The fundamental quantity describing electromagnetic phenomena in the Maxwell theory is
the potential Aμ, whose equations of motion in the vacuum and in a system of Minkowski
coordinates Xμ are [cf. (12.14)]

�Aμ − ∂μ(∂νA
ν) = 0 . (14.1)

Equation (14.1) is invariant under the gauge transformation Aμ �→ Ãμ = Aμ + ∂μg, where g

is an arbitrary function of the coordinates. If Aμ satisfies (14.1), then Ãμ will also satisfy it.

It is therefore possible to impose a condition on Ãμ, for example, the Lorenz condition

∂μÃ
μ=0 which preserves the manifestly Lorentz-invariant form of the Maxwell equations.

However, as already mentioned above in Section 12.3, this condition does not completely fix
the gauge, i.e., it does not completely determine the function g, because g, which satisfies
∂μA

μ +�g = 0, is defined up to a ‘harmonic’ function h: g = g0 +h with �h = 0. Fixing the
gauge completely requires breaking the manifest Lorentz invariance and working in a given
inertial frame, that is, distinguishing a particular time. It then becomes possible, as we shall
see below, to rewrite (14.1) in S in a form which is manifestly gauge invariant.

To do this we use the potential decomposition Aμ ≡ (A0, A), where A is a 3-(co)vector
with components Ai introduced by J. Bardeen1:

A0 ≡ −Φ , A ≡ Ā+∇A with ∇ .Ā = 0 . (14.2)

For a given A, these equations determine the function A and the two components of Ā.
Actually, A is the everywhere-regular solution of the elliptic equation �A = ∇ .A, and so
Ā follows: Ā = A−∇A. In Bardeen’s terminology, the four components of the potential Aμ

have been split into two scalar modes (A0 ≡ −Φ and A) and two vector modes (Ā, which
has only two independent components). Here, the terms ‘scalar’ and ‘vector’ are used in the

1Within the similar framework of linearized general relativity; see Bardeen (1980).
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sense of E3. Under a gauge transformation Aμ → Aμ + ∂μg these modes transform as (the
dot represents the derivative with respect to time T of S)

Φ �→ Φ− ġ, A �→ A+ g, Ā �→ Ā . (14.3)

The two vector modes Ā and the scalar mode

Ψ ≡ Φ+ Ȧ (14.4)

then are gauge invariant because Ψ �→ Ψ, Ā �→ Ā.
If we now substitute the decomposition Aμ = (−Φ, Ā+∇A) (which implies that ∂νA

ν =

Φ̇ + �A) into the Maxwell equations (14.1), we see that they can be rewritten in a form
which is no longer manifestly Lorentz invariant but which, in return, is manifestly gauge
invariant:

�Ψ = 0 , �Ā = 0 . (14.5)

The only solution to the first equation, the constraint equation, which is regular everywhere
and vanishes at infinity is

Ψ = 0 . (14.6)

Therefore, the gauge ‘hits twice’: the first time in allowing two components of the potential
to be combined to make a single gauge-invariant quantity (Ψ), and the second time via the
field equations containing the constraint �Ψ = 0 whose only solution is (14.6). The second
equation in (14.5) is a propagation equation for the two independent components of Ā, which
are the two degrees of freedom of electromagnetic waves:

−∂2Ā

∂T 2
+�Ā = 0 . (14.7)

Fixing the gauge consists of choosing an element of the equivalence class of the modes Ψ =
Φ+Ȧ and Ā which we have found. If we choose A = 0, we have Φ = 0 (because Ψ = 0), which
corresponds to the Hamiltonian gauge. Since we have ∂iA

i = ∂iĀ
i = 0 as well, this gauge is

also the Coulomb gauge, and since ∂νA
ν ≡ Φ̇ +�A = 0, it satisfies the Lorenz condition.

On the Cauchy problem

We consider a system of second-order, linear and hyperbolic, partial differential equations of
the type

gμνDμDνΦ+AμDμΦ+BΦ+ C = 0 . (14.8)

The condition ‘hyperbolic’ means that gμν is a Lorentz metric, that is, a metric of signature
(−,+,+ · · ·), like the Minkowski metric. Here Φ is an arbitrary tensor field, Aμ, B, and C are
a vector and two arbitrary functions, and Dμ is the covariant derivative associated with gμν (in
our case of Minkowski metric in Cartesian coordinates Xμ, we have gμν = ημν , and the covariant
derivative reduces to an ordinary derivative, Dμ = ∂μ).

There is an entire series of theorems (the first ones going back to Cauchy and Kovalevskaya)2

showing that the Cauchy problem for this system is well posed. This means that (1) the

2See R. M. Wald (1984), Chapter 10, for a general overview. Mathematically precise definitions of the
adjectives ‘smooth’ and ‘close’ and a demonstration of the theorem can be found in, for example, Hawking
and Ellis (1973), Chapter 7.
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specification of Φ and its normal derivatives on a space-like hypersurface Σ (e.g., its time deriva-
tives on the T = 0 surface of an inertial frame) is sufficient for uniquely determining its further
evolution (for initial data, called Cauchy data, which are sufficiently ‘smooth’); (2) the solutions
generated by ‘close’ initial conditions are close; and (3) the field propagates in a causal manner,
that is, two solutions generated by two ensembles of Cauchy data which differ only in a finite
volume S of Σ are the same outside the future cone with apex S.

The Maxwell equations (14.1) in the vacuum for the electromagnetic potential Aμ, that is,
∂μ∂ν(η

μνAρ − ημρAν) = 0, are not a priori of the type (14.8), but they become so if they are
written in their manifestly gauge-invariant form (14.5), namely, 
Ψ = 0 and �Āi = 0, where

Ai = ∂iA + Āi with ∂iĀ
i = 0 and Ψ ≡ Φ + Ȧ. The Cauchy problem for the two degrees of

freedom of the electromagnetic field is therefore well posed in the Maxwell theory.
More generally, the Maxwell equations (14.1) written in 3-vector notation where Aμ =

(−Φ, A) are

∇ .Ȧ = −
Φ , Ä = 
A−∇
(
Φ̇ +∇ .A

)
. (14.9)

We see that Φ can be chosen arbitrarily on the initial hypersurface T = 0. However, once Φ
is chosen, ∇ .A is then constrained by the first equation. The Cauchy problem therefore splits
into two: the initial-condition problem of finding the Cauchy data which satisfy the constraint,
and the evolution problem of integrating the second equation with the solution of the preceding
problem as the initial conditions. After thus finding the solution, we have that the constraint
is automatically satisfied for all T (actually, the divergence of the second equation is the time
derivative of the first). This makes it possible, for example, to test the convergence of numerical
integration algorithms.

14.2 The gauge-invariant action

In Section 12.3 we saw that the Maxwell equations in the vacuum (14.1) can be derived from
a variational principle, that is, by extremizing the action (12.13) (from which in this section
we omit the factor 4π)

S = −1

4

∫
d4X FμνF

μν with Fμν = ∂μAν − ∂νAμ (14.10)

with respect to the potential Aμ. Here we shall show that the gauge-invariant version of the
Maxwell equations in the vacuum (14.5) can also be derived directly by extremizing (14.10).

Introducing the Bardeen decomposition of the potential,

Aμ = (−Φ, ∂iA+ Āi) with ∂iĀ
i = 0 and Ψ ≡ Φ+ Ȧ , (14.11)

we find F0i =
˙̄Ai + ∂iΨ and Fij = ∂iĀj − ∂jĀi, so that, using the fact that ∂iĀ

i = 0,

S =
1

2

∫
d4X

(
˙̄Ai

˙̄Ai − 1

2
FijF

ij + (∂iΨ)(∂iΨ)

)
+

∫
dT

∫
d3X∂i(Ψ

˙̄Ai)

=
1

2

∫
d4X

(
˙̄Ai

˙̄Ai − 1

2
FijF

ij + (∂iΨ)(∂iΨ)

)
,

(14.12)

because the last term on the first line is a divergence which is transformed into a surface term
using Gauss’s theorem, and so does not contribute to the equations of motion. Moreover, it
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is zero if we require that the potential fall off sufficiently rapidly on the 2-sphere at infinity.
The Lagrangian L and the Lagrangian density L are then defined as

S =

∫
dT L with L =

∫
d3X L and L =

1

2

(
˙̄Ai

˙̄Ai − 1

2
FijF

ij + (∂iΨ)(∂iΨ)

)
. (14.13)

The density L is a functional (at each point Xi) of the generalized coordinates q ≡ {Āi,Ψ},
but only the velocity extension of Āi, q̇ ≡ ˙̄Ai, appears.

3 This being the case, the variation
of S with respect to a change of the configuration of Ψ and Āi is obtained as in Sections 8.1
and 12.3 and is given by (recalling that Fij = ∂iĀj − ∂jĀi)

δS =

∫ T2

T1

dT

∫

V

dV
[
δĀi �Ā

i − δΨ�Ψ
]

+

∫
dV ( ˙̄AiδĀi)

∣∣
∣
T2

T1

+

∫ T2

T1

dT

∫

S

(
∂iΨ δΨ− F ij δĀj

)
dSi,

(14.14)

where we have used Gauss’s theorem to write the last term as an integral over the 2-sphere
at spatial infinity S with surface element dSi. The surface terms vanish if the configurations
are fixed at T1 and T2 as well as at spatial infinity. Therefore, the configurations extremizing
S satisfy the equations of motion

�Āi = 0 and �Ψ = 0, (14.15)

which are just (14.5). Q.E.D. We note that they can be written as Euler–Lagrange equations:

d

dT

δL

δ ˙̄Ai

=
δL

δĀi
, 0 =

δL

δΨ
(14.16)

with L given in (14.13), with the understanding that the variational derivatives imply inte-
grations by parts if spatial derivatives of the variables appear in the Lagrangian density; for
example, δL/δΨ = −�Ψ; see Section 9.1.

14.3 Hamiltonian formalisms

• The equations of motion (14.15), as we shall now see, can also be obtained using a gauge-
invariant Hamiltonian formalism (see Section 9.1 for the similar case of the scalar field).

The Lagrangian density L was given in (14.13), and so we start by defining the conjugate
momentum of Āi as

π̄i ≡ ∂L
∂ ˙̄Ai

= ˙̄Ai (14.17)

and note that Ψ does not possess a conjugate momentum. The Hamiltonian density and the
Hamiltonian are defined as

3See Book 1, Sections 8.1 and 9.1 for introductions to the Lagrangian and Hamiltonian formalisms in the
mechanics of a point particle. See also the example of the scalar field in Sections 8.1 and 9.1 of the present
book.
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H ≡ π̄i ˙̄Ai − L =
1

2

(
π̄iπ̄

i +
1

2
FijF

ij − (∂iΨ)(∂iΨ)

)
, H ≡

∫
d3XH . (14.18)

They are functionals of {Āi, π̄
i} and Ψ, and we can perform the variation in two different

ways. First,

δ

∫
dT H ≡ 1

2
δ

∫
dT d3X

(
π̄iπ̄

i +
1

2
FijF

ij − (∂iΨ)(∂iΨ)

)

=

∫
dT d3X(π̄iδπ̄

i −�ĀiδĀi +�ΨδΨ) +

∫
dT

∫

S

(F ijδĀj − ∂iΨδΨ)dSi

=

∫
dT d3X(π̄iδπ̄

i −�ĀiδĀi +�ΨδΨ)

(14.19)

(recalling that Fij = ∂iĀj − ∂jĀi and ignoring the surface term). Second,

δ

∫
dT H ≡ δ

∫
dT d3X(π̄i ˙̄Ai − L)

=

∫
dT d3X( ˙̄Aiδπ̄

i − ˙̄π
i
δĀi)− δS+

∫
d3X(π̄iδĀi)

∣
∣∣
T2

T1

=

∫
dT d3X( ˙̄Aiδπ̄

i − ˙̄π
i
δĀi)− δS .

(14.20)

Therefore, if we require that the action be extremal, δS = 0, by equating (14.19) and (14.20)
we find

π̄i =
˙̄Ai , �Āi = ˙̄π

i
, �Ψ = 0 , (14.21)

which after eliminating π̄i gives �Āi = 0 and �Ψ = 0, that is, (14.15). Q.E.D. These can be
written in the form of Hamilton equations, with the variational derivatives having the same
meaning as in (14.16):

δH

δπ̄i
= ˙̄Ai ,

δH

δĀi
= − ˙̄π

i
,

δH

δΨ
= 0 . (14.22)

Knowing that the only regular solution of �Ψ = 0 is the constraint Ψ = 0, we can at this
point introduce the reduced Hamiltonian

Hreduced =

∫
d3XHreduced , where Hreduced =

1

2
π̄i π̄i +

1

2
(∂iĀj)(∂

iĀj) . (14.23)

The density Hreduced is just (14.18), simplified by integrating by parts the term (∂jĀi)(∂
iĀj)

and using the constraint Ψ = 0, which is allowed because the variation of (14.23) does indeed
give the equations of motion of the two degrees of freedom of the field, namely, �Āi = 0. The
reduced Hamiltonian (14.23) is the starting point for the quantization of the electromagnetic
field.

Finally, we note that ‘on themass shell’ or ‘on-shell’, that is, when the equations of motion
(14.21) are satisfied, the Hamiltonian density (14.18) is identified as the energy density of the
field as defined in (12.30) and (12.31), namely, T 00 = (E2 +B2)/2 (up to the factor of 4π
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omitted in this section). First, we have FijF
ij = 2B2 (always), and then Ei ≡ −Ȧi − ∂iΦ =

− ˙̄Ai − ∂iΨ, and so Ei = − ˙̄Ai = −π̄i by the definition of the momentum π̄i and because on
the mass shell Ψ = 0:

Hon-shell =
1

2
(E2 +B2) . (14.24)

• We have just constructed a Hamiltonian formalism by directly writing the action in
terms of gauge-invariant variables. This is not necessary.4

We again start from the action (14.10) with the potential decomposed as Aμ = (−Φ , A),
where A is the magnetic potential. The Lagrangian density is then written as

L ≡ −1

4
FμνF

μν =
1

2
(Ȧ+∇Φ).(Ȧ+∇Φ)− 1

2
(∇∧A).(∇∧A) . (14.25)

The Coulomb potential Φ does not have a conjugate momentum. That of A is

π ≡ ∂L
∂Ȧ

= Ȧ+∇Φ, (14.26)

so that the Hamiltonian density H ≡ π .Ȧ− L is

H =
1

2
π .π +

1

2
(∇∧A).(∇∧A)− π .∇Φ . (14.27)

The Hamilton equations are

0 =
δH
δΦ

= ∇ .π , Ȧ =
δH
δπ

= π −∇Φ , π̇ = −δH
δA

= ∇∧∇ ∧A , (14.28)

where δH/δA is easily calculated by writing 2(∇∧A).(∇∧A) = (∂iAj −∂jAi)(∂
iAj −∂jAi)

and using the relation ∇(∇ .A)−�A = ∇∧B with B ≡ ∇ ∧A.
We extract π = ∇Φ + Ȧ ≡ −E from the second equation. The two other equations then

are just the second group of Maxwell equations ∇ .E = 0 and Ė = ∇∧B.
Finally, to recover the equations in their manifestly gauge-invariant form, we make the

Bardeen decomposition A = ∇A + Ā with ∇ .Ā = 0, Ψ ≡ Φ + Ȧ and rewrite (14.26) and
(14.28) as

π = ∇Ψ+ ˙̄A , 0 = ∇ .π = �Ψ

{
π̇ = ∇Ψ̇ + ¨̄A

= ∇∧∇ ∧ Ā = �Ā ,
(14.29)

which is indeed equivalent to (14.15). Q.E.D.

4In fact, it is impossible in the case of nonlinear field theories like general relativity; see, for example,
Wald (1984), Appendix E, whose approach we follow here.

For a systematic treatment of systems with constraints see Dirac (1964) and Henneaux and Teitelboim
(1992).
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We note that on the mass shell, that is, when (14.28) is satisfied, the Hamiltonian density
(14.27) and the Hamiltonian are written as

Hon-shell =
1

2
(E2 +B2)−∇ .(ΦE)

=⇒ Hon-shell ≡
∫
d3XHon-shell =

1

2

∫
d3X(E2 +B2) .

(14.30)

Therefore, the on-shell Hamiltonian density is not necessarily positive-definite. On the other
hand, the Hamiltonian is positive modulo the surface terms, whose vanishing (or positivity)
must be verified for the particular solution chosen.

The non-gauge-invariant kinetic term

The Lagrangian density of the electromagnetic field is

L = − 1
4
FμνF

μν = − 1
2
(∂μAν)(∂

μAν) + 1
2
(∂μAν)(∂

νAμ) .

It is gauge-invariant. Let us generalize this as

L = −α

2
(∂μAν)(∂

μAν) +
β

2
(∂μAν)(∂

νAμ)

=
1

2
(β−α)Φ̇2+

α

2
ȦiȦ

i+β Ȧi∂iΦ+
α

2
(∂iΦ)(∂

iΦ)−α

2
(∂iA

j)(∂iAj)+
β

2
(∂iAj)(∂

jAi) ,

(14.31)

where we have decomposed the potential as Aμ = (−Φ, Ai). [A possible third term of the
form (∂μA

μ)(∂νA
ν) can be reduced to (∂μAν)(∂

νAμ) by integration by parts: (∂μA
μ)(∂νA

ν) =
(∂μAν)(∂

νAμ) + ∂μ (Aμ∂νA
ν −Aν∂νA

μ).]
The conjugate momenta are given by

πΦ ≡ ∂L
∂Φ̇

= (β − α)Φ̇ , πi ≡ ∂L
∂Ȧi

= α Ȧi + β ∂iΦ . (14.32)

We thus see that the absence of a conjugate momentum for Φ (if α = β) is related to the
gauge-invariance of the Lagrangian.

Let us take as an example the case β = 0 and α = 1. The Hamiltonian density H ≡
πΦΦ̇ + πiȦi − L reduces to

H = −1

2
(π2

Φ + ∂iΦ∂
iΦ) +

1

2
(πiπ

i + ∂iAj∂
iAj) . (14.33)

The system has four degrees of freedom, a scalar field and a vector field, both massless. We note
that the kinetic term of Φ is negative: this is a ghost. The energy of the system is therefore
not positive-definite, which in general leads to instabilities when the system is coupled to other
degrees of freedom.5

5The quantization of such a Hamiltonian is also problematic, as shown by Pais and Uhlenbeck (1950). See
also, for example, Woodard (2007).
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The Proca Hamiltonian

The Proca theory of a vector field of mass m is based on the Lagrangian density

L = −1

4
FμνF

μν − 1

2
m2AμA

μ, where Fμν ≡ ∂μAν − ∂νAμ . (14.34)

(Such a field appears in the description of the BEH mechanism; see Section 9.4.) The Euler–
Lagrange equations lead to the generalization of the second group of Maxwell equations:

∂νF
μν = −m2Aμ =⇒ ∂μA

μ = 0 . (14.35)

(Therefore, the Lorenz ‘condition’ is now imposed by the equations of motion.) If the potential
is decomposed as Aμ = (−Φ, Ai), the Lagrangian density can be written as

L =
1

2
ȦiȦ

i + Ȧi∂iΦ+
1

2
(∂iΦ)(∂

iΦ)− 1

4
FijF

ij +
1

2
m2Φ2 − 1

2
m2AiA

i, (14.36)

and the equations of motion δL
δΦ

= 0 and d
dT

δL

δȦi
= δL

δAi
are equivalent to (14.35):

∂i(Ȧ
i + ∂iΦ) = m2Φ, �Ai = ∂i(Φ̇ + ∂jA

j) +m2Ai =⇒ Φ̇ + ∂jA
j = 0 . (14.37)

As in the Maxwell theory, Φ has no conjugate momentum, and that of Ai is πi ≡ ∂L/∂Ȧi =

Ȧi + ∂iΦ. The Hamiltonian density H ≡ πiȦi − L is given by

H =
1

2
πiπ

i − πi∂iΦ+
1

4
FijF

ij − 1

2
m2Φ2 +

1

2
m2AiA

i. (14.38)

Let us introduce the magnetic field B such that FijF
ij = 2B2 and the electric field Ei ≡

−Ȧi − ∂iΦ. The equations of motion πi = −Ei and m2Φ = −∂iE
i are indeed equivalent to

(14.37) and (14.35). Therefore, the on-shell Hamiltonian density becomes

H =
1

2
(E2 +B2) +

1

2
m2A2 +

(∇E)2

2m2
+∇ .(EΦ) , (14.39)

and so the Hamiltonian H ≡
∫
d3XH is positive if the chosen solution falls off sufficiently rapidly

on the two-sphere at spatial infinity.
However, the mass term breaks the Maxwell gauge invariance, which opens up an interesting

Pandora’s box when the theory is quantized.6

6See, for example, Itzykson and Zuber (2006), and also Ruegg and Ruiz-Altaba (2004).
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15

Electromagnetic waves

In this chapter we study the solutions of the Maxwell equations in the vacuum: monochromatic plane
waves and their polarizations, plane waves, and the motion of a charge in the field of a wave (which
is the principle upon which particle detection is based). We conclude by giving the conditions for
the geometrical optics limit, and then establish the connection between electromagnetic waves and
the kinematic description of light discussed in the first part of this book.

15.1 Monochromatic plane waves: propagation

As we saw in the preceding chapter, the Maxwell equations in the vacuum for the potential
Aμ reduce, in the Hamiltonian gauge of an inertial frame S, to

Aμ = (0, Āi) with ∂iĀ
i = 0 and �Āi = 0 . (15.1)

If they are square integrable, which we assume to be the case, the two independent compo-
nents of the vector Āi can be decomposed into Fourier modes as

Āi(T,X
i) =

∫
d3k

(2π)
3
2

Âi(T, k
i)eikjX

j

, with Â∗
i (T,−ki) = Âi(T, k

i) (15.2)

to guarantee that the variables are real (see the introduction to the Fourier transform in
Section 9.2). The fact that Āi has zero divergence is expressed by the transversality condition
kiÂi = 0.

For each 3-vector k of components ki we introduce two unit vectors called the polarization
vectors εk,λ, λ = {1, 2}, such that ε1,2.ε1,2 = 1, which are mutually orthogonal (εk,λ εk,λ′ =
δλλ′), and orthogonal to ki (εiλki = 0). We fix the orientation in the plane orthogonal to
ki by requiring, for example, that ε1 = eY and ε2 = eZ if ki = (k, 0, 0). We can therefore
incorporate the transversality condition in the decomposition (15.2) by writing

Āi(T,Xi) =
∑

λ

∫
d3k

(2π)
3
2

qk,λ(T ) ε
i
k,λe

ikjX
j

with q∗−k,λ(T ) = qk,λ(T ) . (15.3)

We have thereby traded the two functions of time and spatial coordinates Āi for a sextuple
infinity of functions of time qk,λ(T ).

The function (15.3) is divergence-free by construction (∂iĀ
i = 0 because kiε

i
k,λ = 0) and,

for its d’Alembertian to be zero, the functions qk,λ(T ) must satisfy the ordinary differential
equation

q̈k,λ + |k|2qk,λ = 0 , where |k|2 ≡ kik
i . (15.4)
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Fourier decomposition of the Hamiltonian

As we have seen in Section 14.3, the equation of motion (15.1) is derived from the reduced
Hamiltonian

Hreduced =

∫

d3XH , where H =
1

2
π̄i π̄i +

1

2
(∂iĀj)(∂

iĀj) .

In Fourier space, using the properties of the Dirac distribution (see Section 9.2) and the reality
condition for the fields, we have

Hreduced =
1

16π3

∫

d3X d3k d3k′[π̂j(T, k′
i) π̂j(T, ki)− (k′

lk
l)Âj(T, k

′
i)Â

j(T, ki)]e
i(ki+k′

i)X
i

=
1

16π3

∫

d3X d3k d3k′[π̂j(T,−k′
i) π̂j(T, ki) + (k′

lk
l)Âj(T,−k′

i)Â
j(T, ki)]e

i(ki−k′
i)X

i

=
1

2

∫

d3k d3k′[π̂j(T,−k′
i) π̂j(T, ki) + (k′

lk
l)Âj(T,−k′

i)Â
j(T, ki)]δ(ki − k′

i)

=
1

2

∫

d3k[π̂j(T,−ki) π̂j(T, ki) + (klk
l)Âj(T,−ki)Â

j(T, ki)]

=
1

2

∫

d3k[π̂∗j(T, ki) π̂j(T, ki) + (klk
l)Â∗

j (T, ki)Â
j(T, ki)] .

The Fourier transforms Âj(T, ki) and π̂j(T, ki), being transverse (kiÂ
i = kiπ̂

i = 0), can be
written as

Âi =
∑

λ

qk,λ(T ) ε
i
k,λ , π̂i =

∑

λ

pk,λ(T ) ε
i
k,λ ,

where εik,λ are the two polarization vectors orthogonal to the wave vector ki, so that the reduced
Hamiltonian becomes

Hreduced =
1

2

∑

λ

∫

d3k (pk,λp
∗
k,λ + |k|2 qk,λq∗k,λ) . (15.5)

This Hamiltonian is just the Hamiltonian of a sextuple infinity of identical harmonic oscillators
of frequency ω = |k|. The Hamilton equations again give the equations of motion (15.4) (see the
similar case of the scalar field in Section 9.2). The Hamiltonian (15.5) is the starting point for
the quantization of the electromagnetic field.

The solution of the equation of motion (15.4) guaranteeing the reality of Āi is

qk,λ = ak,λ e
−i|k|T + a∗k,λ e

+i|k|T , (15.6)

where ak,λ are integration constants, that is, two arbitrary functions1 of ki. After rewriting
the integral of the second term in (15.6) for kj → −kj , we find that the square-integrable
general solution of the vacuum Maxwell equations for the potential in the Hamiltonian gauge
is a superposition of ‘monochromatic’ plane waves Ai

k,λ(X
μ):

1In quantum electrodynamics it is
√

2|k|ak,λ (rather than ak,λ), which becomes an ‘annihilation operator’;
see Sections 9.2 and 9.3.
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Aμ = (0, Āi) with Āi(Xμ) =
∑

λ

∫
d3k

(2π)3/2
Ai

k,λ(X
μ) and

Ai
k,λ(X

μ) ≡ ak,λ ε
i
k,λ e

ikμX
μ

+ c.c., where kμ = (|k|, ki) and kiε
i
k,λ = 0 .

(15.7)

Therefore, the monochromatic plane waves form a basis (in the sense of distributions, because
they are not square-integrable) in which any solution of the vacuum Maxwell equations can
be expanded. If desired, we can avoid the introduction of complex quantities by writing
Ai

k,λ(X
μ) as

Ai
k,λ(X

μ) = āk,λ ε
i
k,λ cos(kμX

μ − φk,λ) with kμ = (|k|, ki), (15.8)

where the constants āk,λ and φk,λ are real.
The electric and magnetic fields are defined as Ei = −∂0Ai (in the Hamiltonian gauge)

and Bi = eijk∂jAk. When the potential is given by the monochromatic plane wave (15.8)
they can be written as

Ei = −|k| āk,λεik,λ sin(kμXμ − φk,λ) , Bi = −kj eijkāk,λε
k
k,λ sin(kμX

μ − φk,λ) . (15.9)

In 3-vector notation we have

(E .n) = 0, B = n ∧ E with n ≡ k

|k| . (15.10)

The components of the energy–momentum tensor are given by (see Section 12.4) T 00 ≡
W = 1

8π (E
2 +B2), T 0i ≡ Si with S ≡ 1

4π (E ∧B) and Tij ≡ σij = 1
4π (−EiEj − BiBj +

1
2δij(E

2 + B2)). When the potential is given by the monochromatic plane wave (15.8) they
become

W =
|k|2
4π

ā2k,λ sin
2(kμX

μ − φk,λ) , S = W n ,

σij n
inj = W , σij n

j = Si , σij − ninj(σkl n
knl) = 0 ,

(15.11)

where the last expression is easily shown if we work in the frame in which n = (1, 0, 0),
E = (0, |E|, 0), and B = (0, 0, |E|), because then the only nonzero component of σij is
σXX = W . We note that 〈W 〉 = 1

8π |k|2ā2k,λ when averaged over kμX
μ. Finally, the various

components of Tμν can be grouped together to give2

Tμν =
W

|k|2 k
μkν . (15.12)

2Knowing the transformation law for the T 00 ≡ W component of the energy–momentum tensor (see
Section 12.4) as well as that of the 4-vector kμ under a change of inertial frame S → S′, we see that the

components of the energy–momentum tensor in S′ are given by T ′μν = W ′

|k′|2 k
′μk′ν . Therefore, W

|k|2 is a scalar.
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The manifestly Lorentz-invariant form

We have defined a monochromatic plane wave as the particular solution of the vacuum
Maxwell equations in the Hamiltonian gauge in a given inertial frame, Aμ = (0, Ai

k,λ), where

Ai
k,λ(X

μ) is given in (15.7) or (15.8). As we saw in Section 14.1, this gauge is also the Coulomb

gauge (because ∂iĀ
i = 0) and it satisfies the Lorenz condition ∂μA

μ = 0. Therefore, the gauge
is completely fixed, but Aμ is not in a manifestly Lorentz-invariant form.

In a different inertial frame S ′, which, for example, moves along the X axis at speed V0,

the gauge is no longer the Hamiltonian gauge because A′
0 = V0AX/

√
1− V 2

0 	= 0. However,
it will always belong to the class of Lorenz gauges because the condition is invariant under
Poincaré transformations. The manifestly Lorentz-invariant form of the potential describing a
monochromatic plane wave then is

Aμ = aμ cos(kνX
ν − φ) with kμk

μ = 0 and aμk
μ = 0, (15.13)

where aμ is a constant 4-vector and φ is a constant. Choosing the Hamiltonian gauge means
requiring that a0 = 0 in the selected frame.

The Faraday tensor associated with the potential (15.13) is

Fμν ≡ ∂μAν − ∂νAμ = −(kμaν − kνaμ) sin(kρX
ρ − φ).

[It can be written as the exterior product of the forms (i.e., of the covariant vectors) k and a as
F = sin(kρX

ρ − φ) a ∧ k; see Section 22.1 et seq. below.]
The energy–momentum tensor Tμν ≡ 1

4π
(FμρF

ρ
ν − 1

4
ημνFρσF

ρσ) reduces to

Tμν =
1

4π
sin2(kρX

ρ − φ)(aρa
ρ)kμkν , (15.14)

which is the manifestly Lorentz-invariant form of (15.12).

15.2 Monochromatic plane waves: polarization

A monochromatic plane wave propagating in the k direction in an inertial frame S is com-
pletely described in the Hamiltonian gauge by the magnetic potential [cf. (15.8)]

A = ε1a1 cos(|k|T + ψ1) + ε2a2 cos(|k|T + ψ2), (15.15)

where we have omitted the indices k in order to simplify the notation. Here ε1 and ε2 are two
unitary vectors which are orthogonal to each other and to the wave vector k (chosen such
that ε1 = eY , ε2 = eZ if k = |k|eX), and ψλ ≡ (φλ − kiX

i) (λ = 1, 2) is the phase at T = 0
of each component of A at a point in space. Every quantity derived from the potential (for
example, the electric and magnetic fields) will have the same structure.

Let us consider, in a Euclidean plane with basis vectors ε1 and ε2 and origin O (which can
be identified with the point having coordinates Xi in the space E3 representing the physical
space), the endpoint P of a bound vector OP = A.

If ψ1 = ψ2 ≡ ψ, then
A = (a1ε1 + a2ε2) cos(|k|T + ψ) , (15.16)

and the point P will oscillate with a period equal to that of the wave, 2π/|k|, along the line
making an angle φ with ε1 such that tanφ = a2/a1. In this case the polarization of the wave
is said to be linear.
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If ψ1 = ψ2 ± π/2 ≡ ψ and a1 = a2 ≡ a, then

A = a [ε1 cos(|k|T + ψ)∓ ε2 sin(|k|T + ψ)] . (15.17)

In this case, during one period the point P traces a circle of radius a in the prograde direction
if ψ1 = ψ2 − π/2, or in the retrograde direction if ψ1 = ψ2 + π/2. The polarization is called
right- or left-handed circular polarization (these are also referred to as positive and negative
helicities).

In the general case the point P traces an ellipse (see Fig. 15.1).

BE

B E

E

θ

E1

E2

α
2

α
2

α
2

ε2

ε2

ε2

ε1 ε1

ε1

ε1

ε2

Fig. 15.1 Elliptical, circular, and linear polarizations.

Let A1 ≡ a1 cos(|k|T + ψ1) and A2 ≡ a2 cos(|k|T + ψ2) be the components of A in the
basis (ε1, ε2). The equation of the ellipse is obtained by eliminating the time and becomes

sin2(ψ2 − ψ1) =

(
A1

a1

)2

+

(
A2

a2

)2

− 2

(
A1

a1

)(
A2

a2

)
cos(ψ2 − ψ1) . (15.18)

To find the orientation and the major axis of the ellipse, we rotate the axes by an angle α,
(ε1, ε2) → (ξ1, ξ2), such that ε1 = ξ1 cosα− ξ2 sinα and ε2 = ξ1 sinα+ ξ2 cosα. We then find

A = X1ξ1 +X2ξ2 and

{
A1 = X1 cosα−X2 sinα

A2 = X1 sinα+X2 cosα ,
(15.19)

where X1 and X2 are the components of A in the basis (ξ1, ξ2). We then substitute (15.19)
for A1 and A2 as functions of X1 and X2 into (15.18). The cross term proportional to X1X2

vanishes if the angle α is chosen such that

tan 2α =
U

Q
, where

{
U ≡ 2a1a2 cos(ψ2 − ψ1)

Q ≡ a21 − a22 .
(15.20)
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Now substituting this value of α into the coefficients ofX2
1 andX2

2 , with a bit of trigonom-
etry we find that (15.18) for the ellipse takes the ‘canonical’ form

(
X1

a+

)2

+

(
X2

a−

)2

= 1, where a± =
V√

2 (I ∓
√
A+ U2)1/2

with I ≡ a21 + a22 , V ≡ 2a1a2 sin(ψ2 − ψ1) .

(15.21)

The parameters (U,Q, V, I) are the Stokes parameters. They are related to each other as

I2 = Q2 + U2 + V 2 . (15.22)

15.3 Plane waves

A plane wave is a solution of the vacuum Maxwell equations which depends on only one of
the Cartesian spatial coordinates, for example, X. In this case the Maxwell equations in the
Hamiltonian gauge, �Āi = 0, reduce to −∂2Āi/∂T

2+∂2Āi/∂X
2 = 0, or also ∂2Āi/(∂u∂v) =

0 after making the change of variable u = T −X, v = T +X. The solution therefore has the
form Aμ = (0, Āi) with

Āi = Āi
+(T −X) + Āi

−(T +X) and ∂iĀ
i
± = 0 . (15.23)

A solution of this type can be decomposed on a basis of monochromatic plane waves as

Āi
± =

∑

λ

∫
dk√
2π

(ak,λε
i
k,λe

−ik(T∓X) + c.c.), (15.24)

where the two polarization vectors εk,λ reduce in this case to the basis vectors eY and eZ .
The quantity Āi

+ describes a wave propagating in the positive X direction at the speed of
light, and Āi

− is the same in the negative direction.

Spherical waves

We can analogously define a spherical wave as a solution of the vacuum Maxwell equations

depending only on the time T and the radial distance r to the origin. Given that 
f = 1
r

∂2(rf)

∂r2
,

the wave equation takes the form −∂2
T (rAi) + ∂2

r (rAi) = 0, the general solution of which is
the sum of a wave propagating from the origin and a wave converging toward the origin, Aμ =
(0, Āi), with

Āi(r, T ) =
Ā+

i (r − T )

r
+

Ā−
i (r + T )

r
.

The electric and magnetic fields are defined in the Hamiltonian gauge as Ei = −∂0Ai and
Bi = eijk∂jAk. In the case of a plane wave propagating along the vector eX and therefore
depending only on u = T −X they are given by

E = −dĀ

du
with (E .eX) = 0 , B = eX ∧ E . (15.25)

The energy–momentum tensor of the wave possesses the same properties as that of a mono-
chromatic plane wave [cf. (15.11)]:
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W =
E2

4π
, S = WeX , σXX = W . (15.26)

Finally, just like a monochromatic plane wave, the potential describing a plane wave can be
cast in manifestly Lorentz-invariant form [cf. (15.13)]:

Aμ = Aμ(ξ), where ξ ≡ −kμX
μ with kμk

μ = 0 and Aμk
μ = 0 . (15.27)

The null vector kμ, which is constant, determines the direction of propagation of the plane
wave [for example, kμ = (k, k, 0, 0) for a wave propagating in the positiveX direction], and the
condition Aμk

μ guarantees that the gauge is a Lorenz gauge because it implies that ∂μA
μ = 0.

Choosing the Hamiltonian gauge amounts to requiring that A0 = 0 in the chosen frame.
The Faraday tensor associated with the potential (15.27) is

Fμν ≡ ∂μAν − ∂νAμ = −kμ
dAν

dξ
+ kν

dAμ

dξ
. (15.28)

[It can be written as an exterior product; see Section 22.1 et seq.: F = (dA/dξ)∧k.] It satisfies
Fμνk

ν = 0, which means that E and B are orthogonal to the direction of propagation. Since
FρσF

ρσ = 0, which means that E and B have the same modulus, the energy–momentum
tensor of the wave is simply

Tμν ≡ 1

4π
(FμσF

σ
ν − 1

4
ημνFρσF

ρσ) =
1

4π

(
dA

dξ
· dA
dξ

)
kμkν . (15.29)

15.4 Motion of a charge in a plane wave

Let us consider a plane wave propagating in a direction determined by the spatial components
of a null vector kμ. It is described by a potential Aμ(ξ), where ξ ≡ −kμX

μ ≡ −(k · X),
belonging to the class of Lorenz gauges if (A · k) = 0 [cf. (15.27)]. Its Faraday tensor is given
in (15.28). Then the Lorentz equation of motion of a charge q of mass m and 4-velocity Uμ

in the field of this wave is

dUμ

dτ
=

q

m
Fμ

νU
ν =

q

m

[
−kμ

(
U · dA

dξ

)
+ (k · U)

dAμ

dξ

]
. (15.30)

Since the scalar product of the second term with kμ is zero, we have (k ·U) = (k ·Uin), where
Uμ
in is the initial 4-velocity, that is, the 4-velocity at τ = 0, where τ is the proper time of the

charge. Since ξ(τ) = −(k ·X(τ)), we have ξ = −(k · Uin)τ . Therefore, the quantity ξ [equal,
for example, to k(T −X) if the wave travels along the X axis] when evaluated on the world
line is proportional to the proper time τ of the charge. Equation (15.30) can therefore be
rewritten as

dUμ

dξ
=

q

m

[
kμ

(k · Uin)

(
U · dA

dξ

)
− dAμ

dξ

]
. (15.31)

If we now take the scalar product of (15.31) and the vector Aμ, since (A · k) = 0 we obtain
(
A · dU

dξ

)
= − q

m

(
A · dA

dξ

)
, that is,

(
U · dA

dξ

)
=

d

dξ
(A · U) +

q

2m

d

dξ
(A ·A) . (15.32)

Equation (15.31) can then be integrated to give the 4-velocity of the charge:

Uμ = Uμ
in − q

m
(Aμ −Aμ

in)−
q2

2m2

kμ

(k · Uin)
(A−Ain)

2, (15.33)

where Ain is the value of the potential at τ = 0, and we have simplified the expression using
the fact that the 4-velocity is normalized to −1.
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A charge in a linearly polarized wave

Let us choose the frame such that the wave, which we assume monochromatic, propagates
along the X axis, kμ = (k, k, 0, 0), and is polarized along the Y axis. Then in the Hamiltonian
gauge we have Aμ = (0, 0, a cos ξ, 0) with ξ = k(T −X), k being the wave frequency and ka the
amplitude of the associated field. If we choose the initial condition on the charge motion to be
Uμ

in = (1, 0, 0, 0), then (k · Uin) = −k and ξ(τ) = kτ .
The components of the 4-velocity Uμ = k(dXμ/dξ) are given by (15.33), which becomes

UX =
β2

2
(cos ξ − 1)2, UY = −β(cos ξ − 1), U0 = 1 + k

dX

dξ
, with β ≡ qa

m
. (15.34)

These equations can be integrated by inspection. If we assume that the charge is at the origin
at τ = 0, we have

kX =
β2

8
(6ξ − 8 sin ξ + sin 2ξ), kY = β(ξ − sin ξ), kT = ξ + kX. (15.35)

The charge traces a figure eight in the XOY plane, about the line starting from the origin along
which it is carried with the average velocity

〈V X〉 = 3β2

4(1 + 3β2

4
)
, 〈V Y 〉 = β

1 + 3β2

4

.

In the nonrelativistic limit (β → 0) the charge drifts slowly along the Y axis, that is, along the
electric field, and oscillates with the same frequency k along a flat figure eight parallel to the
field. In the ultrarelativistic limit where β is large, the charge accompanies the wave along the
X axis while describing large figure eights with period 2π/k measured using its proper time, and
period (2π/k)(1 + 3β2/4) measured using the time of the inertial frame (see Fig. 15.2).

β = 0.1

β = 0.2

β = 0.5

kX

kY

Fig. 15.2 A charge in a linearly polarized monochromatic wave.
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To describe the motion of the charge in the inertial frame S ′ where it is at rest on the
average, we need to combine Lorentz transformations along the X axis and then along the Y
axis [see (1.12)], with the angle φ given by tanφ ≡ 〈V Y 〉/〈V X〉 = 4/(3β) and the rapidity ψ by

tanhψ = 〈V 〉 = β
√

1 + 9β2/16/(1 + 3β2/4). Then we need to substitute (15.35) for the world
line in S. A rather tedious trigonometric calculation gives

kX ′ = − β2

4(1 + 9β2/16)

[

3
√

1 + β2/2 + 1 +

(
3β2

16
√

1 + β2/2
− 1

)

cos ξ

]

sin ξ ,

kY ′ = − β

1 + 9β2/16

[
√

1 + β2/2− 3β2

16
+

β2

16

(
1

√
1 + β2/2

+ 3

)

cos ξ

]

sin ξ ,

kT ′ =
√

1 + β2/2 ξ +
β2

8
√

1 + β2/2
sin 2ξ .

The trajectory is again a figure eight, as in the previous case.

A charge in a circularly polarized wave

Let us choose the frame such that the wave, assumed to be monochromatic, propagates
along the X axis, kμ = (k, k, 0, 0). If it is circularly polarized (see 15.2), we can take Aμ =
(0, 0, a cos ξ, a sin ξ) with ξ = k(T −X), k being the wave frequency and ka the amplitude of the
associated field. If the initial condition on the charge motion is taken to be Uμ

in = (1, 0, 0, 0), we
have (k · Uin) = −k and ξ(τ) = kτ .

The components of the 4-velocity Uμ = k(dXμ/dξ) are given by (15.33):

UY = −qa

m
(cos ξ − 1), UZ = −qa

m
sin ξ, UX = −

(qa

m

)2

(1− cos ξ), U0 = 1+ k
dX

dξ
. (15.36)

Integrating this gives

kX = β2(ξ−sin ξ), kY = β(ξ−sin ξ), kZ = β(cos ξ−1), kT = ξ+X with β ≡ qa

m
. (15.37)

On the average, the charge travels along the line OX̄ of the XOY plane, making an angle φ
with OX such that tanφ = 1/β, at the velocity

〈V X〉 = β2

1 + β2
, 〈V Y 〉 = β

1 + β2
.

In addition, in the X̄OZ plane the charge traces ellipses perpendicular to the average motion.
In the nonrelativistic limit β → 0 the charge drifts slowly along the Y axis and traces circles

with the same frequency as the wave. In the ultrarelativistic limit the charge accompanies the
wave along the X axis and oscillates along the X axis with period 2π/k measured using its
proper time, and (2π/k)(1 + β2) measured using the time of the inertial frame.

To describe the motion of the charge in the inertial frame S ′ where it is at rest on the
average, we combine Lorentz transformations along the X axis and then along the Y axis (see
15.2), where the angle φ is now given by tanφ ≡ 〈V Y 〉/〈V X〉 = 1/β, and the rapidity ψ by

tanhψ = 〈V 〉 = β
√

1 + β2. We then insert (15.37) for the world line into S. We easily find

kX ′ = − β2 sin ξ
√

1 + β2
, kY ′ = − β sin ξ

√
1 + β2

, kZ′ = β(cos ξ − 1), kT ′ =
√

1 + β2 ξ.
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In this frame the charge describes a circle of radius β/k in the X̄ ′OZ′ plane, where the axis OX̄ ′

makes an angle φ with the OX ′ axis such that tanφ = 1/β.

15.5 The geometrical optics limit

Just like the waves of the scalar field studied in Section 9.2 and the sound waves studied in
Book 1, Section 17.3, the monochromatic plane waves of (15.7) or (15.8), which are solutions
of the vacuum Maxwell equations for the potential, as well as the electric and magnetic fields
(15.10) derived from them, are completely delocalized: at any given instant T they vary
sinusoidally along lines determined by the wave vector k, and in each plane perpendicular to
k they oscillate in the time T of the frame at frequency ω = |k| (or period P ≡ 2π/ω).

Let us consider the case where the direction ki = (k, 0, 0) is the X axis. Then Ai
k,λ(X

μ) is
constant if its phase kμX

μ = −k(T −X) is constant. Therefore, if the potential has a certain
value at (X0, T0), it will have the same value at another point located a distance ΔX0 away
after a time lapse of ΔT0 = ΔX0. The potential Ai

k,λ(X
μ) thus describes a wave which

propagates in the positive X direction at the speed of light. Its wavelength is λ ≡ 2π/k. As
shown by (15.11) or (15.14) for the associated energy–momentum tensor, this wave transports
energy along its direction of propagation.

The wave fronts, sets of points of equal phase at a given time, are planes orthogonal to
the direction of propagation, and light rays are lines parallel to the direction of propagation.

A plane wave (15.23), the superposition of monochromatic plane waves propagating, for
example, in the X direction [cf. (15.24)], is more or less localized on the planes X = ±T
according to how spread out the functions ak,λ are about a value k0 of k.

X
(a)

f 
(X

, 
0
) f̂
(k

)

kk0

Δx

Δk

(b)

T

X

X − T =
0

T1

T2

Fig. 15.3 Structure of an electromagnetic plane wave.

A Gaussian wave packet

Let us consider the case of a plane wave propagating along the X axis and polarized in the
Y direction:

Āi
± =

∑

λ

∫
dk√
2π

(ak,λε
i
k,λe

−ik(T∓X) + c.c.),

with the amplitude distribution given by the Gaussian Σλak,λεk,λ = CeY e−D2(k−k0)
2

. Since the
exponential differs significantly from 0 only if D|k − k0| < 1, the superposition will involve a
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larger number of different wavelengths the smaller D is. The plane wave is also a Gaussian (see
the discussion of the properties of Fourier transforms in Section 9.2), Āi = (0, Ā±, 0) with

Ā± =

√
2C

D
e
− (T∓X)2

4D2 cos[k0(T ∓X)].

This wave, of frequency k0, is the more localized on the line of zero length T = ±X the
smaller D is.

Let us now consider the electromagnetic potential

Ai = Φi(T,X
i)eiφ(T,Xi) (15.38)

in a more general manner, assuming that the (real) phase φ varies much more rapidly than
the amplitude Φi, that is, that

∂μΦi � Φi∂μφ . (15.39)

If we think of the wavelength as the typical distance over which the phase varies, this as-
sumption implies that the amplitude and direction of propagation of the potential are nearly
constant over several wavelengths.

In the Hamiltonian gauge where A0 = 0, the magnetic potential (15.38) satisfies the
vacuum Maxwell equations (namely, ∂iA

i = 0 and �Ai = 0) if

∂iΦi + iΦi∂iφ = 0, �Φi + 2i ∂μφ∂μΦi + φi [i�φ− ∂μφ∂
μφ] = 0 . (15.40)

Under the assumption (15.39) these equations simplify to

Φi∂iφ = 0, �φ = 0, ∂μφ∂μφ = 0, (15.41)

where the last equation is referred to as the eikonal equation.
Let us introduce the vector

kμ = ∂μφ . (15.42)

The eikonal equation requires it to be null. Moreover, we have 0 = ∂ν(∂μφ∂
μφ) = 2∂μφ∂μνφ,

so that kμ∂μkν = 0, and so the curves with tangent vector kμ are light lines. These are null
lines of M4, and their projections on the planes T = const are light rays. If the amplitude
Φi, which is not constrained by (15.41), is localized, the light rays can reduce to a thin beam
of straight lines.

Therefore, given the condition (15.39), that is, in the limit where the wavelength3 λ → 0,
the laws of light propagation in the Maxwell theory reduce to those of geometrical optics,
where electromagnetic waves are replaced by light rays, as we have done in4 Chapters 3
and 4.

3This is often an excellent approximation for visible light, whose typical frequency is of order 1014 Hz and
typical wavelength is 10−7 m.

4We recall, however, that a light ray is an abstract object. It can be represented approximately by a light
beam, but it is impossible to make the beam infinitesimally thin because diffraction phenomena arise.
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16

Waves in a medium

In the preceding chapters we have discussed Maxwell’s equations in their ‘fundamental’ (or micro-
scopic) form, where the electromagnetic field is evaluated in the vacuum, that is, outside the current
and charge densities creating the field. To obtain a ‘mean’ or macroscopic description of electromag-
netic phenomena inside matter, we need to use a phenomenological approach. This is the subject of
the present chapter.

16.1 The Maxwell equations in a medium

The electromagnetic field inside a medium induces charge and current distributions called
polarization, which are the response of the matter to the field. The charge and current
densities can be decomposed into the sum of free densities (that is, imposed from outside the
medium, and which create the field) and induced densities. We write ρ = ρfree + ρpol, with
the polarization charge density given by ρpol = −∇.P , where P is the polarization. Similarly,
we write j = jfree + jpol + jmag, with the polarization current given by jpol = ∂P/∂T (thus
the continuity equation ρ̇pol + ∇.jpol = 0 is satisfied) and the magnetization current by
jmag = ∇∧M , where M is the magnetization.

The second group of Maxwell equations (12.16), namely, ∇ .E = 4πρ, ∇∧B = ∂E/∂T +
4πj, can then be rewritten in terms of the 3-vectors corresponding to the electric displacement
field D and the magnetic field strength H defined as

D ≡ E

4π
+ P, H ≡ B

4π
−M, (16.1)

where∇.D = ρfree and∇∧H = ∂D/∂T+jfree. These equations, like the microscopic Maxwell
equations, involve only free sources, but at the price of introducing the effective fields D and
H which take into account the properties of the medium.

The determination of the vectors P and M as a function of the polarization currents
(for which various microscopic models can be used) is a complicated problem, and D and
H are a priori nonlocal and nonlinear functionals of the primary fields1 E and B. However,
in the weak-field limit the response of the medium can be assumed to be linear, and if in
addition the medium is homogeneous and isotropic the relations D = D[Xi, T, E,B] and
H = H[Xi, T, E,B] can be approximated by D = εE and H = B/μ, where μ and ε are two
constant parameters: the susceptibility and the permittivity characterizing the medium (in a
vacuum ε = 1/4π and μ = 4π in our units). We also introduce the impedance of the medium
Z ≡

√
μ/ε, which is 4π in the vacuum (or 376.7 Ω in S.I. units). With these approximations

and definitions, the Maxwell equations (12.3) and (12.16) are replaced by

1We refer the reader to Jackson (1975) for examples.
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∇.B = 0, ∇∧ E = −∂B

∂T
, ∇.D = ρ, ∇∧H =

∂D

∂T
+ j,D = εE, H =

B

μ
, (16.2)

where ρ and j are the free charge and current densities. Only the second group of Maxwell
equations has been modified, because only they involve the properties of the medium. The
first group remains unchanged, and so the magnetic potential can be defined as for the
vacuum. Equations (16.2) are often called the macroscopic form of Maxwell’s equations.
It is important to emphasize the fact that they have not been derived directly from their
fundamental version, because the response of a medium to an electromagnetic excitation is
described phenomenologically using the coefficients ε and μ. It should also be noted that they
are only valid in the frame where the medium is at rest and they are not Lorentz invariant;
they cannot be written in four-dimensional notation or derived from an action using the
variational principle.

Combining the equations for ∇∧H and ∇∧ E, we find that

(E.∂TD +H.∂TB) +∇.(E ∧H) = −j.E

(see Section 11.1 for a review of vector calculus). As long as the relations between D and
E on the one hand and H and B on the other are linear and independent of time, we have
E.∂TD = ∂T (E.D/2) and H.∂TB = ∂T (B.H/2), and so

∂TW +∇.S = −j .E, where W =
1

2
(E.D +H.B) and S = E ∧H , (16.3)

which (outside the free charges) can be interpreted as an energy conservation equation. In
the vacuum case D = E/4π and H = B/4π, and so we recover the expression obtained in
Section 12.4, footnote 7. However, the energy density W and the Poynting vector S are no
longer the components of an energy–momentum tensor.

Waves in a homogeneous medium

In a homogeneous and isotropic medium without free charges or currents, the macroscopic
Maxwell equations imply that the electric and magnetic fields propagate as

(
∂2

∂T 2
− 1

με


)

E = 0. (16.4)

This equation is similar to (12.17) obtained from the microscopic Maxwell equations and de-
scribes a wave propagating at speed cEM = 1/

√
με ≡ 1/n, which defines the index of refraction

n (n = 1 for the vacuum). The big difference from (12.17) is that the operator ∂2
T − n2
 does

not reduce to the d’Alembertian, which again illustrates the fact that the relativistic invariance
is broken. In the case of a monochromatic plane wave of wave vector k, (16.4) is equivalent to
the dispersion relation

|k|2 − n2ω2 = 0, where n =
√
με . (16.5)

In general, με is not real and positive and so k is complex, which corresponds to dissipation
of the wave in the medium in which it is propagating (when n depends on the wavelength the
medium is termed dispersive). When με is real and positive, the dispersion relation implies that
|k| = √

μεω = nω. The phase velocity then is cφ ≡ ω/|k| = 1/n, and the group velocity is

cg ≡ dω/d|k| = cφ, so that cφcg = 1/n2.
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Waves in a conducting medium

In a conductor the susceptibility and permittivity are the same as in the vacuum, but the
presence of an electric field E induces a current according to Ohm’s law: j = σE. This law can be
viewed as the first term of a Taylor series expansion of a general law of the form j = j(E) which
depends on the structure of the conductor and reflects its microscopic physics. The conductivity
σ is in general a position-dependent tensor. It reduces to a number for a homogeneous and
isotropic medium.

Maxwell’s equations (16.2) with D = E/4π and H = B/4π imply that [cf. (12.17), where we
have used ∇∧ j = σ∇∧ E = −σ ∂B/∂T ]


E − ∂2E

∂T 2
= 4πσ

∂E

∂T
, 
B − ∂2B

∂T 2
= 4πσ

∂B

∂T
. (16.6)

For a monochromatic plane wave propagating in the direction eX we have E ∝ ei(ωT−kX), and
(16.6) reduces to the dispersion relation k2−ω2+4πσiω = 0 and k is complex. Setting k = kR+ikI,

we have k2
R − k2

I = ω2 and kRkI = −2πσω. The fields therefore evolve as E ∝ ekIXei(kRX−ωT )

with

kI = −ω

⎡

⎣

√

1 +
(
4πσ
ω

)2 − 1

2

⎤

⎦

1
2

, kR = +ω

⎡

⎣

√

1 +
(
4πσ
ω

)2
+ 1

2

⎤

⎦

1
2

. (16.7)

The amplitude falls off exponentially with X, which defines the skin depth of the conductor:
1/kI ∼ (2πσ)−1 in the limit σ � ω. A wave of this type is called an evanescent wave.

16.2 Matching conditions and the Snell–Descartes laws

The matching conditions on the electromagnetic field at the interface between two different
media (for example, a pair of lenses) can be obtained from the macroscopic Maxwell equations
(16.2) with the use of the Gauss and Stokes theorems (see, for example, Book 1, Section 2.6).

Using ∇.D = ρ and considering the elementary volume shown in Fig. 16.1 below, we find
∫

V

ρ d3X =

∫

V

∇.D d3X =

∫

∂V

D.dS = [D.n]± |dS1|+
∫

S2

D.dS2 ,

where we have used the notation [X]± = X+ −X−. The contribution of the second integral
tends to 0 when the thickness of V tends to 0. We then have [D.n]± = σ, where σ is the
surface density of free charge at the interface. In the same way, ∇.B = 0 gives [B.n]± = 0.
Moreover, (16.2) for H implies, for the path shown in Fig. 16.1, that

∫

C

H.d� =

∫

Σ

(∇∧H).dS =
d

dT

∫

Σ

D.dS +

∫

Σ

j.dS.

Now letting ε go to 0, we see that the left-hand side gives [H∧n]±δ�, while the right-hand side
reduces to jsδ�, where js is the surface current. We thus obtain the constraint [H ∧ n]± = js
on the components perpendicular to n. Similarly, we find [E ∧n]± = 0 by using (16.2) for E.

Therefore, at the interface between two media the normal components of B and D on the
one hand and the tangential components of E and H on the other are continuous as long as
there is no surface current or charge at the interface:
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[D.n]± = [B.n]± = 0, [E ∧ n]± = [H ∧ n]± = 0 . (16.8)

These matching conditions apply to static fields as well as to waves (see Fig. 16.1).

ε

dS1

dS2

n n
d�

(C )

Fig. 16.1 Matching conditions.

Now let us consider the particular case of a monochromatic plane wave propagating in
a medium of index of refraction n1 which is separated from a medium with index n2 by
an infinitesimally thin, planar, and infinite interface (located at Z = 0). This incident wave
of wave vector kI, EI = EI0e

i(kI.R−ωIT ), where R is the radius vector with components Xi,
in general gives rise to a reflected wave [ER = ER0e

i(kR.R−ωRT )] and a transmitted wave
[ET = ET0e

i(kT.R−ωTT )]; see Fig. 16.2.
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Fig. 16.2 The Snell–Descartes laws.

Since the tangential component of EI +ER must be equal to that of ET for all times, we
have ωI = ωT = ωR ≡ ω. The dispersion equation in each medium then gives |kR|2 = ω2n2

1 =
|kI|2 and |kT|2 = ω2n2

2 = |kI|2(n2/n1)
2. On the other hand, the continuity of the tangen-

tial component of E at every point on the interface implies that kI.R|Z=0 = kT.R|Z=0 =
kR.R|Z=0. The three wave vectors are therefore coplanar, and the plane containing them
is called the plane of incidence (it is well defined as long as the incidence is not normal).
Using the notation of Fig. 16.2, the relation between the wave vectors can be written as
|kI| sin θi = |kR| sin θr = |kT| sin θt. We then deduce that
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θr = θi ,
sin θi
sin θt

=
n2

n1
. (16.9)

These are respectively called Snell’s law and Descartes’s law. They do not depend either on
the exact nature of the interface, or on properties of the wave such as its polarization.

The Fresnel laws

The matching conditions (16.8) imply that the tangential components of E and H are con-
tinuous, that is, (EI0 − ER0) ∧ e = ET0 ∧ e and (because B = k ∧ E/|k| and H = B/μ)
(kI ∧EI0 +kR ∧ER0)∧ e/μ1 = (kT ∧ET0)∧ e/μ2, where e is the vector normal to the interface.

When the wave is polarized normal to the plane of incidence, these two relations give (see

Fig. 16.3) EI0 + ER0 − ET0 = 0 and EI0−ER0
Z1

cos θi = ET0
Z2

cos θt, where we recall that the

impedances are defined as Z ≡
√

μ/ε and the indices of refraction as n =
√
εμ. From this we

derive the two Fresnel equations relating the amplitudes of the reflected and transmitted waves
to that of the incident wave:

(
ER0

EI0

)

⊥
=

Z2 cos θi − Z1 cos θt
Z2 cos θi + Z1 cos θt

,

(
ET0

EI0

)

⊥
=

2Z2 cos θi
Z2 cos θi + Z1 cos θt

, (16.10)

where the subscript ⊥ indicates that E is perpendicular to the plane of incidence. The trans-
mitted wave is therefore always in phase with the incident wave. This is not the case with the
reflected wave. If we limit ourselves to the case where μ1 = μ2, for n1 < n2 we have θt < θi
and cos θi < cos θt, and the reflected wave is out of phase by π. If n1 > n2 we have θt > θi and
cos θi > cos θt, so that the reflected wave is in phase with the incident wave.

When the wave is polarized parallel to the plane of incidence, we similarly find (see Fig. 16.3)

(EI0 − ER0) cos θi − ET0 cos θt = 0 and EI0+ER0
Z1

= ET0
Z2

. The Fresnel equations then are

(
ER0

EI0

)

‖
=

Z1 cos θi − Z2 cos θt
Z2 cos θt + Z1 cos θi

,

(
ET0

EI0

)

‖
=

2Z2 cos θi
Z2 cos θt + Z1 cos θi

. (16.11)

Again, the transmitted wave is in phase with the incident wave. The reflected wave is in phase if
n1 cos θt < n2 cos θi, which can be rewritten using the Snell–Descartes laws as sin(θt−θi) cos(θt+
θi) > 0. This condition depends not only on the ratio n1/n2, as for a wave polarized perpendicu-
larly to the plane of incidence, but also on θi, and so the reflected wave can be out of phase by π
for any value of n2/n1. Brewster’s angle, the angle of incidence for which a wave passes through
the interface between two different media without any reflection, is obtained for θi + θt = π/2
so that2

tan θiB =
n2

n1
. (16.12)

The case of an elliptically polarized wave is obtained by the superposition of these two cases.
For an unpolarized wave incident at Brewster’s angle, the reflected wave will be polarized per-
pendicularly to the plane of incidence, which can be used to produce a linearly polarized wave.

2For an air–glass interface (n1 ∼ 1, n2 ∼ 1.5) Brewster’s angle is θiB = 56.3 deg. Brewster’s angle can be
used to determine the index of refraction of a medium by measuring the angle.
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Fig. 16.3 Fresnel’s laws.

Reflection and transmission coefficients

The energy flux of an electromagnetic field per unit surface area is given by the time average
of the Poynting vector S = E ∧H; cf. (16.3). For a plane wave H = B/μ = k/|k| ∧E/μ, and so
S̄ = (|E0|2/(2μ))k/|k|, where E0 is the field amplitude and k/|k| is the direction of propagation of
the wave. The reflection and transmission coefficients characterize the energy flow (the intensity)
across the interface and are defined as

R ≡
∣
∣
∣
∣
S̄R.e

S̄e.e

∣
∣
∣
∣ =

(
ER0

EI0

)2

, T ≡
∣
∣
∣
∣
S̄T.e

S̄e.e

∣
∣
∣
∣ =

(
ET0

EI0

)2
Z1

Z2

cos θt
cos θi

, (16.13)

where e is the normal to the plane. [We recall that the impedances are defined as Z ≡
√

μ/ε
and the indices of refraction as n =

√
εμ.] We have R+T = 1 [using (16.10) or (16.11)], which is

equivalent to the law of energy conservation (16.3). Fresnel’s laws (16.10) and (16.11) give R⊥,
T⊥ and R‖, T‖ explicitly for incident waves whose polarization is perpendicular or parallel to
the plane of incidence.

When n1 > n2 the Snell–Descartes laws give θr > θi, and so θr = π/2 is reached for
sin θi0 = n2/n1. For this angle of incidence the transmitted wave propagates parallel to the
interface and no energy crosses the interface. Therefore, θi0 is the angle of total reflection.

For θi > θi0 we have sin θr > 1, and so θr is complex and cos θr = i
√

(sin θi/ sin θi0)− 1.
The transmitted wave then is

exp (ikT.X) = exp i|kT| (X sin θr + Z cos θr)

= exp[−|kT|
√

(sin θi/ sin θi0)− 1Z] exp[i|kT|(sin θi/ sin θi0)X].

The refracted wave thus is exponentially attenuated perpendicularly to the plane of the surface
and propagates parallel to it. Therefore, even if the field is nonzero in region 2, there is no energy
transfer across the interface.
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16.3 The geometrical optics approximation

As in Section 15.5, we decompose the electric and magnetic fields as

E = E0(X
i, T )eiφ(X

i,T ), B = B0(X
i, T )eiφ(X

i,T ) (16.14)

and define the wave 3-vector k ≡ ∇φ and the frequency3 ω ≡ −∂Tφ.
Now let us assume that the wavelength, defined as 2π/|k| = O(2π/ω), is small compared

to the characteristic scales on which the amplitudes E0 and B0, the properties of the medium
(ε and μ), and ki and ω vary, so that the fields are well approximated over several wave-
lengths by a plane wave propagating in a homogeneous medium. Substituting the decom-
position (16.14) into the Maxwell equations (16.2) and neglecting the spatial derivatives of
the amplitudes and of the characteristics of the medium, we find that kiE

i
0 = kiB

i
0 = 0,

k ∧ E0 = −ωB0, and k ∧ B0 = n2ωE0. Combining the last two expressions [and using
the relation k ∧ (k ∧ E0) = −k2E0 because k.E0 = 0], we obtain the dispersion relation
k2 − n2ω2 = 0, or, in terms of the phase φ,

(∇φ)2 − n2(∂Tφ)
2 = 0 . (16.15)

This eikonal equation resembles the one derived for the vacuum case in Section 15.5, but
now it is valid in a medium with n �= 1, and the Lorentz invariance is broken [that is, it is
no longer possible to write this equation in the form (∂μφ)

2 = 0].
A wave which is initially monochromatic will remain so as long as the properties of

the medium do not depend on time; see (16.2). In this case, which corresponds to most
applications, the phase can be written as φ(Xi, T ) = ω[S(Xi)− T ] and the eikonal equation
takes the form

(∇S)2 = n2 ⇐⇒ ∇S = nes, (16.16)

where es is a 3-vector of unit norm. The surfaces S = const are the wave fronts, and the
vector normal to these surfaces is∇S. Therefore, in the limit of small wavelengths, the electro-
magnetic wave propagation law reduces to the geometric law (16.16) describing
the evolution of the wave vector k ≡ ω∇S, which is no longer constant on the characteristic
scale of spatial variation of the index n. See Fig. 16.4.

The Poynting vector (16.3) is S = E ∧ H = (E ∧ B)/μ, and averaged over several
periods it becomes S̄ = (E0∧B0)/2μ. Writing B0 using the Maxwell equations (which in our
approximations and notation become ∇S ∧ E0 = −B0 and ∇S ∧ B0 = n2E0), we find that
S̄ = (E2

0/2μ)∇S. The average of the energy (16.3) is given by W̄ = εE2
0/4+B2

0/4μ. Maxwell’s
equations imply that the two terms of the sum are equal, and so W̄ = εE2

0/2 = n2E2
0/2μ.

We then have

S̄ =
W̄

n2
∇S = vφW̄es , (16.17)

3For a monochromatic plane wave φ = kμXμ = kiX
i−ωT , and so ∂iφ = ki and −∂Tφ = ω are constants.
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S = const

k

EB

S =
const

k

Fig. 16.4 Wave fronts.

using (16.16) and recalling that the phase velocity is vφ = 1/n. The direction of the energy
propagation is collinear with the phase gradient, that is, collinear with the local wave 3-vector
and therefore normal to the wave fronts.

In the eikonal approximation the amplitudes B0 and E0 are not constrained. We can
therefore assign to them a profile such that the solution of the field equations in this approx-
imation will be a light ray propagating along a curve tangent at each point to the vector es.
These curves are the light rays with equation Xi = Xi

ray(s) satisfying

dXray

ds
= es[Xray(s)] (16.18)

if the arc length s is chosen to be the curvilinear abscissa along the ray. Since nes = ∇S, the
identity d(nes)/ds ≡ es.∇(nes) becomes

d(nes)/ds = es.∇(∇S) = (n−1∇S.∇)(∇S) = [∇(∇S)2]/2n = [∇n2]/2n

using (16.16). Therefore, (16.18) now is

d

ds

[
n(Xray)

dXray

ds

]
= ∇n . (16.19)

The wave propagation problem thus reduces to a purely geometrical problem of determining
integral curves. Expanding (16.19), we obtain des/ds = [∇n− (es.∇n)es]/n. Since des/ds =
N/Rc, where Rc is the radius of curvature and N is the unit vector along the principal
normal, we find that R−1

c = N.∇ lnn, which tells us that light rays bend in the direction of
increasing index of refraction.

16.4 Fermat’s principle

In the preceding section we saw that if we choose the electric and magnetic fields to have
the form E = E0(X

i, T )eiω(S(Xi)−T ) and B = B0(X
i, T )eiω(S(Xi)−T ), then the Maxwell

equations (16.2) tell us that ∇S = nes, where es is a unit 3-vector, with the condition that
the amplitudes E0 and B0 and the index n(Xi) of the medium remain practically constant
over several wavelengths λ, where λ ≡ 2π/ω.
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From the relation nes = ∇S we find that ∇ ∧ (nes) = 0. Integrating this equation over
an arbitrary surface and then using the Stokes theorem, we find that the integral of neS on
any closed contour vanishes. Therefore, the integral

∫ P2

γ,P1

nes.dlγ (16.20)

along a path γ connecting the points P1 and P2 has a value which is independent of the path,
where dlγ is the length element along this path. The integral (16.20) is given by S(P2)−S(P1)
and is therefore proportional to the phase difference between the two points.

The inequality es.dlγ ≤ |es| ∧ |dlγ | = |dlγ | ≡ d�γ implies that

∫ P2

γP1

nes.dlγ ≤
∫ P2

γP1

nd�γ , (16.21)

where the equality is attained only if the path γ corresponds to a light ray, because then es
is collinear with dlγ according to (16.18).

This is Fermat’s principle, which states that among all the paths γ joining P1 and P2,

the light will travel along the path which minimizes the optical path4
∫ P2

P1
nds. This principle

can be restated as follows: among all the paths joining two points, light will travel along
the path which minimizes the travel time. In the vacuum n = 1, and we find that light
rays are straight lines. For a light ray the phase difference between two points is therefore

proportional to the optical trajectory φ2 − φ1 = ω(S2 − S1) = ω
∫ P2

P1
nds. The ray equation

can be obtained independently of the chosen orientation, so that a ray traveling from P1 to
P2 is identical to one traveling from P2 to P1.

It can be verified that the equations of light rays can be obtained using the Euler–Lagrange
equations applied to the Lagrangian

∫
n(Xi)ds =

∫
n(Xi)|V |dT ≡

∫
L dt with V i = dXi/dT .

We have ∂L/∂X = |V |∇n and ∂L/∂V = nV/|V | = ndX/ds, and so the Euler–Lagrange
equations are |V |∇n = d

dT (ndX/ds), or ∇n = d
ds (ndX/ds), which is just (16.19).

The Snell–Descartes laws revisited

As an application of Fermat’s principle, let us consider a light ray arriving at an interface
located at Z = 0 between two homogeneous media of indices n1 and n2 (es is therefore constant in
each zone) at angle of incidence θ1. If we take a rectangular path lying in the plane of incidence,
the XZ plane, which is infinitesimally thin in the X direction, we obtain 0 =

∫

γ
nes.dlγ =

n1es.(−eX) + n2es.eX = −n1 sin θ1 + n2 sin θ2. We therefore again arrive at the Snell–Descartes
laws (16.9). However, geometrical optics does not tell us that there is a reflected wave, and it
cannot predict the relative intensities of the transmitted and incident waves; see the Fresnel laws
(16.16) and (16.17).

4The optical path is defined as the distance light travels in the vacuum during the time needed to travel

the distance between P1 and P2 in a medium of index of refraction n. Given that sP1P2
=

∫ P2
P1

ds and that

the propagation speed is 1/n, we find that the travel time, and therefore the optical path, is given by P1P2
=

∫ P2
P1

nds. Here P1P2
is the distance between P1 and P2 in a space where the distance between two neighboring

points is given by d2 = n2δijdX
idXj instead of by the Euclidean length element d2 = δijdX

idXj . The
light ray is a curve of minimum length in such a space, that is, a geodesic.
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16.5 The various descriptions of light

In the preceding chapters we have described light in several ways: (1) as an electromagnetic
wave, (2) as an ensemble of particles with unit velocity, and (3) as a light ray. It is useful
to summarize how these descriptions are related to each other, as well as their respective
domains of validity (see Fig. 16.5).

We have seen that the Maxwell equations of electromagnetism possess solutions corre-
sponding to waves propagating at the speed of light. As Maxwell concluded, light is an
electromagnetic wave. This wave description is verified experimentally by interference and
diffraction phenomena,5 which arise at scales of the order of the wavelength L ∼ λ. The
geometrical optics limit takes us from these waves to the concept of light rays which are
integral curves of the field of vectors normal to the wave fronts. This description is valid in
the limit λ � L.

Special relativity introduces a fundamental velocity c. By identifying c as the speed of
light, we then describe light by the world lines of zero length of a particle which has zero
mass. The projections of these light lines on a surface T = const are the light rays of the
eikonal approach. This particle, which we have referred to as a ‘light corpuscle’, is no longer
hypothetical once it is identified with the photon (or an ensemble of photons), as is done in
interpreting, for example, the photoelectric effect and Compton scattering. This corpuscular

Ray
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Photon 

Wave description

Geometrical optics

Electromagnetism Special relativity

Eiko
na

l

General solution
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μ i= (ω, k )
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λ
→

0

Compton effect

Photoelectric effect

Diffraction 

color

Interference

dp
/dτ =

0
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μ

Fig. 16.5 The various descriptions of light.

5We do not discuss these in this book. See, for example, Landau and Lifshitz (1980); see also Book 1,
Section 17.4.
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description of light is needed for systems whose characteristic size is of the order of the atomic
radius, L ∼ aBohr.

These descriptions are related to each other. A light ray is both the trajectory (projected
on a surface T = const) of a photon, and the characteristic lines of the electromagnetic wave
obtained using the eikonal equation. Moreover, as we have seen, the wave 4-vector kμ and
the photon 4-momentum must be proportional, with the constant of proportionality being
Planck’s constant. However, we stress the fact that a plane wave is not a photon because it
describes a continuous energy flux, and also that a wave packet contains a large number of
photons.6

At scales such that L ∼ λ ∼ aBohr, the particle and wave descriptions are both necessary.
Light must therefore be described using quantum electrodynamics, which associates a wave
function with it. The description of a free field based on the Hamilton equations discussed
in Section 14.3 is the starting point for the quantization of the electromagnetic field.

6For example, for a laser producing a wave of frequency 1.8× 1014 rad/s such that E0 ∼ 1.5 MV/m, the
energy flux is I = cε20E

2
0 ∼ 10−2 W/m2. Since each photon has an energy �ω, we find that the photon flux

is of order 5× 1016 s−1 m−2.
A light signal emitted by such a laser in a given direction can be considered equivalent to a light corpuscle;

for example, for a cross sectional area of 10−6 m2 and a duration of 10−6 s, this ‘corpuscle’ will contain
104 photons.
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Part IV

Electrodynamics

One cannot escape the feeling that these mathematical formulae have an independent exis-
tence and an intelligence of their own, that they are wiser than we are, wiser even than their
discoverers, that we get more out of them than was originally put into them.

Heinrich Rudolf Hertz, quoted by E. T. Bell in Men of Mathematics, 1937
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17

The field of a moving charge

We begin our study of electromagnetic radiation by calculating the field created by a single moving
charge, first when in uniform motion, and then when it is accelerated. After studying some special
cases, we define the asymptotic, radiation, part of the field, which will permit us in the following
chapters to calculate the energy radiated by a system of charges.

17.1 The field of a charge in uniform motion

In Section 13.1 we saw that the Coulomb potential created by a point charge or a spherically
symmetric charge q which is at rest at the origin of an inertial frame S is written as Aμ =
(q/r, 0), where r is the spatial distance from the charge to a point Xμ = (T,Xi). This is the
Lorenz gauge because ∂μA

μ = 0.
We note that r is also equal to the time taken by light to travel from the charge to the

point, and that r = T − TR, where Xμ
R = (TR, 0) are the coordinates of the retarded point,

the intersection of the past light cone with apex Xμ and the world line of the charge; see
Fig. 17.1a.

T

TR

r = �R

r

X
μ

l
μ

X
μ

R

R

Xi
(a) (b)

T

X
i
R

TR

T

rR

Uμ

X i

X i

Xμ
 + δXμ

Xμ

Xμ
R+ δXμ

R

μ
R

X
μ
R

rR Rin

l

�R

Fig. 17.1 Retarded quantities.

The scalar R ≡ −Uμ(X
μ −Xμ

R) is just r because the charge velocity is Uμ = (1, 0). The
potential can then be rewritten as

Aμ =
q Uμ

R
, where R ≡ −Uμ l

μ
R with lμR ≡ Xμ −Xμ

R and ημν l
μ
RlνR = 0 . (17.1)

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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The advantage of this rewriting is that since it is covariant, the expression holds in any
inertial frame (where R no longer reduces to the spatial distance between the charge and
the point; see Fig. 17.1b), and thus gives the potential of a charge undergoing any uniform
rectilinear motion. The potential written in the form (17.1) is referred to as the retarded
Liénard–Wiechert potential.1

Now, to find the electromagnetic field it is necessary to calculate the derivative of the
Liénard–Wiechert potential (17.1), that is, determine how far the retarded point Xμ

R moves
on the world line of a charge when the field point Xμ is moved a distance δXμ.

Derivatives of retarded quantities

Since the point Xμ
R ≡ Xμ(τR) is the intersection of the past cone with apex Xμ and the

charge world line (see Fig. 17.1b), we have ημν(X
μ − Xμ

R)(Xν − Xν
R) = 0. From this we see

that when the field point is displaced by δXμ we have ημν(X
μ −Xμ

R)(δXν − δXν
R) = 0. Since

δXν
R = Uν

RδτR = Uν
R ∂ρτR δXρ, where Uμ

R is the speed of the charge at the retarded time and
τR is its proper time, we have ημρ(X

μ −Xμ
R)δXρ − UμR(Xμ −Xμ

R) ∂ρτR δXρ = 0, or

∂ρτR = − lρ


∣
∣
∣
R

and
∂Xν

R
∂Xμ

= −Uν lμ


∣
∣
∣
R

with R ≡ −UμRlμR and lμR ≡ Xμ −Xμ
R . (17.2)

These expressions are valid even when the velocity Uμ is not constant.

When the velocity Uμ is constant we find ∂μR = −Uμ+ lμR/R [see (17.2)], from which
we obtain the derivatives of the potential ∂μAν and the Faraday tensor Fμν ≡ ∂μAν −∂νAμ:

∂μAν =
qUν

2R

(
Uμ − lμR

R

)
, Fμν =

q(UμlνR − Uν lμR)

3R
. (17.3)

It can be checked that ∂μA
μ = 0, and that the Faraday tensor can be written as an exterior

product, F = (q/3R)U ∧ lR; see Section 22.1 et seq.
Now we need to express the retarded quantities as functions of the coordinates of the

point Xμ. Since the charge is in uniform motion, the equation for its world line is Xμ = Uμτ
for a suitable choice of the time origin. The retarded point Xμ

R = UμτR is the intersection of
the charge world line and the retarded cone with apex Xμ: ημν(X

μ−UμτR)(Xν−UντR) = 0,

which gives τR = −(X · U)−
√
(X · U)2 +X2, so that R =

√
(X · U)2 +X2. Therefore,

Aμ =
q Uμ

√
(X · U)2 +X2

, Fμν =
q (UμXν − UνXμ)

[(X · U)2 +X2]
3
2

, (17.4)

1Of course, we could have equally well introduced the advanced point Xμ
A, the intersection of the charge

world line and the future light cone with apex Xμ. In that case the potential would take the form of an
advanced potential Aμ = −qUμ/	A, with 	A ≡ −Uμ(Xμ − Xμ

A) (we have 	A = −	R if Uμ is a constant).
Even more generally, we could have written Aμ = aqUμ/	R − (1− a)qUμ/	A with a an arbitrary constant
(if a = 1/2, Aμ is a symmetric potential). The choice (17.1) is dictated by the requirement of causality:
phenomena at Xμ must be expressed in terms of events occurring in the past of Xμ and not in its future. In
what follows we shall construct only retarded quantities.

As we shall clearly see in Chapters 20 and 21, the experimentally well verified prediction that a system
of charges radiating electromagnetic waves thereby loses energy and in the end becomes unstable follows
directly from this choice of retarded solutions. The motion of a system of charges obtained from symmetric
solutions is conservative.
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where (X · U) ≡ XμUμ and X2 ≡ XμX
μ. We note that if Uμ → ∞, i.e., if the charge

3-velocity tends to the speed of light so that the world line becomes tangent to the light cone
with apex at the origin, then Fμν tends to zero everywhere except if (X · U) = 0, that is,
except in the 3-plane tangent to the cone containing the charge world line. In this 3-plane
Fμν diverges.

Let us give the three-dimensional versions of the expressions we have obtained.
We decompose lμR as (see Fig. 17.1b)

l0R = T − TR ≡ rR, liR = Xi −Xi
R ≡ rRni

R, (17.5)

where ni
R is a unit 3-vector (because ημν l

μ
RlνR = 0). Since Uμ =

(
1/
√
1− V 2, V/

√
1− V 2

)
,

where V is the 3-velocity of the charge, R defined in (17.1) can be written as

R = rR
(1− nR .V )√

1− V 2
, (17.6)

where nR .V ≡ ni
RVi denotes the three-dimensional scalar product. Therefore, the 3-vector

version of the Liénard–Wiechert potential (17.1) Aμ ≡ (Φ, A) is

Φ =
q

rR(1− nR .V )
, A = V Φ , (17.7)

where we recall that the subscript R indicates that the location of the charge is evaluated
at the retarded time TR given by (17.5); see Fig. 17.2a. The expressions for the electric and
magnetic fields Ei = −F0i and Bi = eijk∂jAk can also be obtained from (17.3):

E =
q(1− V 2)

r2R(1− nR.V )3
(nR − V ) , B = nR ∧ E = V ∧ E . (17.8)

The relations between B and E are an expression of the fact that the Faraday tensor is the
exterior product of two 1-forms U and lR.
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Fig. 17.2 The three-dimensional quantities.
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Let us now turn to the expressions (17.4) for the potential and the field as functions of the
radius vector R of the point. Since (X ·X) = −T 2+ r2 and (X ·U) = (−T + V.R)/

√
1− V 2,

they can be written as

Φ =
q

√
(R− V T )2 + (R.V )2 − r2V 2

,

E =
q(1− V 2)

[(R− V T )2 + (R.V )2 − r2V 2]3/2
(R− V T ) ,

(17.9)

where R .V ≡ XiVi and r ≡
√
XiXi is the length of the vector R. The magnetic potential

and field can be derived from2 A = V Φ and B = V ∧ E.
Finally, let la ≡ R−V T be the separation 3-vector with components lia = (X−V T, Y, Z)

if the axes are chosen such that the particle moves along the OX axis; see Fig. 17.2b. Its
length is ra and θa is the angle between the charge trajectory and the direction la. Then we

have Y 2+Z2 = r2a sin
2 θa, and also ra

√
1− V 2 sin2 θa =

√
(X − V T )2 + (1− V 2)(Y 2 + Z2),

which is easily shown to be equal to
√
(R− V T )2 + (R.V )2 − r2V 2. Therefore, the potential

and the field (17.9) can also be written as

Φ =
q

ra
√

1− V 2 sin2 θa
, E =

q la
r3a

1− V 2

(1− V 2 sin2 θa)3/2
. (17.10)

From these expressions we recover the fact that when the charge velocity is close to the speed
of light, the field is proportional to (1−V 2) and therefore tends to zero everywhere except in
the vicinity of the plane orthogonal to the trajectory where the particle is located (θa = π/2),
where it diverges as (1− V 2)−1/2.

17.2 The field of an accelerated charge

In the preceding section we found the potential created by a charge in uniform motion
starting from the Coulomb expression for the potential in the frame where it is at rest, and
then making a Lorentz transformation. We can follow exactly the same reasoning for any
type of motion by introducing inertial frames tangent to the charge world line. In this way we
obtain the retarded Liénard–Wiechert potential created by a charge in any type of motion:

Aμ =
qUμ

R
R

, where R ≡ −UμR lμR with lμR ≡ Xμ−Xμ
R and ημν l

μ
RlμR ≡ (lR · lR) = 0, (17.11)

the subscript R indicating that the quantity is evaluated at the intersection Xμ
R of the past

cone with apex at the point Xμ and the world line of the charge in question; see Fig. 17.1b.

2Equation (17.9) can also be obtained by a Lorentz transformation. Let us now denote the frame in
which the charge is at rest at the origin as S′, so that the potential components are A′μ = (q/r′, 0). Then
we go to the frame S moving at velocity −V along the X axis, in which the charge has velocity V . The
potential transforms as a contravariant vector: A′μ = (Φ′, 0) → Aμ = (Φ′/

√
1− V 2, V/

√
1− V 2Φ′). Now r′ =√

X′2 + Y ′2 + Z′2 must be expressed as a function of the coordinates of S using the Lorentz transformation
T = (T ′ + V X′)/

√
1− V 2, X = (X′ + V T ′)/

√
1− V 2, which again leads to (17.9).
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The retarded propagator and a continuous distribution

The Liénard–Wiechert potentials (17.11) can also be obtained by direct integration of the
Maxwell equations.

If the source of the electromagnetic field is a point charge q, the Maxwell equations can be
written in Lorenz gauge as (see Sections 12.2 and 12.3)

�Aμ = −4πjμ = −4πq

∫

L

dτ δ4(X
ν −Xν(τ))Uμ(τ) with ∂νA

ν = 0 . (17.12)

Here Xμ = Xμ(τ) are the equations of the charge world line L, Uμ = dXμ/dτ is the charge
velocity (U2 = −1), and δ4(X

ν − Xν(τ)) is the Dirac delta distribution (its main properties
were given in Section 9.2).

In order to solve this equation,3 we introduce the retarded propagator D(Xμ), which is the
solution of �D(Xμ) = −4πδ4(X

μ).

In the Fourier space, where D(Xμ) = 1
(2π)4

∫
d4p e−ipμXμ

D̄(pμ) and writing δ4(X
μ) =

1
(2π)4

∫
d4p e−ipμXμ

, the equation for D(Xμ) becomes D̄(pμ) = 4π
pμpμ

. We then have

D(Xμ) =
1

4π3

∫

d4p
e−ipμXμ

p2 − p20
=

1

4π3

∫

dp0
eip0T

p2 − p20
e−ipr cos θp2dp sin θdθdφ,

where r2 = XiXi. Since
∫
dp0 eip0T

−p20+p2
= −iπeipT

p
(after choosing the sign), for T > 0 we obtain

D(Xμ) = − 1

2πr

∫

dp eipT (eipr − e−ipr) =
δ(T − r)

r
,

so that �
δ(T − r)

r
= −4πδ4(X

μ) .

(17.13)

Therefore, if we set g(τ) ≡ T − T (τ) − r(τ) with r(τ) =
√

(Xi −Xi(τ))(Xi −Xi(τ)), (17.12)
can be written as follows using (17.13):

�Aμ = q

∫

dτ �
δ(g(τ))

r(τ)
Uμ(τ), the solution of which is

Aμ = q

∫

dτ δ(g(τ))
Uμ(τ)

r(τ)
= q

∫

dτ
δ(τ − τR)

dg
dτ

∣
∣
∣
R

Uμ(τ)

r(τ)
=

q Uμ(τR)

dg
dτ

∣
∣
∣
R
r(τR)

,

where τR is the zero of g(τ): T −T (τR)− r(τR) = 0. In addition, dg
dτ

= −U0 +(Xi −Xi(τ)) Ui
r(τ)

,

so that dg
dτ

∣
∣
∣
R

= �R
r(τR)

with R ≡ −UμR(Xμ−Xμ(τR)). We then find that the retarded Liénard–

Wiechert potential is given by Aμ =
qU

μ
R

�R
.

If now we assume that the current distribution is continuous, we can write it as jμ(Xν) =∫
d4X ′δ4(X

ν − X ′ν)jμ(X ′ρ). We then use (17.13) to find the solution of the Maxwell equation
�Aμ = −4πjμ in the form

Aμ(T,Xi) =

∫

d3X ′ j
μ(T − r′, X ′i)

r′
, where r′ =

√

(Xi −X ′i)(Xi −X ′
i) . (17.14)

3For a detailed presentation of Green functions see, for example, Raimond (2000).

B
o
o
k
2



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 346 — #358

346 Book 2. Part IV: Electrodynamics

To calculate the derivatives of the Liénard–Wiechert potential we use (17.2), in particular,
∂μτR = lμR/R, from which for arbitrary velocities we easily find

∂μAν = q

(
Uν

2

)

R

[
Uμ − lμ



]

R
− q

(
lμ
2

)

R

[
γν +

Uν(l · γ)


]

R
, (17.15)

as well as the Faraday tensor

Fμν =
q

3R
[Uμlν − Uν lμ]R +

q

2R

[
γμlν − γν lμ + (Uμlν − Uν lμ)

(l · γ)


]

R
, (17.16)

where γμ ≡ dUμ/dτ is the 4-acceleration of the charge. We can check that indeed ∂μA
μ = 0,

and we see that the Faraday tensor can also be written as an exterior product of two 1-forms
(see Section 22.1 et seq.):

F =
q

2R

[
U


(1 + (l · γ)) + γ

]

R
∧ lR . (17.17)

The 3-vector versions of the Liénard–Wiechert potential and field (17.11) and (17.16)
generalize (17.7) and (17.8):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Φ =
q

rR(1− nR .VR)
, A =

qVR
rR(1− nR .VR)

,

E=
q(1−V 2

R)

r2R(1−nR.VR)3
(nR−VR)+

q

rR(1−nR.VR)3
nR ∧ [(nR−VR) ∧ aR] ,

B = nR ∧ E ,

(17.18)

where we again recall that the label R indicates that the position Xi
R = Xi(TR), the 3-

velocity V i
R = V i(TR), and the 3-acceleration aiR = ai(TR) of the charge are evaluated at

the retarded time TR given implicitly by TR = T − rR with Xi − Xi(TR) ≡ rRni
R, where

nR is a unit 3-vector: nR.nR = 1; see4 Fig. 17.2a.

The field of a uniformly accelerated charge

The world line of a particle uniformly accelerated along the X axis of an inertial frame S
is a hyperbola whose equation can be written as (see Section 2.1) gT = sinh gτ , gX = cosh gτ ,
where τ is the proper time and g is a constant. As we saw in Section 11.4, this is the world line
of a charge in a constant electric field.

Since the null vector lμR ≡ Xμ−Xμ
R has components lμR=(T− 1

g
sinh gτR, X− 1

g
cosh gτR, Y, Z),

we have R ≡ −(l·U)R = T cosh gτR−X sinh gτR and (l·γ)R = −gT sinh gτR+gX cosh gτR−1,
so that the Faraday tensor (17.16) becomes

4We note that n∧(n−V )∧a = (n.a)(n−V )−(1−n.V )a; see the review of vector calculus in Section 11.1.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F 01 =
qg2

(gT cosh gτR − gX sinh gτR)3
[
gT sinh gτR − gX cosh gτR − g2(T 2 −X2)

]
,

F 02 =
qg4XY

(gT cosh gτR − gX sinh gτR)3
, F 03 =

qg4XZ

(gT cosh gτR − gX sinh gτR)3
,

F23 = 0 , F13 =
qg4TZ

(gT cosh gτR − gX sinh gτR)3
, F12 =

qg4TY

(gT cosh gτR − gX sinh gτR)3
.

(17.19)

Now to express Fμν as a function of only Xμ, it is necessary to solve the equation of the cone
ημν l

μ
RlνR = 0, or

(gT − sinh gτR)2 = (gX − cosh gτR)2 + g2(Y 2 + Z2) .

Rather than finding τR as a function of Xμ, it is preferable to obtain T as a function of the
observation point Xi and τR, that is, the charge position:

gT = sinh gτR +
√

(gX − cosh gτR)2 + g2(Y 2 + Z2) , (17.20)

where the choice of the plus sign in front of the square root guarantees that τR is the retarded
solution.

Let us place ourselves, for example, on the axis of the trajectory (Y = Z = 0). Equa-
tion (17.20) then gives egτR = g(T +X), and the field (17.19) reduces to

F 01 ≡ E = − 4qg2

[1 + g2(T +X)(T −X)]2
for T+X > 0 , and E = 0 for T+X < 0 . (17.21)

Therefore, the field at the origin (X = Y = Z = 0) is zero until T = 0, when it jumps to a finite
value. The charge then is at X = 1/g, its distance of closest approach, but the field it creates at
T = 0 is determined by its position at the retarded time, when it was arriving from infinity at
a speed approaching the speed of light. The field then decreases and tends to zero as the charge
moves away and approaches again the speed of light.

The field of a charge in circular motion

The world line of a particle moving uniformly around a circle of radius r0 at frequency Ω in
the Z = 0 plane of an inertial frame S is (see Section 2.1) Xμ = (T, r0 cosΩT, r0 sinΩT, 0), and
so the particle velocity Uμ ≡ dXμ/dτ (with UμU

μ = −1) and acceleration are

Uμ =
1

√
1− r20Ω

2
(1,−r0Ω sinΩT, r0ΩcosΩT, 0), γμ = − r0Ω

2

1− r20Ω
2
(0, cosΩT, sinΩT, 0).

If this motion is caused by the action of a magnetic field B, we will have (see Section 11.4)

Ω = ω/
√

1 + r20ω
2, where ω ≡ qB/m with m the mass of the charge. If the motion is due to a

central Coulomb field, Ω is given by (13.16).
The null vector lμR ≡ Xμ − Xμ

R has the components lμR = (T − TR, X − r0 cosΩTR, Y −
r0 sinΩTR, Z). Therefore,

⎧
⎪⎪⎨

⎪⎪⎩

R ≡ −(l · U)R =
T − TR + r0Ω(X sinΩTR − Y cosΩTR)

√
1− r20Ω

2
,

(l · γ)R =
r0Ω

2 [r0 − (X cosΩTR + Y sinΩTR)]

1− r20Ω
2

,
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from which we easily find the expression for the components of the Faraday tensor (17.16). For
example,

F03 = − q Z[1− r0Ω
2(X cosΩTR + Y sinΩTR)]

[T − TR + r0Ω(X sinΩTR − Y sinΩTR)]3
, (17.22)

where TR is obtained (implicitly) as a function of Xμ by solving the equation of the cone

ημν(X
μ −Xμ

R)(Xν −Xμ
R) = 0, or, setting r =

√
X2 + Y 2 + Z2,

T − TR −
√

r2 − 2r0(X cosΩTR + Y sinΩTR) + r20 = 0 . (17.23)

Let us place ourselves at the origin. Then TR = T − r0, and the nonzero components of the
field are ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F10 = EX =
q

r20

[
r0ΩsinΩTR − (1− r20Ω

2) cosΩTR
]

F20 = EY = − q

r20

[
r0ΩcosΩTR + (1− r20Ω

2) sinΩTR
]

F12 = BZ =
qΩ

r0
.

(17.24)

The time average of the electric field is zero. The magnetic field is the Ampère field created by
the charge current.

17.3 The radiation field

Let us return to (17.16) for the Faraday tensor created by a charge in any type of motion.
The first term, which is the only one when the charge is in uniform motion, falls off as
1/r2 at spatial infinity and reduces to the Coulomb electric field if the charge is at rest; see
Section 17.1. The second term, which falls off as 1/r, is the radiation part of the field.

More precisely, let us consider a charge which is confined near the spatial origin of a
particular inertial frame S. If the observation point is very far away, the null vector lμR ≡
Xμ − Xμ

R, where Xμ
R is the intersection of the past cone with apex Xμ and the charge

world line, can be approximated by the vector lμ ≡ Xμ − Xμ
R0

, which is also null. Here

Xμ
R0

= (TR0
= T − r, 0) is the intersection of the cone with the spatial origin Xi = 0; see

Fig. 17.3.
The radiation field created by such a charge is then defined as the principal part of (17.16)

at large distances, or

Fμν
rad =

q

2R

[
γμ
Rlν − γν

Rlμ + (Uμ
Rlν − Uν

Rlμ)
(l · γR)

R

]
with lμ = (r,X, Y, Z),

or also Frad = Frad ∧ l with Frad ≡ q

2R

[
U


(l · γ) + γ

]

R
,

(17.25)

where r =
√
X2 + Y 2 + Z2 is the (assumed large) distance to the origin, R � −(l · UR),

and the velocity Uμ
R and acceleration γμ

R of the charge are always evaluated at the retarded
point Xμ

R (except when the motion is slow, and at lowest order where they can be evaluated
at time T − r; see Chapter 20).

We note that Frad is orthogonal to l: (Frad · l) = 0. Therefore, the radiation part of the
Faraday tensor has the structure of that of a plane wave; cf. (15.28).
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Fig. 17.3 The radiation field.

The 3-vector version of (17.25) is [cf. (17.18)]

Erad =
q

r(1− n.VR)3
n ∧ [(n− VR) ∧ aR], Brad = n ∧ Erad, and Erad.n = 0 . (17.26)

Here R ≡ rn with (n.n) = 1 is the radius vector of the point, VR and aR are the charge
3-velocity and acceleration at the retarded time TR = T − rR with Xi −Xi(TR) ≡ rRni

R,
and nR.nR = 1.

The radiation field of a uniformly accelerated charge

We consider a charge which is uniformly accelerated along the OX axis of an inertial
frame S. The equation of its world line is gT = sinh gτ , gX = cosh gτ , where τ is its proper
time and g is a constant. The components of the electromagnetic field tensor that it creates were
given in (17.19).

We limit ourselves to times when the charge is close to the spatial origin, that is, to values
of τ such that gτ is not too large compared to 1. The point at which the radiation field is
evaluated is located far away in the future cone of this segment of the world line (see Fig. 17.3).
By symmetry we can always take Z = 0 and set X = r cosφ, Y = r sinφ. Finally, we have
T − TR0 = r, where TR0 is the time at which the light must be emitted from the origin in
order to reach the field point (see Fig. 17.3). However, since TR0 � r we have T = r in leading
order, and so the radiation part of (17.19) reduces to Erad

X = Frad sinφ, E
rad
Y = −Frad cosφ,

Brad
Z = −Frad with

Frad = −q

r

g sinφ

(cosh gτR − cosφ sinh gτR)3
= −q

r

aR sinφ

(1− VR cosφ)3
, (17.27)

where V = tanh gτ and a = g(1 − V 2)3/2 = g/ cosh3 gτ are the 3-velocity and 3-acceleration
of the charge, and the retarded time τR is given by eqn (17.20), that is, gT = sinh gτR +
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√
(gX − cosh gτR)2 + g2(Y 2 + Z2), which, as long as the charge remains near the origin, reduces

to sinh gτR = g(T − r), so that

Frad = −q

r

g sinφ
(√

1 + g2(T − r)2 − g(T − r) cosφ
)3 . (17.28)

We note [cf. (17.27)] that this field becomes exponentially small (Frad ∝ e−3gτR) when the
charge velocity approaches the speed of light. This is a consequence of the fact that the charge
acceleration g is constant, and so its 3-acceleration a tends to zero.

The radiation field of a charge in circular motion

The equation of the world line of a particle moving uniformly around a circle of radius r0
at frequency Ω in the Z = 0 plane of an inertial frame S is Xμ = (T, r0 cosΩT, r0 sinΩT, 0). In
Section 17.2 we saw how to calculate the electromagnetic field it creates everywhere.

At a point far from the charge the radiation field reduces to (17.25), and, setting X =
r sin θ cosφ, Y = r sin θ sinφ, and Z = r cos θ with r � r0 and using the fact that T − TR ≈ r
at leading order, we find

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EX
rad = −qr0Ω

2

r

sin2 θ cosφ cos(ΩTR − φ)− cosΩTR + r0Ωsin θ sinφ

[1 + r0Ωsin θ sin(ΩTR − φ)]3

EY
rad = −qr0Ω

2

r

sin2 θ sinφ cos(ΩTR − φ)− sinΩTR − r0Ωsin θ cosφ

[1 + r0Ωsin θ sin(ΩTR − φ)]3

EZ
rad = −qr0Ω

2

r
cos θ sin θ

cos(ΩTR − φ)

[1 + r0Ωsin θ sin(ΩTR − φ)]3
.

(17.29)

The magnetic field is given by Brad = n ∧ Erad, where n ≡ R/r, R being the radius vector to
the point. It can be checked that indeed (Erad.n) = 0.

In the ultrarelativistic limit, that is, when r0Ω → 1, the field diverges when sin θ = 1 and
sin(ΩTR −φ) = −1, that is, in the plane of motion of the charge and when the charge is aligned
with the observation direction.

In the wave zone, that is, for r � λ or rΩ � 1, we can take the average of the field over TR.
Calculating the integrals,5 we find

〈Erad
X 〉 = 〈Frad〉 sinφ, 〈Erad

Y 〉 = −〈Frad〉 cosφ, 〈Erad
Z 〉 = 0

〈Brad
X 〉 = 〈Frad〉 cos θ cosφ, 〈Brad

Y 〉 = 〈Frad〉 cos θ sinφ, 〈Brad
Z 〉 = −〈Frad〉 sin θ

with

〈Frad〉 =
qr20Ω

3

2r

sin θ(2− r20Ω
2 sin2 θ)

(1− r20Ω
2 sin2 θ)

5
2

. (17.30)

5We use 1
2π

∫ 2π
0

dx
(1−A cos x)3

= 1
2

1+A2

(1−A2)
5
2

and 1
2π

∫ 2π
0

dx cos x
(1−A cos x)3

= 3
2

A

(1−A2)
5
2

.
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The radiation field of a charge accelerated by a wave

In Section 15.4 we saw that the 4-velocity of a charge q of mass m in a monochromatic plane
wave of frequency k, where the field has amplitude ka, propagating along the X axis and linearly
polarized in the Y direction, is given by

UX =
β2

2
(cos ξ − 1)2, UY = −β(cos ξ − 1), U0 = 1 + UX ,

where β ≡ qa/m and ξ ≡ kτ . Here τ is the proper time of the charge. The acceleration is found
to be γμ = k dUμ/dξ.

The field radiated by this charge at the point (T,X, Y, Z) is given by (17.25) with (setting

r =
√
X2 + Y 2 + Z2)

⎧
⎪⎨

⎪⎩

 ≡ −(l · U) = r + Y β(cos ξ − 1) +
1

2
β2(r −X)(cos ξ − 1)2,

(l · γ) = kβ sin ξ [Y + β(r −X)(cos ξ − 1)] .

In the nonrelativistic limit β → 0, the radiation field simplifies to

EX =
qkβ

r

XY

r2
sin ξ , EY = −qkβ

r

r2 − Y 2

r2
sin ξ , EZ =

qkβ

r

ZY

r2
sin ξ , (17.31)

where ξ ≈ kTR ≈ k(T − r). The radiated field therefore has the same frequency as the wave
causing the charge to move.

In the ultrarelativistic limit β → ∞, we find that the field does not grow as β2 as might a
priori be expected. Instead, it converges as 1/β3 everywhere except on the X axis along which
the charge is carried by the incident wave:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

EX =
4qk

rβ3

Y

(r −X)2
sin ξ

(1− cos ξ)4
, EY =

4qk

rβ3

r2 − rX − Y 2

(r −X)3
sin ξ

(1− cos ξ)4
,

EZ = −4qk

rβ3

Y Z

(r −X)3
sin ξ

(1− cos ξ)4
,

(17.32)

where the time of the frame is related to ξ as6 kT ≈ β2

8
(6ξ − 8 sin ξ + sin 2ξ).

6For a more detailed study of the multipole expansion of the radiation field see, for example, Raimond
(2000).
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Radiation by a charge

In this chapter we study the energy radiated by a single charge. After deriving the Larmor formulas,
we study the paradigmatic cases of the radiation of a linearly accelerated charge, the synchrotron ra-
diation of a charge in circular motion, and the radiation of a charge accelerated by an electromagnetic
wave (Thomson scattering).

We shall discover in passing that the hydrogen atom as described by the Rutherford model of
an electron orbiting a proton is highly unstable in the Maxwell theory.

18.1 The Larmor formulas

Let us recall the expression for the radiation part of the Faraday tensor of an acceler-
ated charge whose motion remains confined near the origin of the reference frame (see Sec-
tion 17.3):

Fμν
rad =

q

2R

[
γμ
Rlν − γν

Rlμ + (Uμ
Rlν − lνUμ

R)
(l · γR)

R

]
with lμ = (r,X, Y, Z), (18.1)

where r =
√
X2 + Y 2 + Z2 is the distance to the origin, R � −(l · UR) in the order in

which we are working, and Uμ
R and γμ

R are the velocity and acceleration of the charge at the
retarded point Xμ

R, the intersection of the world line and the past cone with apex at the field
observation point1 Xμ.

The radiation part of the energy–momentum tensor of the field created by a single charge
is therefore given by2

T rad
μν =

1

4π

(
FμρF

ρ
ν − 1

4
ημν F

ρσFρσ

)

rad

=
q2

4π

lμlν
4R

[
γ2
R − (l · γR)2

2R

]
. (18.2)

The conservation law for the energy–momentum tensor of the field and the charges creating
it leads to (see Section 12.4)

dPμ

dT
= −
∫

S

TμidSi , (18.3)

where Pμ is the momentum of the field and the particles and T is the time in the selected in-
ertial frame S. The surface S is the sphere at infinity with surface element dSi = ni dS, where

1As examples, we recall that if the charge is uniformly accelerated, (18.1) leads to (17.28) for the field,
while if the charge is in circular motion, it leads to (17.29).

2The fact that T rad
μν is proportional to lμlν arises from the fact that Frad = Frad ∧ l with (l · l) = 0 and

(Frad · l) = 0 [cf. (17.25)], so that (F ·F )rad ≡ (FρσF ρσ)rad = 0. We note also that the expression for T rad
μν is

particularly simple because we are dealing with the radiation of a single particle. The radiation of a system
of (slowly moving) charges will be studied in Chapters 20 and 21.
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dS = r2do with do = sin θ dθ dφ the element of solid angle and ni the unit 3-vector perpendic-
ular to S and pointing toward the exterior of the domain: ni = (sin θ cosφ, sin θ sinφ, cos θ),
so that3 lμ = (r, rni). Substituting (18.2) into (18.3), we find that the momentum of the
system evolves as

Pμ(T ) = − q2

4π

∫ (
r

R

)4 [
γ2
R − (l · γR)2

2R

]
lμ

r
do dT with

{
lμ = (r, rni)

R � −(l · UR) .
(18.4)

The integrand is evaluated at the retarded point Xμ
R, which is not known as a function of

the coordinates Xμ until a particular world line is specified explicitly. To treat the general
case, we pass from integration over T to integration over τR. For this we use the fact that
lμR is null, which implies [cf. (17.2)] that ∂ρτR = − (lρ/)R, or, when r, θ, φ are constants,
dτR = − (l0/)R dT � (r/R)dT . We then have

Pμ(τ) = − q2

4π

∫ (
r



)3(
γ2 − (l · γ)2

2

)
lμ

r
do dτ with

⎧
⎨

⎩

lμ = (r, rni)

 = −(l · U) ,
(18.5)

where we have suppressed the subscript R on the dummy variable τR.
To calculate the integral over the angles now with τ fixed, we work in the inertial frame

tangent to the trajectory, in which Uμ = (1, 0, 0, 0) and γ0 = 0, so that  = r and (l·γ) = niγ
i.

Using 1
4π

∫
ninj do = 1

3δij and
∫
ninjnk do = 0 (see below), we find that in this frame

P 0(τ) = −(2q2/3)
∫
γ2 dτ and P i = 0. The expression for Pμ in the original inertial frame

where the particle velocity is Uμ = dXμ/dτ then is

Pμ(τ) = −2q2

3

∫
γ2 Uμ dτ . (18.6)

Calculation of spatial averages

To obtain (18.6) we need to calculate
∫
ninj do. A brute-force method is to decompose ni

as ni = (sin θ cosφ, sin θ cosφ, cos θ). Then
∫
n1n2 do =

∫
sin2 θ cosφ sinφ sin θdθ dφ = 0, and so

on. It is much quicker to notice that the result can only be proportional to the Kronecker delta:∫
ninj do ∝ δij . The proportionality factor is obtained by taking the trace, and we find (in three

dimensions)
1

4π

∫

ninj do =
δij
3

. (18.7)

The average of the product of four unit vectors is obtained in the same way:

3As we saw in Section 12.4, the energy–momentum and angular momentum conservation laws follow from
the set of Maxwell and Lorentz equations describing a closed system of charges and the field they create. In
the special case of a single charge, these equations state that this charge is in uniform rectilinear motion and
that its (Coulomb) field is not radiative.

Therefore, in order to be able to legitimately apply these laws to our case of a single charge accelerated by
an external field, we must imagine that this field is created by charges forming a part of the system under
study, but whose contribution to T rad

μν can be ignored, either because they are massive enough to be only
negligibly accelerated, or because their contribution to the radiation can be distinguished from that of the
charge under study.
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1

4π

∫

ninjnknl do =
1

15
(δijδkl + δikδjl + δilδjk) . (18.8)

Let us conclude by giving the three-dimensional versions of the above expressions. We
have lμ = (r, rni) and, cf. (17.6) and (2.3),

R � r
1− n.VR√
1− V 2

R
, γμ

R =

[
a.V

(1− V 2)2
,

1

1− V 2

(
ai + V i a.V

1− V 2

)]

R
, (18.9)

where V i = dXi/dT and ai = d2Xi/dT 2 are the charge 3-velocity and acceleration, and
n .V ≡ niVi denotes the scalar product of 3-vectors. A short calculation using, among other
things, the fact that γ2 = [(a .V )2 + a2(1− V 2)]/(1− V 2)3, then tells us that the energy
density (18.2) radiated by the system of the charge and the field it creates can be written as

T 00
rad≡Wrad=

q2

4πr2

[
a2R

(1−n .VR)4
+
2(n . aR)(VR . aR)

(1−n .VR)5
− (1−V 2

R)(n . aR)2

(1−n .VR)6

]
. (18.10)

The radiated momentum density is given by T 0i
rad ≡ Si

rad = Wradn
i. [Of course, this energy

densityW ≡ (E2 +B2)/(8π) and the Poynting vector S ≡ (E ∧B)/(4π) can also be obtained
directly using eqn (17.26) for the radiation field.]

Since dτR =
√

1− V 2
RdTR and [cf. (17.2) as well as (18.5) and (18.9)] dτR = −(l0/R)dT

� (r/R)dT �
√

1− V 2
RdT/(1 − n0VR), we have dTR/dT � 1/(1 − n0VR), so that (18.5)

becomes

P 0(T ) = − q2

4π

∫ [
a2

(1− n .V )3
+

2(n . a)(V . a)

(1− n .V )4
− (1− V 2)(n . a)2

(1− n .V )5

]
do dT, (18.11)

where we have again suppressed the label R of the dummy variable4 TR.
To calculate the integral over the solid angle do, we can choose the axes such that V

points along the Z axis. Then do = sin θ dθ dφ, (n .V ) = V cos θ, and (n .a) = aX sin θ cosφ+
aY sin θ sinφ+ aZ cos θ. After elementary integrations5 we find

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P 0(T ) = −2q2

3

∫
dT

[
a2 − (a ∧ V )2

(1− V 2)3

]

P i(T ) = −2q2

3

∫
dT

[
a2 − (a ∧ V )2

(1− V 2)3

]
V i,

(18.12)

which, owing to (18.9), is just the three-dimensional version of (18.6). Equations (18.6) and
(18.12) are the Larmor formulas.

4However, this simplification of the notation should not cause us to lose sight of the fact that (18.11) now
gives the radiated power as a function of the emission time.

5Using
∫+1
−1

dx
(1−V x)5

=
2(1+V 2)

(1−V 2)4
,

∫+1
−1

x dx
(1−V x)5

=
2V (5+V 2)

3(1−V 2)4
,

∫+1
−1

x2 dx
(1−V x)5

=
2(1+5V 2)

3(1−V 2)4
, and

∫+1
−1

x3 dx
(1−V x)5

=
2V (1+V 2)

(1−V 2)4
.

The integrand can also be written as a2 − (a∧V )2 = a2(1−V 2)+ (V.a)2 (cf. the review of vector calculus
in Section 11.1).
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Angular momentum radiated by an accelerated charge

The rate at which angular momentum is radiated by an accelerated charge is, cf. (12.34),

dJ

dT
=

r3

4π

∫

S

n ∧ [(E.n)E + (B.n)B] do, (18.13)

where S is the sphere at infinity with surface element dS = r2do, do = sin θ dθ dφ is the element
of solid angle, and ni = (sin θ cosφ, sin θ sinφ, cos θ) is the unit 3-vector perpendicular to S
pointing toward the exterior of the domain.

It is clear that knowledge of only the radiation field is not sufficient for calculating this rate.
In fact, from (17.26) we have (Erad.n) = (Brad.n) = 0 (fortunately, as otherwise dJ/dT would
diverge, because Erad and Brad fall off only as 1/r at infinity).

Therefore, to calculate dJ/dT , we must return to the exact expression for the field created
by a moving charge, (17.18), namely, E = ECoul +Erad with, for observation point far from the
charge,

ECoul �
q(1− V 2

R)

r2(1− n.VR)3
(n− VR),

Erad � q

r(1− n.VR)3
[(n.aR)(n−VR)− (1− n.VR)aR] ,

and B � n ∧ E. We then have

dJ

dT
=

r3

4π

∫

S

(ECoul.n)n ∧ Erad do

= − q2

4π

∫

S

1− V 2
R

(1− n.VR)5
[(n.aR)n ∧ VR + (1− n.VR)n ∧ aR] do .

Now if we pass from integration over T to integration over TR and drop the dummy index R
as in obtaining (18.11), we find the angular momentum radiated as a function of the emission
time:

J = − q2

4π

∫

S

1− V 2

(1− n.V )4
[(n.a)n ∧ V + (1− n.V )n ∧ a] do dT . (18.14)

The integral over the angles is done as in going from (18.11) to (18.12) (see footnote 5 above)
and leads to the Larmor formula for the radiated angular momentum:

J(T ) = −2q2

3

∫

dT
V ∧ a

1− V 2
. (18.15)

18.2 Radiation by a linearly accelerated charge

When the charge moves along the direction eX with 4-velocity Uμ and 4-acceleration γμ, we
easily see that (18.2) for the radiation part of the energy–momentum tensor simplifies to6

6We have 	 = r(U0 − UX cosψ), where ψ is the angle between the direction of observation and the

X axis; (l · γ) = r(γ0 − γX cosψ); and UX =

√
(U0)2 − 1, γ0 = γ

√
(U0)2 − 1, and γX = γU0. Then

γ2	2 − (l · γ)2 = γ2r2 sin2 ψ.
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T rad
μν =

q2

4πr2
lμlν
r2

γ2
R sin2 ψ

(U0
R − UX

R cosψ)6
, with lμ = r(1, ni) and cosψ = n.eX . (18.16)

The radiated energy is given by (18.5):

P 0 = −q2

2

∫
γ2 sin2 ψ

(U0 − UX cosψ)5
sinψ dψ dτ . (18.17)

Now let us give the three-dimensional versions of these expressions.
The radiated energy density is obtained from (18.16) or (18.10):

Wrad =
q2

4πr2
a2R sin2 ψ

(1− VR cosψ)6
. (18.18)

Since W = (E2 +B2)/(8π), in the special case of constant acceleration this formula can also
be obtained using the expression for the radiation field (17.27). Equations (18.11), (18.12),
and (18.6) giving the power radiated by the charge then become

dP 0

dTdo
= − q2

4π

a2 sin2 ψ

(1− V cosψ)5
,

dP 0

dT
= −2q2

3

a2

(1− V 2)3
= −2q2

3
γ2 . (18.19)

The radiated power is a maximum for the solid angle which extremizes dP 0/(dTdo), that

is, cosψmax =
√
1+15V 2−1

3V (for V > 0). In the ultrarelativistic limit we find the following by
truncating the series expansion:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψmax ∼
√
1− V 2

2

dP 0

dTdo

∣∣∣∣
max

∼ 2048

3125π

q2γ2

(1− V 2)
=

2048

3125π

q2a2

(1− V 2)4

when V → 1 . (18.20)

Therefore, the power radiated at ψmax ≈ 0 diverges as (1− V 2)−4, and the total power [see
the second expression in (18.19)] diverges as (1−V 2)−3 if V → 1 with a finite. On the other
hand, if γ2 remains finite (as occurs if the charge is accelerated by a constant electric field;
see Section 11.4), then the power radiated at ψmax diverges as (1 − V 2)−1 and the total
radiated power remains finite.

Radiation losses in a linear accelerator

Let x be the energy per unit length that can be transferred to a charge q in a linear accel-
erator. We assume that this energy gain is the result of uniformly accelerated motion, that is,
that the charge world line is given by gT = sinh gτ , gX = cosh gτ , where g is the modulus of
the acceleration. By definition, x ≡ mU0/X = (m/X)(dT/dτ), and so x = mg, where m is the
particle mass.

The total radiated power given by the Larmor formula is then written as [see (18.19)]

dP 0

dT
= −2q2

3
g2 = −2

3

(qx

m

)2

.
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Introducing the energy of the charge, E ≡ mU0 = m
√

1 + g2T 2, the integral gives

P 0 = −2q2

3

x

m2

√
E2 −m2.

For an electron dP 0/dT ≈ 1.6×10−6x2 MeV/s and P 0 ≈ 3.6×10−5 x E GeV, with x in MeV/m
and E in GeV.

Therefore, to transfer an energy of E = 100 GeV to an electron using a linear accelerator
capable of producing an acceleration of x = 100 MeV/m, the required length of the accelerator
is 1 km and the energy lost is P 0 ≈ 0.37 GeV.

(If the acceleration g is due to a constant electric field E, we have g = qE/m (see Sec-
tion 11.4), and so E = x/m or E ≈ 3.34× 10−3x V/m, with x expressed in MeV/m.)

18.3 Radiation of a charge in circular motion

Let us now consider a charge in circular motion (X = r0 cosΩT , Y = r0 sinΩT , Z = 0)
at constant angular velocity Ω due, for example, to a constant external magnetic field B.
In this case (see Section 11.4) Ω = ω/

√
1 + r20ω

2, where ω ≡ qB/m, m being the mass of
the charge. Since now the 3-velocity V = r0Ω(− sinΩT, cosΩT, 0) and the 3-acceleration
a = −r0Ω

2(cosΩT, sinΩT, 0) are orthogonal, (18.10) for the energy density becomes

T 00
rad =

q2r20Ω
4

4πr2
(r0Ω− sin θ sinψ)2 + cos2 θ(1− r20Ω

2)

(1− r0Ωsin θ sinψ)6
with ψ ≡ φ− ΩTR, (18.21)

where θ is the angle between the Z axis and the observation direction and tanφ ≡ Y/X.
This expression is of course equal to (E2

rad +B2
rad)/(8π) with Erad and Brad given by (17.29).

However, it should be noted that the time average of T 00
rad is not equal to (〈Frad〉)2/4π with

〈Frad〉 from (17.30), because 〈F2
rad〉 �= (〈Frad〉)2.

Equation (18.11) giving the power radiated by the charge in the direction of observation
as a function of the time of emission is written as

dP 0

dTdo
= −q2r20Ω

4

4π

(r0Ω− sin θ sinψ)2 + cos2 θ(1− r20Ω
2)

(1− r0Ωsin θ sinψ)5
with ψ ≡ φ− ΩT . (18.22)

In the nonrelativistic limit r0Ω � 1 this becomes dP 0

dTdo ≈ − q2r20Ω
4

4π (sin2 θ sin2 ψ + cos2 θ). It
varies sinusoidally in time and its Fourier transform is peaked at the frequency 2Ω. In the
ultrarelativistic case r0Ω → 1 the field again varies periodically, but its Fourier spectrum
turns out to be not only wide, but also centered at the frequency7

ωrad sync ≈ 0.29× 3

2

Ω

(1− r20Ω
2)3/2

.

Calculating the integrals,8 we obtain the average of (18.22) over the time T :

7The detailed calculation of the spectrum can be found in, for example, Landau and Lifshitz (1980) or
Rybicki and Lightman (1985).

8Using
∫ 2π
0

dψ
(1−a sinψ)5

= π
4

8+3a2(8+a2)

(1−a2)9/2
,

∫ 2π
0

sinψ dψ
(1−a sinψ)5

= π
4

5a(4+3a2)

(1−a2)9/2
, and

∫ 2π
0

sin2 ψ dψ
(1−a sinψ)5

=

π
4

4+27a2+4a4

(1−a2)9/2
.
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〈
dP 0

dTdo

〉
= −q2r20Ω

4

16

[
8− 4 sin2 θ − Ω2r20(1 + 3Ω2r20) sin

4 θ
]

(1− r20Ω
2 sin2 θ)7/2

. (18.23)

The ratio of the average radiated intensities in the plane of the trajectory (θ = π/2) and
perpendicular to this plane (θ = 0) is

〈 dP 0

dTdo 〉π/2
〈 dP 0

dTdo 〉0
=

4 + 3Ω2r20
8(1− Ω2r20)

5/2
. (18.24)

Therefore, a charge in rapid circular motion radiates principally in the plane of its orbit.
Finally, the total radiated power is the integral of (18.23) over do = sin θ dθ dφ, which

reduces,9 as it should, to (18.6) or (18.12). The radiated angular momentum is calculated
from (18.15):

dP 0

dT
= − 2q2r20Ω

4

3(1− r20Ω
2)2

= −2q2

3
γ2,

dJZ

dT
=

2q2r20Ω
3

3
√
1− r20Ω

2
. (18.25)

Radiation losses in a synchrotron

The power radiated by a charge traveling in a circular orbit is given by (18.25). Introducing

its velocity |V | = r0Ω and its energy E ≡ mU0 = m/
√
1− V 2, we find that this power and the

energy radiated per revolution are given by

dP 0

dT
= − 2q2

3m4

V 4E4

r20
, P 0 = −4πq2

3m4

V 3E4

r0
. (18.26)

Let us take the example of LEP at CERN (see also Section 11.4). For an energy E = 100 GeV
and a radius r0 = 5 km, the radiated power is dP 0/dT ≈ 3.5× 10−23 kg/s ≈ 2× 107 MeV/s ≈
3× 10−6 watt per electron. The energy lost in a revolution is P 0 ≈ 1.8 GeV, so that an electron
loses about 2% of its energy in each revolution.

We note that the energy lost in a synchrotron grows as the quartic power of the energy E of
the particle, whereas in a linear accelerator it grows only linearly; cf. Section 18.2.

Radiation of the hydrogen atom

The frequency of an electron of charge q = −e in its Bohr orbit, that is, at a distance
r0 = e2/mα2 from the proton of charge Q = e which is assumed at rest, was given in (13.16): Ω ≈
mα3/e2. The radiated power given by the Larmor formula (18.2), that is, dP 0/dT ≈ −(2e2/3)a2

for orbital velocity small compared to 1, then becomes the following (using a2 = r20Ω
4):

dP 0

dT
≈ −2

3

m2α8

e2
. (18.27)

For a single hydrogen atom this is dP 0/dT ≈ 5.2×10−25 kg/s ≈ 4.7×10−8 watt. This prediction,
which is in flagrant contradiction with experiment, was initially viewed as an argument against

9Using
∫ π
0

sin θ
(1−V 2 sin2 θ)7/2

=
2(15−10V 2+3V 4)

15(1−V 2)3
,
∫ π
0

sin3 θ
(1−V 2 sin2 θ)7/2

=
4(5−V 2)

15(1−V 2)3
, and

∫ π
0

sin5 θ
(1−V 2 sin2 θ)7/2

=

16
15(1−V 2)3

.
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the Rutherford planetary model of the atom (1911; see Section 13.3). In fact, it rather reveals
the limits of classical electrodynamics which, as we have mentioned, for example, at the end of
Section 11.3, does not apply when the ratio S/�, with S the electron action, becomes of order
unity.

18.4 Thomson scattering

In Section 15.4 we studied the motion of a charge in the field of a linearly polarized monochro-
matic plane wave, and in Section 17.3 we found the radiation part of the field created by a
moving charge. Here we shall study the energy radiated to infinity.

The incident wave is described at the observation point (T,X, Y, Z) by the potential
Aμ = (0, 0, a cos k(T −X), 0). It propagates along the X axis with frequency k and is linearly
polarized in the Y direction. Its energy density is given by (15.11):

Win =
k2a2

4π
sin2 k(T −X) or, on average, 〈Win〉 =

k2a2

8π
. (18.28)

The 4-velocity of the charge accelerated by this wave is (see Section 17.3)

UX =
β2

2
(cos ξ − 1)2, UY = −β(cos ξ − 1), U0 = 1 + UX , (18.29)

where ξ ≡ kτ and β ≡ qa/m, τ is the proper time of the particle, and q and m are its charge
and mass. The total radiated power is given by the Larmor formula (18.6) using the time T
of the frame rather than the proper time of the charge:

dP 0

dT
= −2q2

3
γ2, (18.30)

where γμ = kdUμ/dξ is the acceleration of the charge, so that from (18.29) we have γ2 =

k2 (qa/m)
2
sin2 ξ.

The Thomson total cross section σtot (chosen to be positive) is the ratio of the average
of this radiated energy and the averaged energy density of the incident wave 〈Win〉 (18.28).
It is therefore given by

σtot =
8π

3

(
q2

m

)2

. (18.31)

The energy radiated per unit time T in the direction n is given by (18.5):

dP 0

dodT
= − q2

4π

(
r



)3(
γ2 − (l · γ)2

2

)
1

U0
with

{
lμ = (r, rni)

 = −(l · U),
(18.32)

where [cf. (18.29)] U0 = 1 + β2

2 (cos ξ − 1)2 and

 ≡ −(l · U) = r + Y β(cos ξ − 1) +
1

2
β2(r −X)(cos ξ − 1)2

(l · γ) = kβ sin ξ [Y + β(r −X)(cos ξ − 1)] .

(18.33)
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It is interesting to note that integration of (18.32) and (18.33) over the angles must and
indeed does give (18.30) for any β, that is, for any velocity transferred to the charge by the
incident wave.

The differential cross section is the time average of the radiated energy (18.32) divided
by the average energy density of the incident wave:

dσ

do
≡ − 1

〈Win〉
1

2π

∫ 2π

0

dP 0

dodT
dξ . (18.34)

In the limit where the average velocity transferred to the charge is small, this expression, in
lowest order in β, reduces to the Thomson cross section:

dσ

do
=

(
q2

m

)2

(1− sin2 θ sin2 φ) +O(β), (18.35)

where we have changed over to spherical coordinates: X = r sin θ cosφ, Y = r sin θ sinφ,
Z = r cos θ, where ψ satisfying cosψ ≡ sin θ sinφ is the angle between the observation
direction n and the Y axis, which at this order is the direction of the electric field and of the
charge motion.

We have considered an incident wave polarized along the Y axis and propagating along
the X axis, but we would have obtained the same expression (18.35) for a wave propagating
in the Z direction. To describe the radiation of a charge in the field of an unpolarized wave,
it is therefore sufficient to take the average of (18.35) over the angle φ, which gives

〈
dσ

do

〉
=

(
q2

m

)2
1 + cos2 θ

2
+O(β), (18.36)

where now θ is the angle between the direction of the incident wave and the scattered wave.

Thomson scattering and the Compton effect

The cross sections (18.31) and (18.34) are in principle valid for any energy density of the
incident wave, and therefore for any velocity transferred by the wave to the charge.

However, as we saw in Section 6.5, light can also be described as photons, in which case the
scattering cross section is given by the Klein–Nishina formula (6.25) and (6.26). We see that
these expressions obtained using quantum electrodynamics do not in general coincide with the
classical expressions we have obtained here. However, they both converge to the Thomson limit
(18.31) and (18.36) if the charge velocity remains small compared to the speed of light in the
case of the classical expression (18.34) and (18.35), or if the photon energy is small compared
to the mass of the charge in the case of the Klein–Nishina formula.

Therefore, as already pointed out in Section 6.5, the relevant parameter for judging the
validity of the classical formulas is S/�, where S is the action of the charge. In the present case
S ∼ mV 2T , where m is the electron mass, V ∼ β = ea/m is the electron velocity, and T ∼ 1/k
is the characteristic time of the problem. Therefore, since � = e2/α, we have S/� ∼ a2α/(km) ∼
(Win/k

3)(α/m), where Win is the energy density of the incident wave and Win/k
3 is the wave

energy contained in a volume the size of the wavelength 1/k. The classical expressions (18.31),
(18.34), and (18.35) therefore are only applicable if this wave energy is large compared to the
electron mass. If it is not, the Klein–Nishina formula must be used.
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The radiation reaction force

A charge placed in an external electromagnetic field is subject to the Lorentz force and is therefore
accelerated (see the examples of such motion in Sections 11.4 and 15.4). Moreover, as we have seen
in the preceding chapter, an accelerated charge radiates electromagnetic waves, and the system of
the charge plus the field it creates loses energy according to the Larmor formula (18.6) or (18.12). It
is therefore to be expected that the charge slows down. Here we shall study the reaction force acting
on a charge due to the radiation it emits, along with the related questions of renormalization and
the physical interpretation.

In addition, we shall again see that a hydrogen atom, this time described by the Thomson model,
is unstable in the Maxwell theory.

19.1 The Abraham–Lorentz–Dirac force

A heuristic method of describing the expected slowing of an accelerated charge in response
to the radiation it emits is to modify the Lorentz equation (11.14) by including a radiation
reaction force. We therefore write the equation of motion of a charge including its own field as

m
dUμ

dτ
= q(Fμν

ext + Fμν
self)Uν . (19.1)

We see that we need to evaluate the self-retarded potential Aμ
self = qUμ

R/R due to the charge
itself, as well as the resulting Faraday tensor F self

μν [given in (17.16)], on the world line L of
the charge.

Since Aμ
self and F self

μν diverge on L, we start by working near L and introduce the point
Xμ

0 of L such that (see Fig. 19.1)

Xμ −Xμ
0 ≡ ε nμ, with nμUμ = 0 and nμnμ = 1, (19.2)

where Uμ ≡ Uμ(τ0) is the velocity of the charge at Xμ
0 and

lμR ≡ Xμ −Xμ
R = ε nμ + (τ0 − τR)Uμ − 1

2
(τ0 − τR)2γμ +

1

6
(τ0 − τR)3γ̇μ + · · · , (19.3)

where the dot denotes differentiation with respect to τ . Requiring that (lμlμ)R = 0, we obtain
(τ0 − τR) by successive iterations:

τ0 − τR = ε− 1

2
ε2(n · γ) + ε3

2

[
3

4
(n · γ)2 + 1

3
(n · γ̇)− 1

12
γ2

]
+ · · · (19.4)

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.
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L

U
μ

n

l

ε μ

Xμ

Xμ
R, τR

μ
R

X
μ
0 , τ0

Fig. 19.1 Laurent expansion of the field.

The Laurent series expansions of various retarded quantities then follow (see below for
details) and we find

1

q
Aμ

self =
Uμ

ε
− γμ − Uμ(n · γ)

2

+ε

[
3

8
Uμ(n · γ)2+1

3
Uμ(n · γ̇)− 1

8
Uμγ2+γμ(n · γ)+ 1

2
γ̇μ

]
+ · · ·

(19.5)

Laurent expansion of retarded quantities

Given the expansion (19.4) of (τ0 − τR), we easily obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lμR = ε(nμ + Uμ)− 1

2
ε2 [(n · γ)Uμ + γμ]

+
1

2
ε3
[
3

4
(n · γ)2Uμ +

1

3
(n · γ̇)Uμ − 1

12
γ2Uμ + γμ(n · γ) + 1

3
γ̇μ

]

+ · · ·

Uμ
R = Uμ − εγμ +

1

2
ε2 [(n · γ)γμ + γ̇μ] + · · ·

R = ε+
1

2
ε2(n · γ) + ε3

[
1

8
γ2 − 1

3
(n · γ̇)− 1

8
(n · γ)2

]

+ · · ·

To obtain the Faraday tensor from (19.5) for the retarded potential, it is necessary to know
how far the point Xμ

0 moves along the world line when Xμ is shifted by δXμ. By varying the
expression (Xμ −Xμ

0 )Uμ = 0 and using δXμ
0 = Uμδτ0 and δUμ = γμδτ0, we find

∂μτ0 = − Uμ

1 + ε(n · γ) = −Uμ

[
1− ε(n · γ) + ε2(n · γ)2 + ...

]
,

and so

∂μU
ν = −γνUμ [1− ε(n · γ) + · · ·] , ∂με = nμ,

∂μn
ν =

1

ε

(
−nμn

ν + δνμ + UνUμ − UνUμ(n · γ) + · · ·
)
. (19.6)

[The second equation follows from varying ε = (Xμ −Xμ
0 )nμ using (n · u) = 0 and (n · δn) = 0,

and the third follows from varying Xμ −Xμ
0 = εnμ.]
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The self electromagnetic field F self
μν = ∂μA

self
ν −∂νAμ created by the charge near its world

line is derived from (19.5) for the potential using (19.6). We find

1

q
F self
μν =

Uμnν − Uνnμ

ε2
+

1

ε

[
(n · γ)(nμUν − nνUμ) +

1

2
(γμUν − γνUμ)

]

+
1

8

[
3(n · γ)2 + γ2

]
(Uμnν − Uνnμ) +

1

2
(nμγ̇ν − nν γ̇μ)

+
2

3
(Uμγ̇ν − Uν γ̇μ) +

3

4
(n · γ)(Uμγν − Uνγμ) + · · · ,

(19.7)

from which we derive the Laurent expansion of the quantity of interest in (19.1), namely,

1

q
Fμν
self Uν =

nμ

ε2
− 1

ε

[
nμ(n · γ) + 1

2
γμ

]
+ nμ

[
3

8
(n · γ)2 − 3

8
γ2

]

−2

3
γ2Uμ +

3

4
(n · γ)γμ +

2

3
γ̇μ +O(ε) .

(19.8)

At this stage the question becomes how to interpret (19.8) when ε → 0. One possible answer,1

which is ultimately justified by studying systems of interacting charges (see the following
chapter), is to take the average over nμ. To do this we work in the inertial frame tangent to
the world line where the vector nμ is a spatial vector (n0 = 0) and 〈ninj〉 = 1

3δij , and then
return to the original frame. This gives

1

q
〈Fμν

self Uν〉 = −5

6

γμ

ε
+

2

3

(
γ̇μ − γ2Uμ

)
, (19.9)

so that, modulo this substitution, the equation of motion (19.1) of a charge in an external
field taking into account its own field is

mγμ = q Fμν
ext Uν +

2q2

3

(
γ̇μ − γ2Uμ

)
, (19.10)

as proposed by Abraham (1905), Lorentz (1892), and Dirac (1938). Here the mass has been
renormalized: m+ 5q2/(6ε) → m, which in practice amounts to ignoring the divergent term
in (19.9). The second term in (19.10) is called the radiation reaction force.

In the limit where the charge velocity is small compared to the speed of light, (19.10)
reduces to

ma = Fext +
2q2

3
ȧ , (19.11)

where a ≡ dV/dT is the 3-acceleration of the charge, ȧ is its derivative with respect to T ,
and Fext = q(E + V ∧B) is the Lorentz force due to the external field (E,B).

1For a review of the various regularization schemes used in classical electrodynamics, see, for example,
Damour (1975).
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The Thomson model of the atom

In the ‘plum pudding’ model of the atom proposed by J. J. Thomson in 1904, the electron,
of mass m and charge −e, immersed in a ‘pudding’ of charge +e, undergoes harmonic motion:
d2X/dT 2 + ω2

0X = 0, where the frequency ω0 is taken to be the Bohr frequency ω0 = mα3/e2,
and α is the fine-structure constant; see Section 13.3. This oscillating charge radiates, and
the counter-reaction to this radiation is given by the Abraham–Lorentz–Dirac force (19.11).
Therefore, the electron equation of motion taking into account this force becomes

d2X

dT 2
+ ω2

0X − τ0
d3X

dT 3
= 0 with τ0 ≡ 2e2

3m
, (19.12)

the solution of which is the real part of X0e
−iωT with −ω2 + ω2

0 − iω3τ0 = 0. If we assume that
the reaction force remains weak so that ω remains close to ω0, this third-degree equation for ω
reduces to −ω2 + ω2

0 − iω3
0τ0 = 0. This approximation is equivalent to replacing (19.12) by

d2X

dT 2
+ ω2

0X + ω2
0τ0

dX

dT
= 0 . (19.13)

The electron motion is exponentially damped: X ≈ X0e
−iω0T e−

ω0τ0
2

T with ω0τ0/2 = α3/3 ≈
1.3× 10−7. The Thomson atom is therefore unstable (like the Rutherford atom, as we have seen
in Section 18.3 and will study again in Section 21.2).

Now let us assume that, in addition, the electron is immersed in an electromagnetic wave.
At lowest order in V the Lorentz force it is subjected to is −eE. If the atom is much smaller
than the wavelength of the field, the spatial structure of the wave can be neglected and we can
set E = E0e

iωT . The electron equation of motion then becomes that of a forced oscillator:

d2X

dT 2
+ ω2

0X + ω2
0τ0

dX

dT
= −eE0

m
e−iωT . (19.14)

After a transient phase the motion is X = X0e
iωT with X0 = eE0/m

ω2
0−ω2−iωω0τ0

. The

3-acceleration is a = ω2|X0| and the radiated Larmor power given by (18.12) is, in lowest
order, dP/dT = 2e2/3a2. The energy density of the wave is W = E2

0/(4π). Therefore, the cross
section σ ≡ (1/W )(dP/dT ) is given by

σ =
8π

3
r2e

ω4

(ω2
0 − ω2)2 + ω2(ω0τ0)2

, (19.15)

where re ≡ e2/m is the classical electron radius (see Section 13.1). If the incident wave has
low frequency ω � ω0, then σ ≈ (8π/3)r2e(ω/ω0)

4 and the scattering is Rayleigh scattering.
If the frequency is high, the electron is nearly free and we recover the Thomson cross section2

σ ≈ (8π/3)r2e ; see Section 18.4.

19.2 The reaction force and the Larmor formulas

The Abraham–Lorentz–Dirac reaction force, the counter-effect of the radiation of an accel-
erated charge on its motion, is given by (19.10):

2For examples illustrating the use of the Thomson model in the study of atomic sources of radiation, see
Raimond (2000).
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gμ ≡ 2q2

3
(γ̇μ − γ2Uμ) . (19.16)

Integrating this along the charge world line L, we find

∫

L

gμdτ =
2q2

3
γμ
∣∣∣
τ2

τ1
− 2q2

3

∫
γ2Uμdτ . (19.17)

The first term is zero either because the accelerations vanish at spatial infinity if the motion
is unbounded, or because its average is zero if the motion is bounded. The second term is just
the Larmor formula giving the power radiated by the charge. Equation (19.17) can therefore
be interpreted as an energy balance.

To understand this interpretation, we rewrite the zeroth component of the Abraham–
Lorentz–Dirac equation mγ0 = F 0

ext + g0 in the low-velocity limit (using the expression
obtained in Section 6.2, footnote 2):

d

dT

(
1

2
mV 2

)
� F i

ext .Vi +
2q2

3
(ȧiVi), (19.18)

which states that the change of the (Newtonian) kinetic energy of the charge is equal to the
work performed by the forces. Therefore, the change of the kinetic energy due to the work
performed by the reaction force in this limit is

ΔEkin =
2q2

3

∫
dT (ȧiVi) =

2q2

3
(aiVi)

∣∣∣
T2

T1

− 2q2

3

∫
dTa2. (19.19)

The first term vanishes for the reasons given above, and the second is equal to the radiated
power in the V → 0 limit of the Larmor formula (18.12).

19.3 Caveats

The Abraham–Lorentz–Dirac equation (19.10) is a nonlinear differential equation of third
order in Xμ(τ). It therefore possesses solutions which do not approach those of the Lorentz
equation when q → 0, and these must be excluded. For example, in the absence of an external
field (19.10) becomes (recalling that UμUμ = −1)

γμ =
2q2

3m
(γ̇μ − γ2Uμ)

=⇒ γ2 = C2 exp

(
3m

q2
τ

)

=⇒ U i ∝ exp

[
exp

(
3m

q2
τ

)]
for large τ,

(19.20)

a result which is clearly unacceptable, because the theory is based on the fact that a free
particle in an inertial frame undergoes uniform motion.3

3The time scale of the ‘blowup’ of the solution (19.20) is very short: τ0 ≡ 2q2/(3m) = 10−23 s for an
electron.
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These pathological solutions can be eliminated by using the Landau–Lifshitz trick of
treating the reaction force as a perturbation of the Lorentz equation:

mγμ = qFμν Uν =⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mγ̇μ = q(UνU
ρ∂ρF

μν + Fμνγν)

= q
(
Uν∂ρF

μν + q
mFμνFνρ

)
Uρ

m2γ2 = q2FμνFμρ UνU
ρ

and replacing (19.10) by the nonlinear second-order differential equation

mγμ = qFμν Uν +
2q3

3m
UρUν∂ρF

μν +
2q4

3m2
(FμνFνρU

ρ + F ρσFνρU
νUσU

μ) , (19.21)

where Fμν is a priori understood to be an external field. However, this modified Abraham–
Lorentz–Dirac equation is not much better. Let us consider the example of a charge moving
along a constant electric field where the Faraday tensor reduces to F 01 = E. The second
term of (19.21) then vanishes as does the third term, which implies that a charge uniformly
accelerated by a constant electric field and which radiates energy according to (18.19) is not
slowed down.4

It should also be noted that if the ‘good’ equation of motion is (19.10) or (19.21) rather
than the ‘original’ Lorentz equation (11.14), then the energy conservation laws (12.27) must
be modified because they are based on the Lorentz equation.

In conclusion, these caveats probably display the limits of the external field approxima-
tion, that is, they show that if we wish to describe the effect of a charge’s radiation on its
motion, we must take into account the other charges which create the field in which the
charge of interest moves. Therefore, the Abraham–Lorentz–Dirac equation (19.10) or (19.21)
can make sense only if we study a system of interacting charges.

4A deeper discussion can be found in Rohrlich (2007) and in Gralla, Harte, and Wald (2009).
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Interacting charges I

We shall now address the problem of radiation by a system of point charges which, owing to the
fact that the electromagnetic interaction propagates at finite speed, can only be solved iteratively,
by assuming that all speeds are small compared to the speed of light. After deriving the dipole and
quadrupole formulas giving the radiation field and the energy radiated by the system in the lowest
orders, we find the equations of motion of the charges of the system to third order in the velocities,
that is, including the effect of the reaction force at lowest order.

20.1 The dipole field and radiation

In Section 17.2 we obtained the Liénard–Wiechert electric and magnetic fields created by
a moving charge in an inertial frame S. Since the Maxwell equations are linear, the fields
created by a system of charges will be the sum of the fields created by each charge. Using
3-vector notation, at the observation point (T,Xi) they can be written as [cf. (17.18)]

E =
∑

a

[
q(1− V 2)

r2(1− n.V )3
(n− V ) +

q[(n.a)(n− V )− (1− n.V )a]

r(1− n.V )3

]

R
,

B =
∑

a

nR ∧ Ea,

(20.1)

where E ≡
∑

a Ea with the sum running over the charges qa, and n, r, V , and the acceleration
a carry the subscript R. If ziR are the coordinates of the charge (a) at time TR, then rR and
the unit vector nR are defined as Xi− ziR ≡ rRni

R. At the instant TR we have rR = T −TR,
and so T − TR is the time taken by light to travel from the charge to the observation point.
Finally, VR ≡ żR and aR ≡ V̇R are the 3-velocity and 3-acceleration of the charge at the
retarded time TR; see Fig. 20.1.

Far from the charges, only the 1/r radiation part of the fields will contribute to the
radiation of energy and momentum;1 see (17.26). Moreover, if the velocities are small (which
we have not assumed in the preceding chapters), in lowest order we have rRnR = r n, where
r n is the radius vector of the observation point (the origin of the frame is taken to be at the
center of the charge distribution, which is assumed to be bounded). Equation (20.1) therefore
reduces to

E =
1

r

∑

a

q [n(n .aR0
)− aR0

] + · · · , B = n ∧ E + · · · , (20.2)

where all the charge accelerations are evaluated at time TR0
, so that T −TR0

= r is the time
taken by light to travel from the origin of the frame to the observation point. Introducing
the radius vectors za(T ) of the charges, the fields (20.2) can be rewritten as

1Here we do not deal with the radiation of angular momentum, the calculation of which involves also the
Coulomb part of the field; see Section 18.1.
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Fig. 20.1 Retarded quantities.

E =
n(d̈R0

.n)− d̈R0

r
+ · · · , B =

d̈R0
∧ n

r
+ · · · , (20.3)

where d ≡
∑

a qz is the dipole moment of the system and the dot denotes differentiation with
respect to T . We see that E and B are perpendicular to the radius vector of the observation
point (n.E) = 0: the field is that of a spherical wave which is nearly a plane wave at large r.
Equations (20.3) are called the first dipole formulas.

To find the power lost by the system, we must return to the general expression (12.34),
namely,

dP 0

dT
= − 1

4π

∫

S

(E ∧B).n r2 do , (20.4)

where do is the element of solid angle [do = sin θdθdφ in spherical coordinates, where the
components of n are n = (sin θ cosφ, sin θ sinφ, cos θ)] and S is the sphere at infinity. Since
E ∧B = E2 n we find that the power radiated by a system of slowly moving charges is given
by the second dipole formula:

dP 0

dT
= −

∫ [
d̈2R0

− (n .d̈R0
)2
]
do = −

2d̈2R0

3
, (20.5)

where we have used (18.7) for the spatial averages.
We note that whereas the dipole moment depends in the general case (

∑
a q �= 0) on the

choice of origin, its second derivative will not depend on the choice of inertial frame.
Finally, if the charge-to-mass ratio is the same for all the particles, the dipole moment is

proportional to the radius vector ρ of the Newtonian center of mass of the system. In this
case

d ≡
∑

a

qz =
q

m

∑

a

mz ≡ q

m

(
∑

a

ma

)

ρ . (20.6)

If the center of mass is in uniform translation, that is, if the system is not subject to
an external force, then d̈ = 0 and to obtain the radiated power it is necessary to keep the
next-order term in the expansion of the field.

20.2 The quadrupole field and radiation

Finding the field and the radiation of a system of charges beyond the dipole approximation
is rather more difficult but necessary in the absence of dipole radiation. It is also a useful
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exercise for studying the radiation of a mass system in theories of gravitation where the
gravitational mass is equal to the inertial mass. Here we shall sketch the outlines of the
approach.

We start from the three-dimensional expression for the Liénard–Wiechert potentials of a
system of charges (17.18):

Φ(T,Xi) =
∑

a

q

rR(1− nR .VR)
, Aj(T,Xi) =

∑

a

qV j
R

rR(1− nR .VR)
. (20.7)

A review of the definitions of the various quantities together with a figure were given in the
preceding section.

We introduce the origin of the frame (taken to be at the center of the charge distribution,
which is assumed bounded) and write rRnR = r n − zR, where r n is the radius vector of
the observation point with components Xi and length r, and zR is the radius vector of the
charge at TR. In addition, we assume that the charge velocities remain small. Then, since
rRnR = r n at lowest order in z/r, we have2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Φ =
∑

a

q

r

[
1 + (n .VR) + (n .VR)2 + (n .VR)3 +O(V 4) +O(z/r)

]
,

Aj =
∑

a

qV j
R
r

[
1 + (n .VR) + (n .VR)2 +O(V 3) +O(z/r)

]
.

(20.8)

Now let us take all the quantities at the time TR0
, so that T−TR0

= r is the time for light
to travel from the origin of the frame to the observation point. Then using the expansion of
VR, see (20.10) below, we find

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ =
∑

a

q

r
+
∑

a

q

r
(n .VR0

) +
∑

a

q

r

[
(n .V )2 + (n .z)(n .V̇ )

]

R0

+
∑

a

q

r

[
(n .V )3 + 3(n .z)(n .V )(n .V̇ ) +

1

2
(n .z)2(n .V̈ )

]

R0

+ · · · ,

Aj =
∑

a

qV j
R0

r
+
∑

a

q

r

[
V j(n .V ) + V̇ j(n .z)

]

R0

+
∑

a

q

r

[
V̈ j(n.z)2

2
+2V̇ j(n.z)(n.V )+V j

(
(n.V )2+(n.z)(n.V̇ )

)]

R0

+ · · · ,

(20.9)

where zR0
and VR0

are the radius vector and speed of the charge at the instant TR0
, the

dot denotes differentiation with respect to T , and the ellipsis stands for terms of order
(q/r)V 2(V 2 + z/r) and higher.

2Here, as in the preceding section, we are interested only in the radiation field.

B
o
o
k
2



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 370 — #382

370 Book 2. Part IV: Electrodynamics

Asymptotic expansion of retarded quantities

Here we outline the steps to arrive at (20.9).

First of all, we note that since V̇ = O(V/T ) and z = O(V T ), we have V̇ z = O(V 2),

V̈ z2 = O(V 3), and so on.
Since rRnR ≡ rn− zR, it follows that rR = r − (n .zR) +O(z2/r).
We introduce TR0 , so that T − TR0 = r.
We have T − TR ≡ rR, and therefore TR = TR0 + r − rR = TR0 + (n .zR) +O(z2/r).
Consequently, zR ≡ z(TR) = zR0 + (n .zR)VR0 +O(V 2z(1 + z/r)) [with zR0 ≡ z(TR0) and

VR0 ≡ V (TR0)], or, iterating to lowest order, zR = zR0 + (n .zR0)VR0 +O(V 2z(1 + z/r)).

We therefore find VR ≡ V (TR) = VR0 + (n .zR)V̇R0 +
1
2
(n .zR)2V̈R0 +O(V 2(V 2 + z/r)), or,

substituting into this the expression for zR,

VR = VR0 + V̇R0(n .zR0) +

[
1

2
V̈ (n .z)2 + V̇ (n .V )(n .z)

]

R0

+O(V 2(V 2 + z/r)) . (20.10)

The derivatives of the potential are easily found: Φ and Aj depend on the time T through
the radius vectors zR0

of the charges, evaluated at the time TR0
= T − r for constant r.

Moreover, if the observation point is shifted by an amount δXi at constant r, this implies
that the origin of the frame is shifted by the same amount, and so ∂iz

j
R0

= −δji . First we
verify that ∂μA

μ = 0 in the order under consideration. We then obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F 0i =

∑
a q
[
ni(n .V̇ )− V̇ i

]

R0

r

+
∑

a

q

r

[
− 2V̇ i(n .V )− V i(n .V̇ ) + 3ni(n .V )(n .V̇ )− V̈ i(n .z)

+ni(n .z)(nV̈ )
]

R0

· · · ,

F ij =

∑
a q
[
nj V̇ i − niV̇ j

]

R0

r

+
∑

a

q

r

[
(n .z)(nj V̈ i − niV̈ j) + 2(n .V )(nj V̇ i − niV̇ j)

+(n .V̇ )(njV i − niV j)
]

R0

· · · ,

(20.11)

where the ellipsis now stands for terms of order (q/r)(V̇ (V 2 + z/r)) and higher. Of course,
this expansion can also be derived from (17.18) for E and B.

Now let us assume that the charge-to-mass ratio is the same for all the particles, so that
their dipole moment is proportional to the radius vector from the Newtonian center of mass
of the system (see the preceding section). We also assume that the system is isolated: d̈ = 0.

In the case of two charges q and q′, a somewhat tedious but easy calculation gives the
expression for the field in the inertial frame of the Newtonian center of mass (mz+m′z′ = 0
or qz + q′z′ = 0):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F 0i = −qq′

Qr

[
2V̇i(n .V) + Vi(n .V̇)− 3ni(n .V)(n .V̇) + V̈i(n .R)

−ni(n .R)(n .V̈)
]

R0

+ · · · ,

F ij =
qq′

Qr

[
(n .R)(nj V̈i − niV̈j) + 2(nV)(nj V̇i − niVj)

+(n .V̇)(nj .Vi − niVj)
]

R0

+ · · · ,

(20.12)

where Q = q + q′, R = z − z′, and V is the relative velocity of the charges.
It is therefore a simple exercise [using (18.7) and (18.8) for the averages] to find the

radiated power, which leads to the quadrupole formula:

dP 0

dT
=

∫

S

F 0
jF

j
in

ir2do

=
2(qq′)2

15Q2

[
− 7(R .V)(V̇ .V̈)− 8V2V̇2 − (V .V̇)2 − 2(R .V̇)(V .V̈)

+3(R .V̈)(V .V̇)− 2R2V̈2 + (R .V̈)2
]

R0

= − 1

180

(
d3Dij

dT 3

)

R0

(
d3Dij

dT 3

)

R0

,

(20.13)

where Dij =
∑

a q(3z
izj − z2δij) = qq′

Q (3RiRj − R2δij) is the quadrupole moment of the

system, and in obtaining the last line we have assumed that the motion is Coulombic3:

V̇i = qq′

μ
Ri

R3 , where μ ≡ mm′/(m+m′).

20.3 The charge equations of motion

As we showed in the preceding chapter, any radiation of electromagnetic waves by accelerated
charges must be compensated for by a reaction force. Here we shall find the equations of
motion of a system of charges including the reaction force due to their dipole radiation.

3If the dipole moment is nonzero, the quadrupole correction to the dipole radiation is not given by (20.13).
Instead, it is obtained by expanding the potential (20.9) to the next higher order in the velocities.

The method of this section can be used to find the power radiated by a system of two masses in the
Nordström theory of gravitation. In that case it is necessary to expand the potential (10.30) and (10.31) to
the next order in the velocities. For Newtonian motion we find

dP 0

dT
=

1

6

dP 0

dT

∣
∣
∣
∣
∣
RG

− 4G3(mm′)2

9R2
(R.V)2(1− 3a2)

2,

where a2 characterizes the non-linearity of the interaction and where

dP 0

dT

∣
∣
∣
∣
∣
RG

≡ − G

45

(
d3Qij

dT 3

)(
d3Qij

dT 3

)
with Qij =

∑

a

m(3zizj − z2δij),

is the prediction, confirmed observationally, of general relativity.
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In a given inertial frame the motion of a charge of mass m, charge q, and speed V
interacting with other charges and in the absence of an external field is governed by the
Lorentz equation (see Section 11.3)

m
d

dT

V√
1− V 2

= q(E + V ∧B) with E = −∇Φ− ∂A

∂T
, B = ∇∧A , (20.14)

where E and B are the electric and magnetic fields due to all the charges including the one
we are studying. At time T and observation point Xi away from the charges, the Liénard–
Wiechert potentials from which the fields are derived are given by

Φ(T,Xi) =
∑

a

q

rR(1− nR .VR)
, Aj(T,Xi) =

∑

a

qV j
R

rR(1− nR .VR)
. (20.15)

These potentials depend on the positions zR ≡ z(TR) of the charges q at the retarded times
TR given by T − TR = rR, where Xi − ziR = rRni

R with nR a unit vector. For the Lorentz
equation (20.14) to be an ordinary differential equation, it is necessary to express these
retarded positions of the charges as a function of their position at time T . If the velocities
V are small, we can find them using a Taylor series expansion, where the dot denotes the
derivative with respect to T and a ≡ V̇ :

rRni
R = rni+ rRV − 1

2
r2Ra+

1

6
r3Rȧ+ · · · , where rni ≡ Xi− zi(T ) and n.n = 1 . (20.16)

We can extract from this expression the expansions of rR and nR, and then of VR = V −
rRa+ 1

2r
2
Rȧ+ · · ·, so that for all r but V � 1 we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Φ =
∑

a

q

r

{
1 +

1

2

[
V 2 − (n.V )2 − (n.a)r

]
+

1

3
(n.ȧ)r2 − r(V.a) + · · ·

}
,

Ai =
∑

a

q

r

[
V i − rai + · · ·

]
,

(20.17)

from which we derive the field expansions using ∂i(X
j − zj) = δji and (Xj − zj). = −V i:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ei =
∑

a

q

r2

{
ni+

1

2

[
V 2ni−3ni(n.V )2−rai−rni(n.a)

]
+
2

3
r2ȧi + · · ·

}
,

Bi = −eijk
∑

a

q

r2
njVk + · · ·

(20.18)

Now to obtain the Lorentz force we must evaluate these fields at the position z of the charge
under study. The fields E and B then split into two parts: the part due to the other charges
and the proper or self part due to the charge itself, which diverges as 1/r2. We decide by
fiat to ‘renormalize’ the self part of the field by averaging over n and keeping only the term
which is finite for r → 0; see Chapter 19. This gives

Ei
self =

2

3
qȧi + · · · , Bi

self = O(V 3) . (20.19)

Once this point is settled the expansion of the charge equation of motion (20.14) follows.
Here we shall limit ourselves to the case of two charges (m, q) and (m′, q′) to simplify the



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 373 — #385

Chapter 20: Interacting charges I 373

notation, and we set RN i ≡ zi(T ) − z′i(T ) with (N.N) = 1. All the calculations done, we
find

mai = Ai
0 +Ai

2 +Ai
3 + · · · with Ai

0 =
qq′

R2
N i and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ai
2 = −m(V.a)V i − 1

2
mV 2ai

+
qq′

2R2

{
N i
[
V ′2−3(N.V ′)2−2(V.V ′)−R(N.a′)

]
+2V ′i(N.V )−Ra′i

}
,

Ai
3 =

2q

3
(qȧi + q′ȧ′i) =

2q

3

d3 di

dT 3
.

(20.20)

We see that the last term Ai
3 is proportional to the third time derivative of the system

dipole moment, and that the term involving qȧ is the lowest-order term of the expansion
of the Abraham–Lorentz–Dirac force (19.10), and, finally, that this is a third-order differen-
tial equation because it involves ȧi. Its solutions therefore a priori depend on three initial
conditions. Moreover, the term involving ȧi is O(V 3) times smaller than the dominant term
(qq′/R2)N i.

Therefore, to avoid the appearance of unwelcome unstable solutions, we proceed with
an order reduction. This consists of transforming (20.20) (as well as the similar equation
governing the motion of the charge q′) by iterating it. More precisely, (20.20) reduces at
lowest order to the Coulomb equation

mai =
qq′

R2
N i, from which we deduce that mȧi =

qq′

R3

[
Vi − 3N i(N.V)

]
, (20.21)

where Vi ≡ V i − V ′i. Then, substituting these expressions along with the symmetric expres-
sions for a′i and ȧ′i into (20.20), we obtain a reduced equation of second order:

mai = Ai
0 +Ai

2 +Ai
3 + · · · with Ai

0 =
qq′

R2
N i and

⎧
⎪⎪⎨

⎪⎪⎩

Ai
2 =

qq′

2R2

{
N i
[
V ′2−V 2−2(V.V ′)−3(N.V ′)2

]
−2Vi(N.V )

}
+
(qq′)2

m′R3
N i,

Ai
3 =

q2q′

R3

(
q

m
− q′

m′

)[
2

3
Vi − 2N i(N.V)

]
.

(20.22)

Here Ai
3 is the dipole reaction force. In contrast to Ai

2 and Ai
0, it changes sign when the

direction of the time arrow is reversed, i.e., under the transformation T → −T . This implies
that it would have been absent if we had chosen the symmetric solution of the Maxwell
equations (mentioned in Section 17.2) rather than the retarded solution (20.15).

Higher orders and Lagrange series

When the charge-to-mass ratio is the same for all the particles, in order to obtain the
quadrupole reaction force it is necessary to continue the expansions two orders higher, which is
a rather tedious calculation. A way of simplifying it and, above all, getting a clearer picture of
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the structure of the series at all orders is to use the Lagrange method.4 For this, we start from
the expression for the retarded potential created by a continuous charge distribution (17.14):

Aμ(T,Xi) =

∫

d3X ′ j
μ(T − r′, X ′i)

r′
, where r′ =

√

(Xi −X ′i)(Xi −X ′
i) , (20.23)

and we make a Taylor–Lagrange series expansion of the current:

jμ(T − r′, X ′i) = jμ(T )− ∂jμ

∂T

∣
∣
∣
∣
∣
T

r′ +
1

2

∂2jμ

∂T 2

∣
∣
∣
∣
∣
T

r′2 + · · · =
n=∞∑

n=0

(−1)n

n!

∂njμ

∂Tn

∣
∣
∣
∣
∣
T

r′n, (20.24)

so that

Aμ(T,Xi) =
n=∞∑

n=0

(−1)n

n!

dn

dTn

∫

d3X ′r′n−1jμ(T, X ′i) . (20.25)

At this stage we use the explicit expression for the current due to point charges, namely,

jμ(T,Xi) =
∑

a

q

∫

dτ δ(T − z0(τ))δ3(X
i − zi(τ))

dzμ

dτ
, (20.26)

which when substituted into (20.25) gives, after integrating over all space, the expansion of the
potential to all orders:

Φ =
∑

a

q

n=∞∑

n=0

(−1)n

n!

dn

dTn
rn−1
a , Ai =

∑

a

q

n=∞∑

n=0

(−1)n

n!

dn

dTn
(V i

ar
n−1
a ) , (20.27)

with ra =
√

(Xi − zia(T ))(Xi − zai (T )). It can of course be checked that the expansion (20.27)
does indeed reproduce (20.17) in the lowest orders. The most important thing to note is that
the charge equation of motion (20.20), when the expansion is carried to all orders using (20.27)
and after renormalization of the self term, becomes a differential equation of infinite order. This
means that its solution a priori requires an infinite number of initial conditions at T = 0, or, in
other words, its integration requires knowledge of the entire past history of the charge. And it
is only after an order reduction involving an infinite number of steps that we can reduce it to a
second-order differential equation. Here we see evidence of the operational limits of the Maxwell
theory.

4Lagrange (1770).
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Interacting charges II

The motion of a charge (m, q) in the field of another charge (m′, q′) and in its own field can of course
be studied in the lowest orders of the velocities directly using the equation of motion obtained in the
preceding chapter. However, the features of this motion are revealed more easily by deriving them
from the Darwin Lagrangian. This allows us to rigorously establish a balance between the energy
radiated by the system and the mechanical energy lost by the system.

We shall conclude our general study of the electromagnetic radiation of a system of charges by
outlining the ‘post-Minkowski’ approach based on iteration in the ‘coupling constant’ qq′ rather than
in the velocities.

21.1 The Darwin Lagrangian and conserved quantities

In an inertial frame, the action of a system of interacting charges is the sum of the actions
of the free charges (see Section 6.1), the action associated with the charge–field interaction
(see Section 11.3), and the action of the field itself (see Section 12.3):

S = −
∑

a

m

∫
dτ +

∑

a

q

∫
AμU

μ dτ − 1

16π

∫
FμνF

μνdΩ ≡
∫
dT L

with L = −
∑

a

m
√

1− V 2 +
∑

a

q(−Φ+ V.A) +
1

8π

∫
dV (E2 −B2) .

(21.1)

In order to obtain a Lagrangian depending only on the charge world lines from which we can
derive the equations of motion found in the preceding chapter, we must eliminate the fields1

E and B in (21.1). We do this in two stages.
First we rearrange the last term of L in (21.1). Using the definition of the fields as a

function of the potentials [cf. (11.7)] and applying the Leibniz rule and Gauss’s theorem, we
find ∫

dV (E2 −B2) =

∫
dV

[
E.

(
−∇Φ− ∂A

∂T

)
−B.(∇∧A)

]

=

∫
dV

[
Φ∇.E −A.∇∧B +A.

∂E

∂T

]

−
∫

S

(EΦ+A ∧B) .n dS − d

dT

∫
dV E.A .

(21.2)

The last term is a total derivative with respect to the time. It can be ignored because it
has no effect on the Euler–Lagrange equations. The next-to-last term is an integral over the

1Wheeler and Feynman (1949).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.
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2-sphere at infinity; on the mass shell (that is, when the solution of the Maxwell equations is
substituted into it) it will be given by the radiation parts of the field and the potential, both
of which have 1/r behavior. It can therefore be ignored only if there is no radiation part in
the solutions (because they have been integrated using a symmetric propagator), or if we only
seek to extract from (21.1) a Lagrangian giving the equations of motion (20.22), excluding
the reaction force Ai

3. Finally, we transform the first term using the field equations,2 that is,
the Maxwell equations (12.16) with point charges as the source, namely,

∇.E = 4π
∑

a

qδ3(X
i − zi(T )), ∇∧B =

∂E

∂T
+ 4π

∑

a

qV δ3(X
i − zi(T )), (21.3)

so that the Lagrangian (21.1) is replaced by

L = −
∑

a

m
√

1− V 2 +
1

2

∑

a

q (−Φ+ V.A) . (21.4)

Once this first stage has been completed, we eliminate the fields by substituting into (21.4)
the solution of the Maxwell equations, that is, the retarded potentials (20.17) truncated at
order O(V 2). Since the self part of the potentials diverges as 1/r when it is evaluated on the
charge world line, the final operation is to renormalize it by averaging over n and keeping
only the finite terms.

The Lagrangian (21.1) of the two charges (m, q) and (m′, q′) located at zi(T ) and z′i(T )
and interacting only electromagnetically therefore in the end reduces to L = LDarwin +
qq′[(N.v′)− (N.v)]˙/4, where LDarwin is the Darwin Lagrangian (G. G. Darwin, 1920):

LDarwin =

(
1

2
mV 2 +

1

2
mV ′2 − qq′

R

)
+

1

8
mV 4 +

1

8
m′V ′4

+
qq′

2R
[(N.V )(N.V ′) + (V.V ′)] .

(21.5)

Here we have set zi(T ) − z′i(T ) ≡ RN i with (N.N) = 1. Since this Lagrangian depends on
the positions and velocities of the two charges, the conjugate momentum pi of zi and the
force F i are defined as

pi ≡ ∂LDarwin

∂Vi
= mV i +

1

2
mV 2V i +

qq′

2R

[
N i(N.V ′) + V ′i] ,

F i ≡ dpi

dT
− ∂LDarwin

∂zi
= mai −Ai

0 −Ai
2 ,

(21.6)

where A0 and A2 are given by (20.20). We thus verify that the Euler–Lagrange equations
F i = 0 are indeed identical to the equations of motion (20.20) through order O(V 2) inclusive.
The use of the solution of the Maxwell equations to transform the Lagrangian (21.1) is
therefore justified.3

2This operation must always be justified at the end.
3At higher orders it is necessary to substitute into (21.4) the Lagrange expansion (20.27) of the potentials

(after regularizing the self part). The resulting Lagrangian then depends not only on the positions and
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The action S =
∫
dT LDarwin is a scalar, and so it must have the same numerical value

in any inertial frame in which it is calculated, which makes it possible to derive conserved
quantities from it (see Book 1, Section 8.3). Therefore, the invariance of S under spatial
translations, spatial rotations, and time translations leads to the conservation of momentum
P , angular momentum M, and energy E of the system:

dP

dT
=
∑

a

F, where P =
∑

a

p,
dM
dT

=
∑

a

z ∧ F, where M =
∑

a

z ∧ p,

dE
dT

=
∑

a

F.V, where E =
∑

a

p.V − LDarwin .
(21.7)

Let us give the explicit expression for E :

E =
1

2
mV 2 +

1

2
m′V ′2 +

qq′

R
+

3

8
mV 4 +

3

8
m′V ′4 +

qq′

2R
[(N.V )(N.V ′) + (V.V ′)] . (21.8)

When the equations of motion are satisfied to order O(V 2), that is, when F = 0, then P ,
M, and E are constants.

The center-of-mass system

It is easily shown that the system momentum P =
∑

a p with p given in (21.6) can also be
written as

P i =
dGi

dT
with Gi =

∑

a

(

m+
1

2
mV 2 +

qq′

2R

)

zi . (21.9)

Since P is constant when the equations of motion are satisfied to order O(V 2), we have Gi =
P iT +Gi

0.
The center-of-mass frame (c.m. frame) is defined, as in Newtonian physics, as the inertial

system in which Gi = 0. Iterating (21.9), we obtain the positions of the charges in this frame as
a function of the relative position and velocity RN i = zi − z′i, Vi = V i − V ′i:

zi =
m′

M
RN i +

1

2
RN i

(
m−m′

M2

)(

μV2 +
qq′

R

)

,

z′i = −m

M
RN i − 1

2
RN i

(
m′ −m

M2

)(

μV2 +
qq′

R

)

,

where we have set M = m + m′ and μ = mm′/M . The vector RN i is obtained by integrating

the relative equation of motion written in the c.m. frame, V̇ = (A0 + A2)− (A′
0 + A′

2) with A0

and A2 from (20.22), and setting ν = μ/M :

μV̇i=
qq′

R2
N i+

qq′

R2

{

N i

[

V2

(

3ν− 1

2

)

− 3

2
ν(N.V)2

]

−(1−2ν)Vi(N.V)+2
qq′

MR
N i

}

. (21.10)

velocities of the charges, but also on their accelerations a [to order O(V 4)], the derivative of the acceleration

ȧ [to order O(V 6)], and so on. The Euler–Lagrange equations then are (see Book 1, Section 8.1) ∂L
∂z

− d
dT

∂L
∂V

+
d2

dT2
∂L
∂a

− d3

dT3
∂L
∂ȧ

· · · = 0. At this stage they can be iterated so as to reduce them to second-order differential

equations, and it can be verified that they are identical, with the reaction force excluded, to the equations of
motion obtained directly from the Lorentz equation using the method of Section 20.3.
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Lorentz invariance of the equations of motion

Let us consider two different paths in an inertial frame S, zi(T ) and z̃i(T ), which are related
as (V0 is a constant)

z̃1(T ) =
z1(T ′) + V0T

′
√

1− V 2
0

, T =
T ′ + V0z

1(T ′)
√

1− V 2
0

, z̃2 = z2(T ′(T )), z̃3 = z3(T ′(T )) .

This relation between z̃i and zi can be interpreted as follows. If X ′i = zi(T ′) are the equations
of a world line in the frame S ′, then Xi = z̃i(T ) will be its equations in the frame S moving
with velocity −V0 along the X ′ axis. If the paths z̃i(T ) and zi(T ) are close to each other, we will
have T ∼ T ′ +V0z

1, z̃1 ∼ z1 − (V0z
1)V 1 +V0T , and z̃2 ∼ z2 − (V0z

1)V 2. Therefore, generalizing
to a Lorentz transformation of velocity βi in any direction and setting δzi ≡ z̃i(T )− zi(T ), we
have

δzi = βiT − (β.z)V i =⇒ δV i = βi − (β.V )V i − (β.z)ai .

The variation of the Darwin Lagrangian (21.5) under such a transformation follows immediately:

δLDarwin =
∑

a

(β.z)(F.V ) +

(
∑

a

∂LDarwin

∂z

)

.β T − d

dT

(∑
(p.V )(β.z)

)
+ P.β .

The first term vanishes if F = 0, that is, if the equations of motion are satisfied to order O(V2).
The second also vanishes because LDarwin(z, z

′) = LDarwin(z − z′), and the third is already in
the form of a total derivative with respect to time, which does not contribute to the equations
of motion. Finally, we are left with the last term, where P is the total momentum. However, as
we saw in (21.9), P is itself a total derivative with respect to time: P i = dGi/dT .

The equations of motion (20.20) and (20.22) are therefore indeed invariant under a Lorentz
transformation.

21.2 Radiation reaction

Up to order O(V 2), the momentum, angular momentum, and energy of a system of two
charges, defined in (21.7), are constant because the equations of motion (20.20) or (20.22)
require that the force F vanish to this order. However, if now we include the reaction force
A3 in the equations of motion, P , M, and E will vary as

dP

dT
=
∑

a

A3,
dM
dT

=
∑

a

z ∧ A3,
dE
dT

=
∑

a

A3.V with A3 =
2q

3

d3 d

dT 3
, (21.11)

where di = qzi + q′z′i is the dipole moment of the system. Then, in particular,

dE
dT

=
2

3

d

dT

(
ḋd̈
)
− 2

3
d̈2 . (21.12)

The first term is zero when averaged over time if the system remains confined (see Sec-
tion 13.5, footnote 5). The second is equal to the dipole power (20.5) radiated to infinity. We
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have therefore established that the radiated energy and the mechanical energy lost by the
system are equal.4

Radiation in the case of Coulomb motion

The motion of two charges q and q′ of masses m and m′ in lowest order in the velocities
reduces to the motion of a charge q of mass μ = mm′/M (with M = m +m′) in the Coulomb
field of a charge q′ located at the origin of the c.m. frame. The equation of motion is [cf. (20.21)]

V̇i = (qq′/μ)(RN i/R2), where RN i is the separation vector and Vi is its time derivative. In this
frame we have zi = (m′/M)RN i and z′i = −(m/M)RN i, and the dipole moment reduces to

di = μ(q/m− q′/m′)RN i. The average mechanical power lost by the system dE/dT = −2d̈2/3,
which, as we just saw, is equal to the radiated dipole power dP 0/dT , then becomes

dE
dT

= −2(qq′)2

3

(
q

m
− q′

m′

)2
1

R4
. (21.13)

In the case of the hydrogen atom where q = −q′ = e, m′ � m, and R = aBohr = e2/(mα2), the
expression reduces to that obtained in (18.27), namely, dE/dT = − 2

3
(m2α8/e2).

If q/m = q′/m′, the dipole term vanishes and the radiated power, which is quadrupolar, is
given by (20.13) (see again footnote 4). An easy calculation using (20.21) as well as qm′2/M2 +
q′m2/M2 = qq′/Q, where Q = q + q′, gives

dP 0

dT
= −2(qq′)4

5μ2Q2

[

4V2 − 11

3
(N .V)2

]
1

R4
.

The problem of the stability of the hydrogen atom

At lowest order in the velocities, the mechanical energy (21.8) of a system of two charges
is the sum of the Newtonian kinetic energies and the electrostatic energy (13.5): E = 1

2
mV 2 +

1
2
m′V ′2 + qq′/R. In the c.m. frame E = 1

2
μV2 + qq′/R, where μ is the reduced mass. If in

addition we limit ourselves to circular motion, we have [cf. (13.16)] V2 = −qq′/(μR). Therefore,
E = 1

2
qq′/R.

The loss of mechanical energy of the system due to the radiation was given in (21.13). We
therefore have

− qq′

2R2
Ṙ = −2(qq′)2

3

(
q

m
− q′

m′

)2
1

R4
=⇒ Tfall =

R3
initial

4(−qq′)(q/m− q′/m′)2
. (21.14)

For the hydrogen atom initially in its Bohr orbit, Rinitial = aBohr, we have Tfall � e2/(4mα6) ≈
1.5×10−11 s. Therefore, the electron would fall onto the proton after about one hundred thousand
orbits if classical electrodynamics still applied to the case where the ratio of the electron action
to the action quantum � is less than 1; cf. (13.34).

4A similar balance can be established in quadrupole order; see (20.13). We find that on average,

dE
dT

= − 1

180

(
d3Dij

dT 3

)(
d3Dij

dT 3

)
,

but the calculations are rather lengthy.
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The lifetime of the Rydberg states

As is well known, the radii R of the electron orbits in the Bohr model of the hydrogen atom
are quantized: R = n2aBohr, where aBohr = e2/(mα2) is the Bohr radius and n is an integer. If
we assume that Rinitial is a Rydberg state for which n � 1, the time ΔT for an electron to fall
from one orbit into another, that is, its lifetime in the state n, is given by (21.14):

ΔT ≈ 6n5 Tfall ,

where we have used the fact that for large n, ΔR3 ≈ 3R2ΔR = 6n5a3
BohrΔn. For example, for

n = 50 we find ΔT = 2.9 × 10−2 s, in good agreement with experiment, as well as with the
criterion for classical electrodynamics to be valid, because the ratio of the electron action to the
action quantum � given in (13.34) in this case is S/� ∼ n � 1.

21.3 The exact equations of motion

The approach we have followed so far in this chapter is not suitable when studying a system
of charges in rapid motion, even though the Lagrange series described in Section 20.3 can in
principle be carried out to any order in the velocities.

To study this general case, we start as in Section 20.3 from the Lorentz equation deter-
mining the motion of a charge q of mass m in the field of the other charges and its own field,
but we now use four-dimensional notation:

m
dUμ

dτ
= qFμνUν , where Fμν = ∂μAν − ∂νAμ and Aμ =

∑

a

qUμ
R

R
. (21.15)

Here Uμ = dzμ/dτ is the 4-velocity of the charge and Aμ is the Liénard–Wiechert potential
R = −lμRUμR, where lμ = Xμ − Xμ

R is the null vector from the observation point Xμ to
the event Xμ

R = Xμ(τR), which is the intersection of the cone with apex Xμ and the charge
world line. We again give the explicit expression (17.16) for the Faraday tensor:

Fμν =
∑

a

{
q

3
[Uμlν − Uν lμ] +

q

2

[
γμlν − γν lμ + (Uμlν − Uν lμ)

(l · γ)


]}

R
, (21.16)

where γμ ≡ dUμ/dτ is the charge 4-acceleration. As before, the Lorentz force [qFμνUν

evaluated at Xμ = zμ(τ)] splits into a self part due to the charge itself and the part due to
the other charges. The self part is the Abraham–Lorentz–Dirac force found in Section 19.1.
To evaluate the other part, we introduce the following quantities (see Fig. 21.1):

ρ ≡ −(zμ − ẑ′μ)Û ′
μ, νμ = −Û ′μ +

zμ − ẑ′μ

ρ
, ω = UμÛ ′

μ, κ = νμU
μ, (21.17)

where ẑ′μ is the intersection of the cone originating at zμ and the world line of the charge
q′, and Û ′μ is the charge 4-velocity. Then the Lorentz equation is written as follows (for the
case of two charges in order to simplify the notation):

mγμ =
2q2

3

(
γ̇μ − γ2Uμ

)
+ qq′ (Wμ + γ̂′ν Wμ

ν )

with Wμ =
κÛ ′μ − ωνμ

ρ2

and Wμ
ν =

1

ρ

[
δμν (ω + κ) + Û ′μ(κνν − Uν)− νμ(Uν + ωνν)

]
.

(21.18)
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L L′

μ

R
Xl
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X
μ
R

zμ

U
μ

zμ

z μ

p, nμ, w, k

ρ, ν μ
, ω, κ

′

z′

′

μ′U

ˆ
ˆ

ˆ

(0)

Fig. 21.1 Geometry of the exact 2-charge problem.

This equation as well as its homologue for the charge q′ is exact and manifestly Lorentz
invariant. It is of third order because it involves the derivative of the acceleration γ̇μ. More-
over, it is hereditary because it depends on the position, velocity, and acceleration of the
other charge at the retarded point ẑ′μ.

Once the ‘hereditary’ equation (21.18) has been reduced order by order following the
steps outlined above to a differential equation which is always manifestly Lorentz invariant
but is an ordinary equation, we can of course expand it in powers of 1/c and recover (20.22).

The ‘predictivization’ of hereditary equations

To transform a ‘hereditary’ equation into an ordinary differential equation, we proceed by
iteration in the coupling constant g quadratic in the charges (g = qq′ or g = q2).

At lowest order (21.18) reduces to mγμ = qq′Wμ +O(g2), from which we find the derivative
of the acceleration γ̇μ to the same order by differentiating Wμ as though the velocities were
constant. This gives

Ẇμ =
1

ρ3

{
Û ′μ [3κ(ω + 1)− 1]− ωUμ − 3νμω(ω + 1)

}
+O(g2) .

This order reduction allows us to replace (21.18) by an equation which is still hereditary, but is
now of second order:

mγμ =
2q2

3
Ẇμ + qq′

(

Wμ +
qq′

m′ W
μ
ν Ŵ ′ν

)

+O(g3) . (21.19)

Making (21.19) a predictive equation consists of getting rid of the retarded arguments in the
second term order by order.

At lowest order (see Fig. 21.1), the retarded point ẑ′ is replaced by the point ẑ′0, the inter-
section of the cone with apex z and the straight line parallel to U ′ with apex at some point z′

of (L′). Equation (21.19) then reduces to

mγμ = qq′Wμ
1 +O(g2), (21.20)

where Wμ
1 is obtained from Wμ given in (21.18) by
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(a) replacing the retarded point ẑ′ by a point z′ of (L′):

ρ → p = −(z − z′) · U ′, νμ → nμ = −U ′μ +
zμ − z′μ

p
, κ → k − (n · U), ω → w = (U.U ′) ;

(b) translating this point z′ to ẑ′0: z
μ − z′μ → zμ − z′μ − λu′μ, with λ such that (zμ − z′μ −

λu′μ)2 = 0, that is, λ = p(1− n) with n2 = 1 + (z − z′)2/p2. Then

Wμ
1 =

1

p2n3

[

−w
nμ + kUμ

n
+

k

n

(
U ′μ + wUμ)

]

. (21.21)

In the next order we perform the same operations (a) and (b) on Ŵ ′ν and Wμ
ν . As for the

quantity Wμ, it is calculated by replacing the retarded point ẑ′ by the point ẑ′1, the intersection
of the cone with apex zμ and the curve with apex z′ obtained assuming that the acceleration is
equal to W ′μ

1 . This gives5

Wμ = W ′μ
(1) + p(1− n)

∫ 1

0

dλS
[

W ′ν
(1)

∂Wμ
(1)

∂U ′ν

]

+O(g3), (21.22)

where S is the operator which translates whatever follows it as6 zμ−z′μ → zμ−z′μ−p(1−n)U ′μ.

*

The methods and results presented in the last part of this book are needed for predict-
ing the motion and radiation of elementary charged particles in particle accelerators and
in astrophysics. Moreover, they reveal the limits of the Maxwell theory, which predicts a
catastrophic instability of matter (which is averted when the Maxwell theory is replaced by
quantum electrodynamics). They also give an indication of how to deal with the problem
of gravitational radiation in relativistic theories of gravity, like the Nordström theory whose
features and limitations were discussed in Chapter 10, and also Einstein’s general theory of
relativity.

5A detailed discussion of predictive mechanics applied to electromagnetism can be found in, for example,
Bel, Salas, and Sanchez (1973).

6If we then change to three-dimensional notation and expand in powers of the velocities, we recover the
equations of motion (20.20) and (20.22), as we should.
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Electromagnetism and differential
geometry

22.1 p-forms and the exterior product

Let us consider1 a
(
0
p

)
-type covariant tensor T constructed on the dual E∗

n of a vector space of

dimension n and basis θi, i = 1, · · · , n. T can be decomposed as T = Ti1i2...ip θ
i1 ⊗θi2 ...⊗θip .

Antisymmetrizing T consists of associating with it the completely antisymmetric tensor Ta as

Ta = T[i1i2...ip] θ
i1 ⊗ θi2 ...⊗ θip , (22.1)

the completely antisymmetric components of which T[i1i2...ip] can be defined by recursion:

T[ij] ≡
1

2!
(Tij −Tji), T[ijk] ≡

1

3!
(Tijk +Tjki+Tkij −Tjik −Tikj −Tkji), and so on. (22.2)

Then, for example,

(θi ⊗ θj)a =
1

2
(θi ⊗ θj − θj ⊗ θi)

(θi ⊗ θj ⊗ θk)a =
1

3!
(θi ⊗ θj ⊗ θk + θj ⊗ θk ⊗ θi + θk ⊗ θi ⊗ θj

−θj ⊗ θi ⊗ θk − θi ⊗ θk ⊗ θj − θk ⊗ θj ⊗ θi) .

(22.3)

Completely antisymmetric tensors of the type
(
0
p

)
are called p-forms or forms of degree p.

They form a subspace, denoted ΛpE∗
n, of the ensemble of tensors of the type

(
0
p

)
constructed

on E∗
n. This subspace is invariant under a change of basis and has dimension Cp

n = n!
(n−p)!p! .

The maximum dimension of a p-form is therefore p = n. If, for example, the dimension of
E∗

n is 3, the dimensions of the spaces of 0, 1, 2, 3-forms are respectively 1, 3, 3, 1.
The exterior product (or wedge product) of a p-form α and a q-form β is a (p+ q)-form

defined as

α ∧ β ≡ (p+ q)!

p!q!
(α⊗ β)a . (22.4)

For example, the exterior product of two 1-forms θi and θj is the 2-form

1See Book 1, Chapters 2 and 3 for an introduction to the notions of vector and differential geometry used
here. A colorful introduction to differential geometry can be found in Misner, Thorne, and Wheeler (1973),
Chapter 4. A more comprehensive treatment is given in Choquet-Bruhat, DeWitt-Morette, and Dillard-Bleick
(1977).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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θi ∧ θj = 2(θi ⊗ θj)a . (22.5)

The exterior product possesses the following properties:

(c1 α+ c2 β) ∧ γ = c1 α ∧ γ + c2 β ∧ γ, (α ∧ β) ∧ γ = α ∧ (β ∧ γ),

α ∧ β = (−1)pqβ ∧ α ,
(22.6)

where p and q are the degrees of the forms α and β, and c1 and c2 are constants. For example,
we have that the exterior product of three 1-forms θi, θj , and θk is the 3-form

θi ∧ θj ∧ θk = 3! (θi ⊗ θj ⊗ θk)a . (22.7)

If θi is a basis of E∗
n, the natural basis of the space ΛpE∗

n of p-forms is θi1 ∧ θi2 ...∧ θip , with
i1 < i2... < ip. Any p-form α can therefore be decomposed as

α =
1

p!
αi1i2...ip θ

i1 ∧ θi2 ... ∧ θip , (22.8)

where the θi are not ordered, so that its components in the ordered θi basis are the ordered
antisymmetric part of 2 αi1i2...ip .

The ensemble of all the forms is the space Λ∗(En) = ⊕n
p=0Λ

pE∗
n. The exterior product

supplies this ensemble with a structure called a graded algebra or a Grassmann algebra.

22.2 The dual of a p-form

Let us consider a vector space En supplied with a Euclidean metric e or a Minkowski metric
�, and let us require that the basis θi of the dual E∗

n be (pseudo-)orthonormal, that is, that
e = δij θ

i ⊗ θj or � = ηij θ
i ⊗ θj . This metric can serve as an index raiser and establishes a

bijective map between the vectors of En and the forms of E∗
n.

Let us take a p-form α = 1
p!αi1...ipθ

i1 ∧ ...θip . Its dual is the (n − p)-form ∗α (where ∗

denotes the Hodge operator), defined as

∗α =
1

(n− p)! p!
ei1...ipip+1...inα

i1...ip θip+1 ∧ ...θin , (22.9)

where ei1...in is the Levi-Civita symbol of order n, and the indices have been raised using
the metric, which has components ηij or δij (here the θi are not ordered). As an example
we consider the Euclidean case and n = 3. The dual of the 0-form 1 is θ1 ∧ θ2 ∧ θ3, the dual
of the basis 1-form θ1 is θ2 ∧ θ3, the dual of the 2-form θ1 ∧ θ2 is θ3, and finally the dual of
θ1 ∧ θ2 ∧ θ3 is 1. In four dimensions and for Minkowski metric we have

∗(θ0 ∧ θ1) = −θ2 ∧ θ3, ∗(θ0 ∧ θ2) = +θ1 ∧ θ3, ∗(θ0 ∧ θ3) = −θ1 ∧ θ2,

∗(θ1 ∧ θ2) = +θ0 ∧ θ3, ∗(θ1 ∧ θ3) = −θ0 ∧ θ2, ∗(θ2 ∧ θ3) = +θ0 ∧ θ1,
(22.10)

or ∗(θi ∧ θj) = 1
2e

ij
kl(θ

k ∧ θl).

2Therefore, for example, a 2-form with n = 3 is written as α = 1
2
(α12θ1 ∧ θ2 + α21θ2 ∧ θ1 + ...) =

1
2
(α12 − α21)θ1 ∧ θ2 + 1

2
(α13 − α31)θ1 ∧ θ3 + 1

2
(α23 − α32)θ2 ∧ θ3 ≡ α|[ij]|θ

i ∧ θj , where α|[ij]| is the

antisymmetrized and ordered (i < j) part of αij .
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We can easily convince ourselves that if p is the degree of the form α, n is the dimension
of the space, and sign g is the metric signature of this space (+1 for a Euclidean space, −1
for a Minkowski space), then

∗∗α = (−1)p(n−p)(sign g)α . (22.11)

The exterior product and the vector product

The Hodge operator can be used to relate the exterior product and the vector product. We
recall that in Euclidean geometry in n = 3 dimensions, the vector product of two vectors v and
w which are decomposed as v = vjhj and w = wkhk on a basis hi of En is v ∧ w ≡ eijkv

jwkhi.

Using the Euclidean metric with components δij to raise indices, we can associate with this
vector v ∧ w the form eijkv

jwkθi, where θi is the dual form of hi: θ
i(hj) = δij . This form is

nothing but the dual of the exterior product of the forms vj θ
j and wk θ

k associated by raising
the indices of the vectors v and w.

22.3 The exterior derivative

The exterior derivative is an operator, denoted d, which acts on a p-form to give a (p + 1)-
form and possesses the following defining properties: if f is a 0-form, df(t) = t(f) (where t
is a vector of En), which coincides with the definition of differential 1-forms3 (see Book 1,
Section 4.2). Moreover, d(α + β) = dα + dβ, where α and β are forms of the same degree.
Finally,

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ and d2 = 0, (22.12)

where p is the degree of α.
This definition requires only the introduction of a vector space En (from which we con-

struct its dual, and then its tensor products whose forms are the elements). However, if our
building block is a (pseudo-)Euclidean space, we can introduce the natural bases ∂

∂Xi and
dXi associated with the Cartesian coordinates Xi, and then the exterior derivative is defined
simply as follows: if α = 1

p!αi1i2...ipdX
i1 ∧ ...dXip is a p-form, its exterior derivative is

dα = ∂lαi1i2...ipdX
l ∧ dXi1 ∧ ...dXip , (22.13)

which can be shown to possess all the properties in (22.12). The last property, called the
Poincaré lemma, is therefore an immediate consequence of (22.13):

d(dα) = ∂2
p lαi1i2...ipdX

p ∧ dX l ∧ dXi1 ∧ ...dXip = 0

owing to the symmetry of the second derivatives.
A form α whose exterior derivative is zero (dα = 0) is termed closed. A form α which

is the exterior derivative of a form β (α = dβ) is termed exact. An exact form is closed.
Reciprocally, if a p-form is closed, then it is (at least locally) exact, that is, if α is such that
dα = 0, then there exists a (p− 1)-form β such that locally α = dβ.

3In other words, the action of the 1-form df on the vector t gives the same result as the action of the
vector t on the function f .
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When a metric is available, it is possible to define another derivative operator, the codif-
ferential, denoted δ, which acts on a form α as

δα = −(sign g)(−1)n(p+1) ∗d∗ α , (22.14)

where sign g is the metric signature, n is the spatial dimension, p is the degree of the form
α, and ∗ is the Hodge operator defined in (22.9). Since the operation ∗∗ is essentially the
identity [see (22.11)] and owing to the Poincaré lemma (d2 = 0), we have

δ2 = 0 . (22.15)

22.4 A rewriting of the Maxwell equations

The exterior calculus can be used to obtain a compact and elegant formulation of Maxwell’s
equations. We have seen that in a system of Minkowski coordinates Xμ (μ = 0, 1, 2, 3) they
can be written as (see Sections 12.1 and 12.3)

Fμν,ρ + Fνρ,μ + Fρμ,ν = 0 , Fμν
,ν = 4πjμ, (22.16)

where Fμν is the Faraday tensor Fμν ≡ Aν,μ − Aμ,ν ≡ ∂μAν − ∂νAμ, with Aμ the potential
and jμ the current vector, and the indices are raised using the coefficients of the inverse
metric ημν .

The potential is a 1-form, A = AμdX
μ. The Faraday tensor is a 2-form, the exterior

derivative of A:
F = dA . (22.17)

We indeed have4 dA ≡ ∂μAν dX
μ ∧ dXν = 1

2 (∂μAν − ∂νAμ)dX
μ ∧ dXν ≡ 1

2FμνdX
μ ∧ dXν

≡ F ; cf. (22.13) and (22.8).
Since the Faraday tensor is an exact form, it is closed, that is,

dF = 0 , (22.18)

which is just the first group of Maxwell’s equations. Indeed,

0 = dF =
1

2
∂ρFμν dX

ρ ∧ dXμ ∧ dXν = (∂0F12 + ∂1F20 + ∂2F01)dX
0 ∧ dX1 ∧ dX2 + ...

The second group of Maxwell’s equations is written as

d∗F = 4π(∗j) . (22.19)

Indeed,

F = F01 dT ∧ dX + ...+ F12 dX ∧ dY + ..., ∗F = −F01 dY ∧ dZ + ...+ F12 dT ∧ dZ + ...,

where we have used (22.10). From this we have

4This ‘Cartan’ formulation then leads to considering the form A = AμdXμ as the fundamental object of

electromagnetism rather than the vector associated with it by ‘raising an index’ Aμ ∂
∂Xμ .
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d∗F = ∂0F
01 dT ∧ dY ∧ dZ + ∂1F

01 dX ∧ dY ∧ dZ + ...

from applying the definition (22.13) or, regrouping the terms,

d∗F = ∂νF
0ν dX ∧ dY ∧ dZ − ∂νF

1ν dT ∧ dY ∧ dZ + ...

As for the quantity ∗j, it is given by

∗j =
1

6
eμνρσj

μ dXν ∧ dXρ ∧ dXσ = j0dX ∧ dY ∧ dZ − j1dT ∧ dY ∧ dZ + ...

Q.E.D.5

Taking the dual of (22.18) and (22.19), we obtain an equivalent formulation of the Maxwell
equations:

δ∗F = 0 , δF = 4πj . (22.20)

Since δ2 = 0 we have

δj = 0 , (22.21)

which corresponds to the law of current conservation ∂μj
μ = 0. Indeed,

δj = −∗d∗j = −∗d(j0dX ∧ dY ∧ dZ − j1dT ∧ dY ∧ dZ + ...)

= −∗(∂0j
0dT ∧ dX ∧ dY ∧ dZ − ∂1j

idX ∧ dY ∧ dZ ∧ dT + ...)

= −∂μj
μ ∗(dT ∧ dX ∧ dY ∧ dZ) = ∂μj

μ.

22.5 Differential operators and the exterior derivative

The gradient of a function, ∇f , is the vector associated with the differential form df by the
metric (see Book 1, Section 4.6):

∇f = ∂if
∂

∂Xi
, df = ∂if dXi . (22.22)

Equation (22.21) indicates in addition the relation between the divergence of a vector and
the codifferential of a 1-form:

∇ .

(
vi

∂

∂Xi

)
= ∂iv

i, δ(vidX
i) = −∂iv

i . (22.23)

In Section 22.2 we also saw the relation between the vector product and the dual of the
exterior product. In n = 3 dimensions and for a Euclidean metric, it can also be shown

5It is clear that here j is a 4-vector and not a 3-vector as in Section 12.3, eqn (12.16).
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that the curl of a vector v, ∇ ∧ v, is the vector version of the dual of the differential of the
associated 1-form. We have

∇∧
(
vi

∂

∂Xi

)
= (∂Y v

Z − ∂Zv
Y )

∂

∂X
− (∂XvZ − ∂Zv

X)
∂

∂Y
+ (∂XvY − ∂Y v

X)
∂

∂Z
,

∗d(vi dX
i) = (∂Y v

Z − ∂Zv
Y )dX − (∂XvZ − ∂Zv

X)dY + (∂XvY − ∂Y v
X)dZ .

(22.24)
The Laplacian of a function f can be defined in two equivalent ways:

�f = ∇ .∇f = ∂i∂
if , δdf = −∂i∂

if . (22.25)

Finally, the Laplacian (also called the Laplace–Beltrami operator) can be generalized as
� ≡ δd + dδ, which is then referred to as the Laplace–de Rham operator.

22.6 Integration and the Stokes theorem

Let E be a vector space of dimension n, supplied with a Euclidean metric e or a Minkowski
metric �, and let (ei) be an orthonormal basis of E (of dual basis εi), that is, e = δij ε

i ⊗ εj

or � = ηij ε
i ⊗ εj . Let us consider the n-form ε1 ∧ ε2 ∧ ... ∧ εn ∈ ΛnE∗. If (e′i) [respectively

(ε′i)] is another orthonormal basis, we have ε′1 ∧ ... ∧ ε′n = detΛ ε1 ∧ ... ∧ εn, where Λ is the
matrix taking us from the old basis to the new one. Now, detΛ = ±1. We can eliminate this
ambiguity in the sign by restricting ourselves to the ensemble of direct bases, and thus define
the element of the oriented volume as

ω = ε1 ∧ ... ∧ εn (22.26)

by taking the direct basis (ei). Now if (hi) is any direct basis with dual basis (θi), we have

ω =
√

det(gij) θ
1 ∧ ... ∧ θn, (22.27)

where g = gijθ
i ⊗ θj (with g ≡ e or g ≡ �). Indeed, if P is the matrix taking us from

(ei) to (hi), then gij = g(hi, hj) = P k
i P

l
jg(ek, el) =

∑
k P

k
i P

k
j , and therefore det(gij) =

det(P tP ) = (detP )2.
This definition can be extended to metrics g = gij(x

k)dxi ⊗ dxj , and we can thus define
the integral of a function f(xk) over an open domain Ω as an elementary integral:

∫

Ω

f(xk)ω≡
∫

Ω

f(xk)
√
det(gij) dx

1 ∧ ... ∧ dxn=

∫

Ω

f(xk)
√

det(gij) dx
1...dxn . (22.28)

Now let α = 1
p!αi1...ipdX

i1 ∧ ...dXip be a p-form decomposed on the natural basis of 1-

forms dXi associated with the (pseudo-)Euclidean coordinates Xi of a (pseudo-)
Euclidean space of dimension n. Let us consider a hypersurface S of dimension p in this
space. It can be defined by the parametric equations Xi = Xi(λ1, ..., λp). Substituting
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dXi = ∂Xi

∂λj dλ
j into the expression for α, we obtain its restriction to Σp, which is a dif-

ferential form of order p in a space of dimension p, and is therefore of maximum degree6:
a(λi)dλ1 ∧ ... ∧ dλp. We then define the integral of α on S as the elementary integral

∫

S

α ≡
∫

S

a(λi)dλ1...dλp . (22.29)

This allows us to assign an operational meaning to the Stokes theorem:

∫

V

dα =

∫

S

α , (22.30)

where, if α is a p-form, S is the hypersurface of dimension p bounding the volume V of
dimension (p+1). The Gauss theorem is a special case of the Stokes theorem corresponding
to p = n− 1, where n is the dimension of the space.

6For example, if n = 3 (Xi = {X,Y, Z}) and α is a 2-form, we have a(λ1, λ2) = 2(α[12]∂[1X∂2]Y +

α[13]∂[1X∂2]Z + α[23]∂[1Y ∂2]Z), where ∂i = ∂/∂λi.
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PART IV FRIEDMANN–LEMÂıTRE SOLUTIONS AND COSMOLOGY

17 Cosmological spacetimes 591
17.1 Maximally symmetric spaces 591

Box. The Copernican and cosmological principles 591
17.2 Spacetimes with homogeneous and isotropic sections 593
17.3 Milne spacetime 594
17.4 de Sitter spacetime 595

Box. Foliations of de Sitter spacetime 596
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Part I

Curved spacetime and gravitation

There was difficulty reconciling the Newtonian theory of gravitation with its instantaneous
propagation of forces with the requirements of special relativity; and Einstein working on
this difficulty was led to a generalization of his relativity—which was probably the greatest
scientific discovery that was ever made.

P. A. M. Dirac, cited by S. Chandrasekhar in J. Astrophys. Astr., Vol. 5, 3 (1984)
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1

The equivalence principle

In this introductory chapter we recall several relevant aspects of Newton’s theory of gravity, as well
as Maxwell’s theory of electromagnetism, in order to describe the conceptual path that Einstein
followed in going from the theory of special relativity to general relativity.

1.1 A ‘general’ relativity

Physicists of the 19th century sought to measure the speed of the Earth relative to the
medium in which light propagates, the aether, which was at that time viewed as the incar-
nation of the absolute space of Newton. This is analogous to determining the velocity of an
airplane relative to the ground by measuring the speed of sound from the plane (assuming
that the amount of atmospheric drag due to the wake is known). This endeavor turned out
to be fruitless: the speed of light was c relative to the reference frame where both the solar
system and the aether were at rest (as indicated by stellar aberration), and it was also c
relative to the Earth, as shown by the Michelson–Morley experiment.1 As summarized by
Henri Poincaré,2 “It seems at first sight that the aberration of light and the related optical
and electrical phenomena will provide us a means of determining the absolute motion of the
Earth, or rather its motion, not in relation to the other stars, but in relation to the ether.
Fresnel had already tried it. . . , Michelson. . . failed as well.

It seems that this impossibility of demonstrating an experimental evidence for absolute
motion of the Earth is a general law of nature. . . .”

It was therefore necessary to make more and more hypotheses regarding the ‘electro-
dynamics of moving bodies’ (such as the Lorentz–Poincaré ‘fictitious’ time, the FitzGerald–
Lorentz contraction, and so on) in order to make the Lorentz and Maxwell equations, respect,
within the framework of Newtonian physics, this impossibility of distinguishing the reference
frame in which the aether is at rest (see, for example, Book 2, Sections 11.3 and 12.3). Ein-
stein, in pondering the concept of time, showed that it was possible to reconcile the observed
constancy of the speed of light in all inertial frames and the dynamical equivalence of these
frames by means of a law relating velocities, under the condition that electromagnetism
and mechanics be formulated within the framework of a new representation of space and
time: special relativity. Thus, in 1905 the concepts of absolute space and the aether filling it
retreated to limbo (see Book 2, Chapter 1).

1See, for example, Book 1, Chapter 17 and Book 2, Chapter 1.
Everywhere in what follows we shall set c = 1 as in Book 2, at the beginning of which a Note on the Units

can be found. Greek indices run from 0 to 3, and Latin ones from 1 to 3 (or n). The metric signature is
chosen to be (−1,+1,+1,+1).

2See Poincaré (1906).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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However, the class of inertial reference frames remained privileged, as it is only in such
frames that free particles can be at rest, thus allowing the reference frame to be determined,
while also making it possible to see that such a particle is not subject to a force. In any other
frame particles are accelerated, and can only be held at rest by the action of forces, that is,
inertial forces, which indicate only that the frame with which their motion is associated is
not an inertial frame. Such forces of inertia act as a sort of ‘call to order’ to the cohort of
Galilean frames associated with the ‘phantom’ corresponding to absolute space. One might
therefore be dissatisfied with ‘this actor who remains in the shadows, who acts on matter
without in turn being acted upon by it’.3

From 1907 on, the ambition of Einstein was to construct a theory in which all reference
frames (and therefore none) were privileged, where there were no longer any inertial forces,
no ordering of absolute space, and where, therefore, the laws of physics had the same form
in all frames, inertial or not, so that no frame could be regarded as being privileged. In brief,
he sought a theory of general relativity.4

This idea has several aspects. The first, called general covariance,5 consists of writing the
laws of dynamics in such a way that they preserve their form (that is, they are ‘invariant’)
under a general change of coordinates. For example (as we have seen in Book 2, Section 6.2),
in any frame, inertial or not, the equation of motion of a particle of mass m and velocity
4-vector u with components uμ = dxμ/dτ in the coordinates xμ [xμ = xμ(τ) is the particle
world line and τ is its the proper time] is written as

m
D̃uμ

dτ
= fμ ⇐⇒ duμ

dτ
+ Γ̃μ

νρu
νuρ =

1

m
fμ , (1.1)

where the Christoffel symbols Γ̃μ
νρ characterizing the covariant derivative D̃ are determined

by the coordinate system, that is, the chosen reference frame, and F is a contravariant vector
describing the force (with components fμ in the coordinates xμ) acting on the particle.

Even though it is mathematically elementary within the framework of special relativity,
where the time and space coordinates have the same status, this covariant formulation of the
law of dynamics nevertheless has the interesting corollary (as we have stressed in Book 2,
Section 5.3) of explicitly displaying the geometrical origin of the inertial forces: the noninertial
nature of the reference frame is encoded in the Christoffel symbols Γ̃μ

νρ, that is, in geometrical
quantities.

A second facet of the principle of general relativity, of much richer content, is the attempt
to assign a geometrical origin to all forces—inertial forces and actual forces, that is, to
somehow absorb the vector F in an operator D, as mentioned in Book 2, Section 10.4. Then
all forces would be manifestations of the geometry, and all motion would be free, but taking
place in a spacetime which is geometrically more complex than the spacetimes considered up
to now. We know that in 1915 Einstein succeeded in doing this for the gravitational force,
but the other forces are still resisting. . . .

3Gilles Châtelet in Les enjeux du mobile [Châtelet (1993)]; translation by PFM.
4Ist es denkbar, dass das Prinzip der Relativität auch für Systeme gilt, welche relativ zueinander beschleu-

nigt sind? (Is it conceivable that the principle of relativity also holds for systems that are accelerated relative
to each other?). Jahrb. Rad. Elektr. 4, 411 (1907), cited in Pais (1983).

5Or indifference, to use the term of T. Damour; see Damour (2005).
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1.2 The equivalence principle

The tool that Einstein used to ‘break into’ absolute spacetime and extract gravitation5 was
the curious fact that all bodies fall in the same way in a gravitational field (see, for example,
Book 1, Section 11.1).

Newtonian mechanics treats this fact as a fortuitous equality of gravitational and inertial
mass. However, as Einstein revealed, this equality is not accidental. The acceleration of a free
particle arising when its motion is attributed to use of a noninertial reference frame depends
only on the motion of the frame, and not on the intrinsic properties of the particle such as
its inertial mass. Therefore, all bodies ‘fall’ in the same way in an inertial field, just as in a
gravitational field.

This similarity led Einstein to postulate the equality of inertial and gravitational mass,
and to propose that inertial forces and gravitational forces are identical. This is the equiva-
lence principle.6

This principle also has various aspects. First, since inertial forces are essentially geo-
metrical, gravitation should be also (and therefore it should be possible to ‘encode’ it in
the Christoffel symbols of a covariant derivative; see, for example, Book 2, Section 10.4).
Moreover, it implies that an acceleration can simulate a gravitational field: for example, the
observation of a frequency shift when a frequency is measured in an accelerated reference
frame (for example, the Rindler frame; see Book 2, Section 5.2) can legitimately be attributed
to a gravitational field rather than kinematical effects associated with the frame motion. Re-
ciprocally, an actual gravitational field (for example, that of the Earth or the Sun) can be
effaced by an acceleration: in a reference frame in ‘free’ fall and therefore accelerated rel-
ative to distant inertial frames, the gravitational field can legitimately be ignored because
co-moving particles, that is, particles which are also in free fall, undergo uniform rectilinear
motion, so that the reference frame is de facto inertial.7

An interesting corollary of this principle is that it clearly demonstrates that the concept
of a free particle (at least with regard to gravitation) is not very meaningful. For example,
particles ‘attracted’ by the Sun are ‘free’ in the frame which is moving along with them,
which is a contradiction in terms. However, the definition of an inertial frame is based on
the concept of a free particle. If no particle is free or if they are all free, the entire class of
inertial frames then also retreats to limbo.

1.3 A mosaic of pieces of M4

The equivalence principle stipulates that any gravitational field can be effaced. Let us see
what precisely this means.

The inertial forces to which free particles must be subjected in order for them to remain
at rest in an accelerated reference frame become (by definition) unnecessary when we pass to

6“Der glücklichste Gedanke meines Lebens”, Einstein (circa 1920).
7“I was sitting on a chair in the patent office in Bern when all of a sudden a thought occurred to me:

‘If a person falls freely he will not feel his own weight.’ I was startled. This simple thought made a deep
impression on me. . . . ”

“. . . for an observer falling freely from the roof of a house there exists—at least in his immediate
surroundings—no gravitational field. Indeed, if the observer drops some bodies then these remain relative to
him in a state of rest or of uniform motion . . . . The observer therefore has the right to interpret his state as
‘at rest’.” Albert Einstein, 1907, in Fundamental Ideas and Methods of Relativity (the Morgan Manuscript),
cited by A. Pais (1982), pp. 178–179.
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an inertial frame. Their disappearance is global in the sense that in the new, inertial, frame,
all these particles undergo simple uniform rectilinear motion forever.

On the other hand, in a freely falling frame the gravitational field does not completely
vanish: two particles initially at rest remain at rest and their separation remains fixed, but
only for a certain length of time which is the shorter the more precise the measurements.
The distance between the particles actually decreases little by little because Newton’s force
makes their trajectories converge toward the center of gravity of the body attracting them.
Therefore, the ‘effacement’ property is only local: at any instant of time, in any place, there
exist reference frames in which the gravitational field can be ignored, where the particles can
be considered to be at rest, but these frames depend on the place and the time.

We are thus led to represent the spacetime framework in which the laws of gravity are
formulated as a ‘mosaic of small pieces of Minkowski spacetime’.5 In each piece, that is,
locally, in each ‘tangent’ inertial frame, spacetime is quasi-Minkowskian, gravity can be
ignored, and it can be postulated that all the results of special relativity are valid there.
This is the principle of local relativity.8

1.4 The reference ‘mollusk’

Newtonian mechanics postulates the existence of material trihedra or solids for which the
spatial separations of the constituents (measured using rigid rulers) are constant, and whose
axes remain orthonormal throughout the motion. Such trihedra can (in principle) serve as
global reference frames which impose a grid on all space, making it possible to test the laws
of mechanics written in any accelerated frame obtained from the absolute frame by a rigid
displacement. (And if the laws of mechanics are found not to be valid, it is a priori because
the solid is distorted owing to inertial forces acting on it!)

On the other hand, in special relativity, solid bodies, global reference frames which impose
a grid on all space, de facto materialize only inertial frames. The reason is simple. As we have
seen in Book 2, Section 5.1, the passage to an accelerated frame is performed by a nonlinear
change of coordinates involving the time, a transformation for which it would be unnecessarily
restrictive to require that it preserve the orthogonality of the spatial axes (see, for example,
Book 2, Section 5.4). Since, in addition, the equivalence principle robs inertial frames of
their privileged status, the concept of a rigid reference body was ultimately abandoned by
Einstein.9

In general relativity, spacetime thus becomes a simple continuum, an ensemble of events
differentiated by their labeling in some reference frame. We can, for example, imagine this
continuum and its reference mollusk as an ocean populated by bathyscaphes connected by
ropes, whose relative motions are measured using the times of clocks undergoing arbitrary
motion. In the vicinity of each point it is, however, possible to pass from this ‘mollusk’ to the

8It is also sometimes called the Einstein equivalence principle, while the identification of gravitational
mass with inertial mass is, in contrast, called the weak equivalence principle.

9“In gravitational fields there are no such things as rigid bodies with Euclidean properties; thus the
fictitious rigid body of reference is of no avail in the general theory of relativity, . . .

For this reason non-rigid reference-bodies are used which are as a whole not only moving in any way
whatsoever, but which also suffer alterations in form ad lib. during their motion (. . . ). This non-rigid reference-
body, which might appropriately be termed a ‘reference-mollusk,’ is in the main equivalent to a Gaussian
four-dimensional co-ordinate system chosen arbitrarily.” Einstein (1954).
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local ‘grid’ of Minkowskian coordinates of the bathyscaphe, that is, to pass to a momentarily
inertial frame in free fall, the tangent space.

1.5 A curved spacetime

In Newtonian physics, physical space is represented by an ‘absolute’ Euclidean space. In
general relativity, space and time are represented by a manifold, a continuum of points p
labeled by four coordinates xμ which locally reduce to Minkowski spacetime, as we have seen
above.

A manifold10 contains much less structure than a Euclidean space because, while geomet-
rical quantities like vectors, tensors, and so on can be defined locally on a manifold (that is,
they can be defined on the space tangent to a given point of the manifold), the concepts of
parallelism and distance are not a priori defined on it.

To be able to compare quantities at different points and relate different pieces of M4

(that is, the tangent spaces) to each other, it is necessary to add an additional structure to a
manifold. The role of a connection is to define the parallel transport of tensors. In particular,
a connection makes it possible to construct auto-parallel curves (that is, the ‘straightest’ lines
possible) of a manifold in the following way. If the world lines of such curves are p = p(λ) or,
in coordinates, xμ = xμ(λ), and if u = dp/dλ (⇔ uμ = dxμ/dλ) are their tangent vectors,
they satisfy the equation

duμ

dλ
+ Γμ

νρ u
νuρ = 0 , (1.2)

where the 64 connection coefficients Γμ
νρ (which are not necessarily symmetric in ν and ρ) are

a priori arbitrary functions of the coordinates. As we have shown in Book 2, Section 5.3, if by
a simple change of coordinates the connection coefficients can be made to vanish everywhere
(which implies that they can be expressed in terms of only four functions of the coordinates),
then the manifold is termed flat; otherwise, it is curved.

Now, in order to be able to compare at two significantly different times the distances
between two particles and infer, for example, the existence of a central mass attracting them,
a metric structure defining the concept of distance must also be introduced. This is themetric
tensor, which defines the length element as

ds2 = gμν dx
μ dxν , (1.3)

where the 10 functions gμν (symmetric in μ and ν) are a priori arbitrary. The specification
of a metric makes it possible to define geodesics, that is, curves of extremal length. In the
neighborhood of each point the coefficients gμν can be reduced by a change of coordinates
to the coefficients ημν of the Minkowski metric, but in general it is not possible to do this
globally (it only becomes possible if they can be expressed using only four functions; see, for
example, Book 2, Section 5.3).

The concepts of parallelism and distance are conceptually distinct, but any metric can
define a Levi-Civita connection. In this case, the 40 (symmetric) connection coefficients are

10It was in August 1912 that Einstein decided to represent spacetime by a space richer than Minkowski
space. He called on his mathematician friend Marcel Grossmann for help, and thus was introduced to Rie-
mannian geometry.
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referred to as Christoffel symbols and are expressed as a function of the 10 metric components
as (cf. Book 1, Section 3.4 or Book 2, Section 5.3)

Γμ
νρ =

1

2
gμσ
(
∂gρσ
∂xν

+
∂gνσ
∂xρ

− ∂gνρ
∂xσ

)
. (1.4)

Auto-parallels and geodesics then become the same object. A manifold thus supplied with a
metric and its associated Levi-Civita connection is a (pseudo-)Riemannian manifold (‘pseudo’
because the metric must reduce locally to ημν rather than to δμν).

It is such pseudo-Riemannian manifolds which represent space and time in general rela-
tivity.11 A space of this type is curved in the sense that the auto-parallels intersect each other
(cf. the trajectories of ‘free’ particles in a co-moving reference frame, which come together
at the gravitational center). In the special case where the spacetime is flat, there exists a
global Minkowski reference frame (that is, all the ‘little pieces’—the tangent spaces— can be
‘glued’ back together).

In general relativity, as in special relativity, the metric is a structure defined on spacetime.
However, whereas in special relativity this structure, which may reduce to ημν , is imposed
a priori, in general relativity it is a physical quantity determined by the mass distribution.
Therefore, in general relativity spacetime is not a passive receptacle of matter.

This is the form given by Einstein to a set of ideas promoted by Ernst Mach, the most
relevant of which are (a) the inertia of a particle must be due to its interaction with all the
masses of the universe, and (b) space has no existence in itself, independently of matter.

We see that while general relativity does incorporate in a certain manner the first idea
(since forces of inertia and gravitation are no longer distinguishable), it does not include the
second. Indeed, in the absence of matter, spacetime does not reduce to ‘nothing’, but rather
to Minkowski spacetime. Therefore, Einstein did not completely realize his ambition.12

1.6 Gravitational redshift

In 1907, and again in 1911, Einstein illustrated the richness of the concepts of general rela-
tivity by a famous gedankenexperiment or thought experiment, which we shall discuss here
using the calculations of Book 2, Section 5.2.

Let us consider, in an inertial reference frame (T,Z), a ‘Rindler tower’ of length h accel-
erated along the Z axis, that is, two hyperbolas with ‘ground floor’ given by gT = sinh gτ ,
gZ = cosh gτ and ‘top floor’ by ghT = sinh ghτ , ghZ = cosh ghτ , with h = 1/gh−1/g. As we
saw in Book 2, Section 5.2, light signals emitted at time intervals Δτ from the ground floor
of the tower will be measured at the top floor at intervals of13

11A more detailed introduction to the spacetimes of general relativity along the lines we follow here can
be found in Schrödinger (1950).

12“I was hoping to show that space-time is not necessarily something to which one can ascribe a separate
existence, independently of the actual objects of physical reality. Physical objects are not in space, but these
objects are spatially extended. In this way the concept ‘empty space’ loses its meaning. (. . . ) There is no
such thing as an empty space, i.e., a space without field. Space-time does not claim existence on its own, but
only as a structural quality of the field. Descartes was not so far from the truth when he believed he must
exclude the existence of an empty space.” Einstein (1954).

13It is easily shown that when we limit ourselves to first order in gh, the result (1.5) for the ‘rigid’ Rindler
tower will be the same as for a tower where the world lines from the ground floor and top floor are given by,
for example, (gT = sinh gτ , gZ = cosh gτ), (gT = sinh gτ , gZ = cosh gτ +h), or (Z = 1

2
gT 2, Z = 1

2
gT 2+h).
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Δτh = (1 + gh)Δτ . (1.5)

It should be noted that Δτh is the period as observed from the top floor of the tower of the
clock located at its ground floor, and also that if the clock were placed at the top floor, its
signals would have period Δτ , because we have postulated that devices measuring the time
are not affected by their acceleration.

More generally, we have also seen in Book 2, Section 5.2, when calculating the Doppler
effect in an accelerated frame where the tower is at rest, that

Δτh =

√
g00(z = h)

g00(z = 0)
Δτ , (1.6)

where gμν are the coefficients of the Minkowski metric in the accelerated frame and z = 0,
z = h are the world lines of the ground floor and the top floor of the tower in the coordinates
in which the tower is at rest.

The tower is accelerated. However, the equivalence principle stipulates that an accelera-
tion field is (locally) indistinguishable from a gravitational field. The same phenomenon of
time dilation should then arise in a gravitational field, for example, that due to the Earth. In
this case the ground floor of the tower is indeed the ‘ground’ floor and the top floor is its ‘top’,
with h the height. The quantity g will be the acceleration due to the Earth, g ≡ GM⊕/R

2
⊕.

We then find
Δτtop = (1 + gh)Δτ , (1.7)

where we recall that Δτtop is, for example, the period observed from the top of the tower of
an atomic transition occurring at the bottom, and Δτ is the period of this transition, for the
atom at either the bottom or the top of the tower.

Introducing the gravitational potential of the Earth U(h) = −GM⊕/(R⊕ + h), we find
that 1 + gh = 1 + (U0/Uh)(Uh − U0), or in first order in (Uh − U0)/U0,

Δτtop ≈ (1 + Utop − Ubottom)Δτ , (1.8)

which can be generalized to any gravitational potential.
The equivalence principle therefore leads us to identify from (1.8) and (1.6)

g00 ≈ − (1 + 2U) , (1.9)

where U is the Newtonian gravitational potential and the difference of the coefficient g00 from
its Minkowski value is now interpreted as a deformation of spacetime due to gravitation.

The effect (1.7) was measured by Pound and Rebka in 1960. They placed a sample of
radioactive iron at the bottom of a tower of height h = 22.6 m at Harvard University
and observed the frequency of the emitted gamma rays from the top of the tower. The
predicted redshift is (ν − νtop)/ν ≈ (GM⊕/c

2R⊕)(h/R⊕) ≈ 2.47 × 10−15. They measured
(ν − νtop)/ν = (2.57± 0.26)× 10−15.

Einstein had proposed measurement of the gravitational redshift of atomic transitions at
the surface of the Sun, which in principle is much larger, of order 2 × 10−6. However, the
internal motion of the Sun gives rise to kinematical Doppler effects which are difficult to
take into account, and it was only in 1991 that an accurate measurement could be made (by
LoPresto et al.; the result agreed with the prediction to within 2 %).

B
o
o
k
3



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 412 — #424

412 Book 3. Part I: Curved spacetime and gravitation

The currently most accurate measurement is that of Vessot and Levine (1976). They sent
a maser clock to an altitude of 10,000 km, where they measured its frequency. They confirmed
the prediction to within 2×10−4. The atomic clocks of the network defining the International
Atomic Time are not all located at sea level. For example, the clock in Boulder, Colorado is
located at an altitude of 1600 m and gains about 5 microseconds per year compared to the
clock in Greenwich. Since the accuracy of such clocks is currently of order 0.1 microseconds
per year, they must be synchronized to correct for the difference.

The Hafele–Keating and Alley et al. experiments

Mention should also be made of the experiment of Hafele and Keating (1971), who compared
the times of clocks which circled the globe from east to west and then from west to east with the
time measured by a clock at rest on the Earth. A similar experiment was performed by Alley
et al. (1975).

We note, however, that in these experiments it is necessary to include the time dilation due
to the clock motion.

The inclusion of time dilation effects (‘special and general’) is now essential for achieving the
proper functioning of engineering programs comparing the times of atomic clocks undergoing
relative motion, such as clocks located on the Earth and on satellites of the GPS network; see
Section 11.2.

The Minkowski spacetime of special relativity therefore exits the scene.
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Riemannian manifolds

As we have argued in the preceding chapter, ‘absolute, true, and mathematical’ spacetimes represent-
ing ‘relative, apparent, and common’ space and time in Einstein’s theory are Riemannian manifolds
supplied with a metric and its associated Levi-Civita connection, where this metric simultaneously
describes the coordinate system chosen to reference the events, that is, the positions of the matter
elements at a given time, and the gravitational field acting on these elements.

Here we shall introduce the Riemann tensor characterizing curved spacetimes, and then the
metric tensor, which allows lengths and durations to be defined. Finally, we shall discuss Riemannian
manifolds.

2.1 The connection, parallel transport, and curvature

As we saw in our study of Euclidean space in curvilinear coordinates in Book 1, Chapter 3,
the covariant derivative associates a tensor with another tensor defined at the same point
p.1 However, this operation, just like ordinary differentiation, allows, by means of a ‘Taylor
expansion’, a tensor T to be transported parallel to itself from the point p to a nearby point
q, thereby connecting the points p and q.

The parallel transport of a vector ti (here i = 1, ...n) along a curve xj(λ) with tangent
vector uj = dxj/dλ is therefore defined by simple extension of the definition in Euclidean
space:

Dti

dλ
≡ ujDjt

i =
dti

dλ
+ Γi

jku
jtk = 0 , (2.1)

where now the n3 connection coefficients Γi
jk are a priori arbitrary functions of the n coordi-

nates xi. If the components ti are known at λ = λ0, the above differential equation determines
them uniquely for all λ. Similarly, an auto-parallel is a curve such that dui/dλ+Γi

jku
juk = 0.

In (pseudo-)Euclidean space this is the equation of a straight line, because in Cartesian co-
ordinates all the Γ vanish.

Let us parallel-transport the vector of components ti around a closed loop (see Fig. 2.1).
In Euclidean space where there exist (Cartesian) coordinates for which all the Γ vanish, the
integration of (2.1) is trivial and we obtain the well known result that the vector is the same
at arrival as it was upon departure (see Book 1, Section 2.2). This is no longer true in the
general case.

1In Book 1, Chapters 3 and 4 we presented an introduction to curvilinear coordinates and differential
geometry in Euclidean space. Here we recall the transformation law for the components of a tensor under a
change of coordinates xi → x′i (this was given in Book 1, Section 3.1):

T ′ij···
kl··· =

∂x′i

∂xm

∂x′j

∂xn
· · · ∂xp

∂x′k
∂xq

∂x′l · · ·T
mn···
pq··· .

For a more mathematical presentation of Riemannian geometry, see Part V of the present book (Book 3).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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Fig. 2.1 Parallel transport.

Let us suppose that the loop consists of a first segment from p to p1 along the coordinate
line x1, followed by a second segment from p1 to q along the coordinate line x2, a third from
q to p′1 again along the coordinate line x1, and, finally, to close the loop, a segment from
p′1 to p along the coordinate line x2. Equation (2.1) states that the components tipar of this
parallel-transported vector are given implicitly at p1, q, p

′
1, and p by the integro-differential

equations
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tipar(p1) = ti(p)−
∫ p1

p

Γi
1kt

k
pardx

1 , tipar(q) = tipar(p1)−
∫ q

p1

Γi
2kt

k
pardx

2 ,

tipar(p
′
1)= tipar(q)−

∫ p′
1

q

Γi
1kt

k
pardx

1 , tipar(p) = tipar(p
′
1)−

∫ p

p′
1

Γi
2kt

k
pardx

2 ,

(2.2)

so that, exchanging the limits on the last two integrals,

Δti ≡ tipar(p)− ti(p) =

(∫ q

p′
1

−
∫ p1

p

)

Γi
1kt

k
pardx

1 −
(∫ q

p1

−
∫ p′

1

p

)

Γi
2kt

k
pardx

2 . (2.3)

Since the coordinates of the various points are p: xi, p1: x
i + δi1Δx1, q: xi + δi1Δx1 + δi2Δx2,

and p′1: x
i + δi2Δx2, in lowest order we have

Δti = Δx1Δx2
[
∂2(Γ

i
1kt

k
par)− ∂1(Γ

i
2kt

k
par)
]
, (2.4)

or, again using (2.1) (which gives dtkpar = −Γk
ijdx

itj or ∂it
k
par = −Γk

ijt
j
par),

Δti = Ri
j21 t

jΔx2Δx1 , (2.5)

where
Ri

jkl ≡ ∂kΓ
i
lj − ∂lΓ

i
kj + Γi

kmΓm
lj − Γi

lmΓm
kj (2.6)

is the curvature tensor (or Riemann–Christoffel tensor) of the type
(
1
3

)
. It is a tensor because

Δti, the difference of two vectors at the same point, is a vector, as are2 Δx1 and Δx2. We

2It is therefore a useless (and tedious) exercise to prove this directly using the transformation law for the
connection coefficients given in Book 1, Section 3.2 and recalled below in eqn (2.21).
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obtain the same result if we compare at the point q the vectors parallel-transported via p1
for one and via p′1 for the other. We therefore see that only if the Riemann tensor vanishes
is the parallel transport of a vector (or any other tensor) independent of the path.3

Parallel transport on a 2-sphere

Let us consider a two-dimensional space with the coordinates (θ, φ), θ ∈ [0, π], φ ∈ [0, 2π]
which is supplied with the connection

Γθ
φφ = − sin θ cos θ , Γφ

φθ = Γφ
θφ =

cos θ

sin θ
,

with the other coefficients equal to zero. Let us take a vector with components ti(p) = (1, 0) at
the point p(θ0, φ0). Parallel-transporting it first from p to p1(θ0, φ1), and then to q(θ1, φ1) and
finally to p′1(θ1, φ0) to take it back to p, show that we have

Δtθ = cos(ω1 − ω0)− 1 , Δtφ =
sin(ω1 − ω0)

sin θ0
,

with ω1 = (φ1 − φ0) cos θ1 , ω0 = (φ1 − φ0) cos θ0 .

Show that the Riemann tensor reduces to Rθ
φθφ = sin2 θ, Rφ

θφθ = 1, so that, in agreement with

the general expression (2.5), we have, in lowest order and setting Δθ = θ1−θ0 and Δφ = φ1−φ0:
Δtθ = 0 and Δtφ = −ΔθΔφ.

2.2 Commutation of derivatives, torsion, and curvature

The covariant derivative of a function f with respect to the coordinate xi is identical to the
ordinary derivative (Djf = ∂jf). The second derivative, DiDjf = ∂ijf−Γk

ij∂kf , is therefore
a 2-fold covariant tensor. Exchanging the indices i and j, we have

(DiDj −DjDi)f = −(Γk
ij − Γk

ji)∂kf

≡ −T k
ij∂kf .

(2.7)

The quantities T k
ij measure the antisymmetry of the connection. They are the components

of a tensor T of the type
(
1
2

)
called the torsion.

The connections of the spacetimes describing gravitation in general relativity are assumed
to be torsion-free. We therefore henceforth require that

T k
ij = 0 , (2.8)

in which case the number of connection coefficients is n2(n+1)/2 (or 40 in four dimensions).

3In Part V of this book we present a more sophisticated discussion of the Riemann tensor. Among other
things, we shall see that our choice of coordinate lines for defining a closed loop simplifies the discussion
because their ‘Lie brackets’ are zero.
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Let us calculate DiDjv
k. Here vk is a vector, Djv

k is a tensor of the type
(
1
1

)
, and DiDjv

k

is a tensor of the type
(
1
2

)
. We therefore have DiDjv

k = ∂i(Djv
k)−Γl

ijDlv
k+Γk

ilDjv
l, which,

since T k
ij = 0, leads to

(DiDj −DjDi)v
k = Rk

mijv
m . (2.9)

Similarly, for a covariant vector λk,

(DiDj −DjDi)λk = −Rm
kijλm . (2.10)

The Riemann tensor therefore measures the non-commutativity of the covariant derivative.

2.3 ‘Geodesic’ deviation and curvature

Let us consider a family of auto-parallels xi
p(λ), where λ is the parameter along the curves

and p is the index labeling them. If ui = dxi/dλ is the vector tangent to the curves, we have
Dui/dλ(≡ ujDju

i) = 0. If in addition ni = ∂xi/∂p is the vector measuring the spacing of
the curves, it is easy to show that, if the torsion vanishes,4

Dui

dp
(≡ njDju

i) =
Dni

dλ
(≡ ujDjn

i).

We can therefore calculate the relative ‘acceleration’ of two adjacent auto-parallels:

ai ≡ D2ni

dλ2
=

D

dλ

Dni

dλ
=

D

dλ

Dui

dp
= ujDj(n

kDku
i)

= (ujDjn
k)Dku

i + ujnkDjku
i

= (ujDjn
k)Dku

i + ujnk(Dkju
i +Ri

mjku
m)

(2.11)

using (2.9). Now taking into account the fact that the curves are auto-parallels, we have

0 =
D

dp

Dui

dλ
= njDj(u

kDku
i) = njukDjku

i + (njDju
k)Dku

i

= (ujDjn
k)Dku

i + ujnkDkju
i .

(2.12)

We thus obtain the expression often referred to as the ‘geodesic’ deviation equation (even
though it does not involve the metric):

ai = Ri
mjku

mujnk , (2.13)

which shows that if the Riemann tensor is nonzero, the parallels will eventually intersect.

4We have on the one hand

Dui

dp
=

Dui

∂xj

∂xj

dp
= njDju

i = nj(∂ju
i + Γi

jku
k) =

dui

dp
+ njukΓi

jk =
∂2xi

∂p∂λ
+ njukΓi

jk ,

while on the other

Dni

dλ
=

Dni

∂xj

∂xj

dλ
= ujDjn

i = uj(∂jn
i + Γi

jkn
k) =

dni

dλ
+ ujnkΓi

jk =
∂2xi

∂λ∂p
+ njukΓi

kj ,

and the two expressions are equal if Γi
jk = Γi

kj .
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2.4 The metric tensor and the Levi-Civita connection

A connection allows the parallel transport of geometrical quantities from one point to another
of a manifold to be defined. In order to also be able to define a geodesic or curve of extremal
length between two points, we must now introduce the concept of distance.5

A metric tensor g is a 2-fold covariant [i.e., of the type
(
0
2

)
], symmetric, and nondegenerate

tensor field. In a system of coordinates xi its n(n + 1)/2 components gij(x
k), which are

symmetric (gij = gji) and invertible (gikgkj = δij), define the length element as6

ds2 = gij dx
i dxj . (2.14)

As we have already seen in Book 1, Chapter 3, the metric tensor allows us to define a one-
to-one correspondence between vectors and 1-forms. If vi are the components of a vector v,
then vi ≡ gijv

j is a 1-form isomorphic to v (and often also denoted as v). Reciprocally, if
λ is a 1-form of components λi, then λi, where λi ≡ gijλj , is a vector. More generally, any
tensor of the type

(
p
q

)
can be associated with tensors of the type

(
p−1
q+1

)
or
(
p+1
q−1

)
in this way.

Finally, a metric defines the scalar product of two vectors v and v′ as (v . v′) = gijv
iv′j . In

the case of a Lorentz metric, if the norm (v . v) of v is positive, v is termed space-like, while
if it is negative v is time-like. If it is zero, v is termed null or light-like (it is also sometimes
referred to as an isotropic vector).

The concept of a norm allows us to define the length of a time-like curve C of equation
xi = xi(λ) with tangent vector ui ≡ dxi/dλ, between the points p1 and p2, as

S[C] =
∫ λ2

λ1

dλ
√
−gijuiuj =

∫ λ2

λ1

dλ

(
− gij

dxi

dλ

dxj

dλ

) 1
2

(2.15)

(and similarly for a space-like curve). We note that S is reparametrization invariant, that is,
it is invariant under λ �→ λ(τ).

Let us consider an ensemble of curves Cs labeled by s, with the equations xi = xi
s(λ), all

originating at p1 and ending at p2. We shall calculate the variation δS of the length of these
curves when s is varied (this calculation generalizes that of Book 2, Section 2.2):

δS =

∫ λ2

λ1

1

2
√

−gijui
su

j
s

(
−2gij

dδxi
s

dλ

dxj
s

dλ
− ∂kgijδx

k
s

dxi
s

dλ

dxj
s

dλ

)
dλ . (2.16)

At this stage (but not before!) we can choose the parametrization, for example, giju
i
su

j
s = −1.

Denoting the parameter by τ , dropping the index s and recalling that δxi is zero at τ1 and
τ2, we have

5In Books 1 and 2 all the geometrical properties of Newtonian and Minkowski spacetimes—in particular,
the concept of parallel transport—were deduced from the existence of a metric (Euclidean or Minkowski).
Here we consider the more general case where the metric and the connection are structures which are a priori
independent.

6Indeed, if its components are known in the coordinates xi, they are known in any other system of
coordinates via the transformation law of 2-fold covariant tensors; cf. Book 1, Section 3.1 or footnote 1.
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δS =

∫ τ2

τ1

(
−gij

dδxi

dτ
uj − 1

2
∂kgijδx

kuiuj

)
dτ

=

∫ τ2

τ1

(
− d

dτ
(giju

jδxi) +
d

dτ
(giju

j)δxi − 1

2
∂kgijδx

kuiuj

)
dτ

= −giju
jδxi|τ2τ1 +

∫ τ2

τ1

(
d

dτ
(giju

j)δxi − 1

2
∂kgijδx

kuiuj

)
dτ

=

∫ τ2

τ1

δxkdτ

(
gkj

duj

dτ
+ ∂igkju

iuj − 1

2
∂kgiju

iuj

)
.

(2.17)

The curve is extremal if δS = 0 ∀ δxk. The integrand is then zero, which gives the geodesic
equation determining it:

dui

dτ
+
{
i
jk

}
ujuk = 0 with giju

iuj = −1 , (2.18)

where
{
i
jk

}
=

1

2
gil(∂jgkl + ∂kglj − ∂lgjk)

are the Christoffel symbols.
If there exists a coordinate system in which all the metric coefficients are constant, the

geodesics will be straight lines.
We see that for the concept of auto-parallel defined in Section 2.1 as the ‘straightest

possible’ curve to coincide with the definition in (2.18) of a geodesic or the ‘shortest (or
longest) possible’ curve, the connection coefficients of the covariant derivative must be the
same as the Christoffel symbols. In this case the connection is referred to as the Levi-Civita
connection or the Riemannian connection. The metric and connection are then compatible if

Γi
jk =

{i
jk

}
=

1

2
gil(∂jgkl + ∂kglj − ∂lgjk) . (2.19)

Since the Christoffel symbols are symmetric, the Levi-Civita connection is also symmetric,
that is, it is torsion-free. Therefore, the Riemann tensor defined in (2.6) is expressed as a
function of the metric, and the manifold is said to be Riemannian.

There is another, equivalent and easily proved, way of requiring the compatibility of a
metric and a connection, namely, that it be torsion-free and that7

Digjk = 0 . (2.20)

Let us conclude by recalling the transformation law for the Christoffel symbols, which are
not tensors, under a change of coordinates xi → x′i (cf. Book 1, Section 3.2):

Γ′q
pm =

∂xk

∂x′m
∂xj

∂x′p
∂x′q

∂xi
Γi
jk +

∂x′q

∂xi

∂2xi

∂x′p∂x′m . (2.21)

The difference of two Christoffel symbols δΓi
jk = Γi

jk− Γ̃i
jk corresponding to different metrics

is a singly contravariant, 2-fold covariant tensor, because the last term in (2.21) cancels out.

7If we do not require that the torsion vanish, there will exist an infinite number of connections which are
compatible with the metric. On the other hand, if the torsion is zero the metric connection is unique and
given by (2.19), as was shown by Ricci.
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2.5 Locally inertial frames

Let gij(x
k) be the components of a metric tensor g in the coordinates xk. In different coor-

dinates X l = X l(xk) the components of g are fij(X
k) = (∂xk/∂Xi)(∂xl/∂Xj)gkl. We make

a Taylor series expansion about a point p0 with coordinates Xk
0 : X

k = Xk
0 + εk. Then

fij(X
k) = fij |0 + εm

∂fij
∂Xm

∣∣∣
0
+ · · ·

with fij |0 =
∂xk

∂Xi

∂xl

∂Xj
gkl|0 and

∂fij
∂Xm

∣∣∣
0
=

[
gkl

(
∂2xk

∂Xm∂Xi

∂xl

∂Xj
+

∂2xk

∂Xm∂Xj

∂xl

∂Xi

)
+

∂xk

∂Xi

∂xl

∂Xj

∂gkl
∂Xm

]

0

, · · ·

(2.22)

The question is, does there exist a change of coordinates such that fij=ηij+O(εp) ?
The answer is yes, but in general only at order p = 2.
The system fij |0 = ηij , with n(n+1)/2 = 10 equations for n2=16 unknowns (∂xk/∂Xi)|0,

has an infinite number of solutions involving six parameters, the six parameters of the Lorentz
group.

Similarly, (∂fij/∂X
m)|0 = 0 is a system of n2(n+1)/2 = 40 equations for n2(n+1)/2 = 40

unknowns (∂2xk/∂Xm∂Xi)|0, and in general it has a unique solution.
We therefore have

fij(X
k) = ηij +

1

2
εmεn

∂2fij
∂Xm∂Xn

∣∣
∣
0
+ · · · (2.23)

However, it is not in general possible to cancel the second-order term because
(∂2fij/∂X

m∂Xn)|0 = 0 is a system of [n(n+ 1)/2]2 = 100 equations for only n2(n+ 1)(n+
2)/3! = 80 values of the third derivatives (∂3xi/∂Xm∂Xj∂Xk)|0. Therefore, the 20 second
derivatives (∂2fij/∂X

m∂Xn)|0 remain undetermined. It is possible to relate them to the
curvature tensor.

The components R̃ijkl ≡ fimR̃m
jkl of the Riemann tensor in the coordinates Xi in which

the metric is expanded as in (2.23) are indeed given by

R̃ijkl =
1

2
(∂2

jkfil + ∂2
ilfjk − ∂2

ikfjl − ∂2
jlfik)|0 + · · · (2.24)

Owing to its symmetries, it has 20 independent components (see Section 2.6 for details). It
is therefore possible to choose the change of coordinates xi → Xi such that

∂2
mnfij |0 = −1

3
(R̃imjn + R̃injm)|0 =⇒ fij(X

k) = ηij −
1

3
εmεnR̃imjn|0 + · · · , (2.25)

which respects the symmetries of ∂2
mnfij |0 and is compatible with (2.24).

In this system of coordinates Xi called normal coordinates, the Christoffel symbols and
the geodesic equation are given by

Γ̃i
jk=−1

3
εm(R̃i

jkm + R̃i
kjm)|0 + · · · ,

d2Xi

dτ2
=

2

3
R̃i

jkm|0
dXj

dτ

dXk

dτ
εm + · · · . (2.26)

(The higher-order terms can be expressed as functions of the derivatives of the curvature
tensor.) This is the Riemann–Cartan theorem.
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We therefore see that, in agreement with the physical constraints described in Chapter 1,
it is possible to construct at any point a system of quasi-Minkowski coordinates, that is, a
quasi-inertial reference frame (defined up to Lorentz transformations). It is only when the
Riemann tensor vanishes that this system can be extended to all of spacetime, in which case
this is just the flat spacetime of Minkowski.

2.6 Properties of the Riemann tensor

In this section we shall present the very important properties of the curvature tensor. They
are actually easy to prove when the manifold is Riemannian (that is, supplied with a metric
connection). In that case it is possible to work in a frame which is locally Minkowskian,
where the Christoffel symbols are zero, so that the curvature tensor reduces locally to (2.24).
Then we easily see that

• Rk
lji = −Rk

lij (this follows from the definition of the Riemann tensor and is true for
any connection);

• Rk
lji +Rk

jil +Rk
ilj = 0 (the first Bianchi identity, which holds if the torsion vanishes);

• DmRi
jnp + DnR

i
jpm + DpR

i
jmn = 0 (the second Bianchi identity, which holds if the

torsion vanishes).

When the connection, which is symmetric, is compatible with a metric tensor, the curva-
ture tensor possesses the following additional properties:

Rijkl = −Rjikl and Rijkl = Rklij , where Rijkl ≡ gipR
p
jkl . (2.27)

Since the Riemann tensor is of the type
(
1
3

)
, one can derive from it tensors of the type

(
0
2

)
by

contraction. Owing to the above metric antisymmetry, the contraction Ri
ijk ≡ 0, and only

the symmetric Ricci tensor Rij remains:

Rij ≡ Rl
ilj = −Rl

ijl = Rji . (2.28)

The scalar curvature is defined as
R ≡ gijRij . (2.29)

Using the second Bianchi identity and the vanishing of the covariant derivative of the metric,
it is easy to prove the following property, which plays an important role in general relativity:

DiG
i
j = 0 , where Gi

j ≡ Ri
j −

1

2
δijR (2.30)

is the Einstein tensor.
It is easily seen that the Riemann tensor in dimension n = 2 has a single independent

component proportional to the scalar curvature: R0101 = gR/2, where g is the metric de-
terminant, so that Rij = gijR/2 (the Einstein tensor therefore vanishes identically in two
dimensions).

In n = 3 dimensions the Riemann tensor possesses six independent components and is
proportional to the Ricci tensor. In n = 4 dimensions it possesses 20 independent components;
in general, the number of independent components is n2(n2 − 1)/12.
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Finally, it is possible to isolate in the Riemann tensor the terms which depend on the
Ricci tensor and the scalar curvature. The remaining term Cam

sq is the Weyl tensor. More
precisely, if n is the dimension of the manifold,

Ram
sq = Cam

sq +
1

n− 2

(
δasR

m
q + δmq Ra

s − δms Ra
q − δaqR

m
s

)

− 1

(n− 1)(n− 2)

(
δas δ

m
q − δaq δ

m
s

)
R .

(2.31)

The Weyl tensor, which vanishes in dimensions less than four, possesses all the symmetries
of the Riemann tensor and, in addition, is traceless8: Cam

aq = 0.

8It is worth noting that two Riemann spaces with metric tensors ḡij and gij which are ‘conformally’

related, that is, ḡij = F (xk) gij , where F (xk) is an arbitrary function of the coordinates, have the same Weyl
tensor.

A more detailed discussion of the properties of the curvature tensor mentioned here can be found in, for
example, Bourguignon (2005) or Straumann (2013).
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Matter in curved spacetime

Here we shall study the laws of motion of matter—particles, fluids, or fields—in the presence of
an external gravitational field. In accordance with the equivalence principle, this motion will be
‘free’, that is, constrained only by the geometry of the spacetime whose curvature represents the
gravitation.

3.1 Geodesic motion of point masses

In special relativity, that is, in the absence of gravity, the world line of a free particle is a
straight line in Minkowski spacetime which extremizes the proper time, that is, the length, of
all the possible paths between two given events. According to the equivalence principle, the
motion of a point mass in a gravitational field is ‘free’ motion, but in a spacetime curved by
gravitation.1 The action chosen to describe it will then be the length of all possible time-like
paths between two events Pa and Pb, or

Sp = −mc2
∫ Pb

Pa

√
−gμνdxμdxν ≡

∫ λb

λa

Ldλ with L = −mc2
√

−gμν
dxμ

dλ

dxν

dλ
, (3.1)

where m is the inertial mass of the particle, c is the speed of light (which we do not set
equal to 1 in this section), λ is a parameter, and the metric coefficients gμν describe both
the gravitational field and the coordinate system xμ. As we have seen in Section 2.4, its
extremization gives the geodesic equation:

Duμ

dτ
≡ duμ

dτ
+ Γμ

νρu
νuρ = 0 with uμuμ = −c2 , (3.2)

where uμ = dxμ/dτ is the 4-velocity of the mass point, λ = τ is its proper time, and Γμ
νρ are

the Christoffel symbols. This geodesic equation is the ‘covariantized’ version of the equation
of motion in special relativity, obtained by replacing the ordinary derivative d by the covariant
derivative D.

The Euler–Lagrange equations and the geodesic

The geodesic equation (3.2) can also be obtained from the action S′
p =

∫
L′dλ with

L′ = gμνu
μuν , which compared to (3.1) has the advantage of not being reparametrization-

invariant.

1Here we assume that the ‘point masses’ under consideration have no proper rotation. The motion of
‘spinning tops’, that is, particles carrying a ‘spin’, will be studied in Section 11.7.
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The extremization of S′
p when the path from Pa to Pb is varied gives

δS′ =
∂L′

∂uμ
δxμ

∣
∣
∣
∣
∣

τ2

τ1

+

∫ τ2

τ1

δL′

δxμ
δxμdτ with

δL′

δxμ
=

∂L′

∂xμ
−
(
∂L′

∂uμ

)̇

.

The first term vanishes because the paths are fixed at the endpoints. The second term vanishes
if the Euler–Lagrange equations δL′/δxμ = 0 are satisfied, that is, if

uνuρ∂μgνρ = 2(gμνu
ν)˙ or u̇μ =

1

2
uνuρ∂μgνρ , (3.3)

which is just the covariant version of the geodesic equation (3.2):

Duμ

dτ
= u̇μ − Γρ

μνu
νuρ = 0 with Γρ

μν =
1

2
gρλ(∂μgνλ + ∂νgλμ − ∂λgμν) . (3.4)

The advantage of (3.4) over (3.2) is that it also gives the light world lines whose tangent vectors
are null lines (uμuμ = 0).

In Newtonian mechanics and in an inertial frame, the action of a particle in a gravitational
field is (cf. Book 1, Section 11.4)

Sp(N) =

∫ (
−mc2 +

1

2
mv2 −mU

)
dt , (3.5)

where t is the absolute time and U is the Newtonian potential (and we have added the
constant −mc2 so that Sp and Sp(N) coincide in the absence of the field and when c → ∞).

Since Sp = −mc2
∫
dτ where τ is the proper time, we find that in the Newtonian limit

dτ ∼ dt

(
1− v2

2c2
+

U

c2

)
or ds2 ≡ −c2dτ2 ∼ −c2dt2

(
1 +

2U

c2

)
+ d�r 2 . (3.6)

We therefore recover in a general way the expression found in Section 1.6 for the metric
component g00 as a function of the Newtonian potential in the limit of weak field and small
velocities.

3.2 Equations of motion of fluids

As in special relativity (cf. Book 2, Section 8.3), the dynamics of a fluid assumed to be perfect
is postulated to be encoded in its ‘energy–momentum’ tensor with components Tμν given by

Tμν = (ε+ p)uμuν + p gμν . (3.7)

The velocity field of the fluid uμ is normalized to unity, gμνu
μuν = −1, and the ‘energy

density’ ε(xμ) and ‘pressure’ p(xμ) are scalar functions. We see that this tensor is derived from
its expression in special relativity by covariantization, that is replacement of the Minkowski
metric by the metric of the Riemannian manifold describing the gravitational field in which
the fluid is immersed.
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In the phenomenological approach we are using here, the equation of motion of the fluid
interacting with the gravitational field is obtained by assuming that its energy–momentum
tensor is conserved, i.e., that

DνT
μν = 0 , (3.8)

which is the convariantized version (∂μ → Dμ) of the conservation law from which we can de-
rive the conservation of energy, momentum, and angular momentum in special relativity (see,
for example, Book 2, Section 8.2). Just as in special relativity, (3.8) can be decomposed as

uμuν∂ν(ε+ p) + (ε+ p)(uνDνu
μ + uμDνu

ν) + ∂μp = 0 . (3.9)

Contracting this with uμ, we immediately obtain (since uμuμ = −1)

Dν(ε u
ν) + pDνu

ν = 0 , (3.10)

so that (3.9) becomes equivalent to (3.10) plus

(ε+ p)uνDνu
μ + uμuν∂νp+ ∂μp = 0 . (3.11)

Equation (3.11) is the relativistic Euler equation and (3.10) is the continuity equation.
Equations (3.9)–(3.11) are four equations in five unknowns, namely, ε, p, and three com-

ponents of the vector uμ (constrained by uμuμ = −1). To completely determine the fluid
motion in the gravitational field described by gμν , we therefore need one more equation, the
equation of state, which relates the pressure and the density (some examples are given in
Book 2, Section 8.3).

The particle energy–momentum tensor

The 4-momentum of an ensemble of particles of mass m and 4-velocity uμ can be defined as
in special relativity as Pμ =

∑
muμ (with the sum running over the particles), but it cannot

possibly be conserved before and after a ‘collision’ because gravitation is a long-range interaction.
It is actually the energy–momentum tensor, introduced below, which describes the energy content
of a system of particles in a gravitational field.

The energy–momentum tensor describing an ensemble of particles interacting only gravi-
tationally is the covariantization of the energy–momentum tensor of special relativity (see, for
example, Book 2, Section 8.4):

Tμν = ε uμuν with ε(xμ) ≡
∑

m

∫

δ4(x
ρ − xρ(τ))

dτ√−g
, (3.12)

where xμ(τ) are the particle world lines and uμ(xρ) is their velocity field [identified as their
4-velocities uμ(τ) owing to the presence of the Dirac delta functions δ4(x

μ) = δ(t)δ3(x
i), for

which
∫
d4x δ4(x

μ) = 1]. Since the 3-volume element is
√−g|td3x (Book 1, Section 3.6), the

factor
√−g guarantees that

∫

t=const
Tμ0√−g d3x =

∑
muμ is indeed the 4-momentum of the

ensemble of particles. (We recall that to define it, it is necessary to specify the point on the world
lines at which the 4-velocities are evaluated. It will therefore depend on the choice of time-like
hypersurface; here t = const.)
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We thus see from (3.7) that the pressure of a particle fluid is zero (which is to be expected,
because the particles are ‘free’ in the gravitational field, and so they do not undergo collisions).
The equations of motion (3.9)–(3.11) derived from the conservation of Tμν reduce to

Dν(ε u
ν) = 0 and uνDνu

μ = 0 .

After integrating over all of spacetime and using the divergence theorem, the first, with the
substitution of (3.12) for ε, expresses mass conservation (Σm = const), and the second again
states that the particles move along geodesics.

3.3 The coupling of a field to gravity

Owing to the equivalence principle, the action describing a matter field in the presence of
gravitation is derived from its expression in special relativity by covariantization, ημν → gμν
et ∂μ → Dμ:

Sf [Φ(x
μ, s)] =

∫
L(Φ, DμΦ, gμν)

√
−g d4x , (3.13)

where g is the determinant of the metric coefficients gμν and
√−g d4x ≡√−g dx0dx1dx2dx3 is the volume element (cf. Book 1, Section 3.6), where the scalar L

is the Lagrangian of the (possibly tensorial) field Φ, and s (which has three components)
parametrizes at a given x0≡ t the various configurations Φ(xi, s)|t. The Lagrangian density√−gL(Φ,DμΦ, gμν) is a functional of the field Φ and depends on the coordinates xμ through
the metric gμν , which is a given function of the coordinates. The choice (3.13), which re-
spects the principle of local relativity, is called the correspondence principle or the principle
of minimal coupling.2

We use δΦ ≡ (∂Φ/∂s)|0 ds and δ∂μΦ ≡ (∂2Φ/∂s ∂Xμ)|0 ds = ∂μδΦ to denote the vari-
ations of Φ and its derivatives in going from the s = 0 configuration to a neighboring
one. Since the metric remains fixed, the variation of the action δΦSf ≡ (dSf/ds)|0ds fol-
lows step-by-step that of special relativity (cf. Book 2, Section 8.1). Indeed, since DμΦ

ν...
ρ... =

∂μΦ
ν...
ρ... + Γν

μαΦ
α...
ρ... + · · · − Γα

μρΦ
ν...
α... + · · ·, it can be written as

δΦSf =

∫
δL

√
−g d4x =

∫ (
∂L
∂Φ

δΦ+
∂L

∂∂μΦ
δ∂μΦ

) √
−g d4x

=

∫
δL
δΦ

δΦ
√
−g d4x+

∫
∂μ

(√−g ∂L
∂∂μΦ

δΦ

)
d4x ,

where
δL
δΦ

≡ ∂L
∂Φ

− 1√−g
∂μ

√−g ∂L
∂∂μΦ

.

(3.14)

2It should, however, be noted that nothing except the ‘simplicity principle’ a priori forbids going beyond
a simple covariantization and introducing terms proportional to the curvature into the action describing
the matter. One could, for example, choose to add to (3.13) a term of the type

∫
Φ2R

√−g d4x, where R
is the scalar curvature. In that case the action (3.13) would depend on the metric and its first and second
derivatives.

For a discussion of variational principles as well as the Lagrangian and Hamiltonian formalisms in the
mechanics of point particles and in the classical theory of fields, see, for example, Book 1, Chapters 8 and 9,
and Book 2, Chapters 8, 9, and 12.
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The divergence theorem

Let us review the Gauss theorem (or divergence theorem) stated in Book 1, Sections 3.6 and
4.6 and also in Book 2, Section 8.5:

∫

M
∂μ(

√
−g vμ)d4x =

∫

∂M
vμdSμ

with dSμ =
√
−g eμνρσ

∂xν

∂y1

∂xρ

∂y2

∂xσ

∂y3
dy1dy2dy3 =

√
|h|nμd

3y .

(3.15)

Here ∂M is the boundary of the 4-volume M (see Fig. 3.1), on which the equations are given
in parametric form by xμ = xμ(yi); g is the determinant of the metric coefficients gμν ; eμνρσ
is the Levi-Civita symbol, which is completely antisymmetric and for which e0123 = 1; h is
the determinant of the metric induced on ∂M with components hij = gμν(∂x

μ/∂yi)(∂xν/∂yj);
finally, nμ is the 4-vector orthogonal to ∂M, that is, nμ(∂x

μ/∂yi) = 0 and normalized such that
gμνnμnν = ±1 (depending on whether ∂M is time-like or space-like).

t

Σ

Σ1

Σ2

S

Fig. 3.1 The boundary ∂M.

Now let us assume that coordinates adapted to ∂M have been chosen, that is, that its
equation is xμ = const for a given μ. If, for example, ∂M ≡ Σ is defined by t = const, the
metric will be written in these adapted coordinates as ds2 = gttdt

2 + hijdx
idxj . We then will

have nμ = (
√−gtt, 0, 0, 0) and

√
−gtt|h| =

√−g, so that Gauss’s theorem simplifies to

∫

∂M
vμdSμ =

∫

Σ

√
−g vtd3x. (3.16)

Similarly, if ∂M ≡ B = S × L, where S is a 2-sphere and L = [t1, t2], and if the coordinates are
chosen such that ds2 = grrdr

2 + hijdx
idxj where xi = {t, θ, φ}, we will have

∫

∂M
vμdSμ =

∫ t2

t1

dt

∫

S

√
−g vrdθdφ . (3.17)
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Applying the divergence theorem (3.15), the second term in (3.14) gives a boundary term
which in adapted coordinates is written as [see (3.16) and (3.17)]

∫

∂M

∂L
∂∂μΦ

δΦ dSμ =

∫

Σ

d3x

(√−g∂L
∂∂0Φ

δΦ

)∣∣∣
∣

t2

t1

+

∫ t2

t1

dt

∫

S

√−g∂L
∂∂rΦ

δΦ dθdφ , (3.18)

where Σ is a 3-volume at constant x0 ≡ t and S is its boundary, a 2-sphere at constant
x1 ≡ r.

The first term of (3.18) vanishes because the configurations are fixed at t1 and t2. The
second also vanishes if we fix the configurations on S, or if we restrict ourselves to configu-
rations which fall off sufficiently rapidly. Therefore, the boundary term in (3.14) is zero and
the equations of motion of the field extremizing the action, δΦSf = 0, for any variation δΦ
which vanishes on the boundary are the Euler–Lagrange equations. These are second-order
differential equations which are covariant by construction3:

δL
δΦ

≡ ∂L
∂Φ

− 1√−g
∂μ

√−g∂L
∂∂μΦ

= 0 . (3.19)

The Klein–Gordon and Maxwell equations

First of all, show that (see Book 1, Section 3.6)

∂μ

√
−g =

1

2

√
−ggνρ∂μgνρ = −1

2

√
−ggνρ∂μg

νρ . (3.20)

Next, show that for any vector V μ and any antisymmetric tensor Fμν we have

√
−g DμV

μ = ∂μ(
√
−g V μ) ,

√
−g DμF

μν = ∂μ(
√
−g Fμν) . (3.21)

Since the Lagrangian of a scalar field is L = − 1
2
∂μφ∂μφ−V (φ), where ∂μφ ≡ gμν∂νφ and V (φ)

is the self-interaction potential, show that the equation of motion (3.19) is the Klein–Gordon
equation:

�φ− dV

dφ
= 0 with �φ ≡ Dμ ∂μφ , (3.22)

where Dμ is the covariant derivative associated with the metric gμν .
The Lagrangian of the electromagnetic field Aμ is L = −FμνF

μν/16π with Fμν = DμAν −
DνAμ = ∂μAν−∂νAμ. Show in a similar way that the equations of motion (3.19) are the vacuum
Maxwell equations:

DμF
μν = 0 . (3.23)

3Equations (3.19) are not changed when a divergence, ∂μV̂ μ or V̂ μ ≡ √−gV μ(Φ, ∂νΦ, · · ·), is added to
L, with the condition that the variations of the field configurations and their derivatives δΦ, δ∂νΦ · · ·, vanish
on ∂M. Indeed,

δΦ

∫
d4x ∂μV̂

μ =

∫
d4x ∂μδΦV̂

μ =

∫
d4x ∂μ

(
∂V̂ μ

∂Φ
δΦ+

∂V̂ μ

∂∂νΦ
δ∂νΦ · · ·

)

=

∫

∂M

(
∂V μ

∂Φ
δΦ+

∂V μ

∂∂νΦ
δ∂νΦ · · ·

)
dSμ.
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3.4 The energy–momentum tensors of a field

The concepts of energy, momentum, and angular momentum follow from the invariance of
the solutions of the equations of motion under spatio-temporal translations or rotations (see,
for example, Book 1, Chapters 7–9 and Book 2, Chapters 6–8). Here we shall see how the
action is transformed, no longer under a modification of the field configuration, but instead
under a displacement, or, in the ‘passive’ version, under a translation of the coordinate grid
in the opposite direction.

In a displacement xρ → x̃ρ = xρ + ξρ, where ξρ is an infinitesimal vector, the field
configuration changes by δξΦ and the metric by δξgμν . We shall see more precisely below
what these changes are. The action

Sf =

∫
L(Φ, ∂μΦ, gμν)

√
−g d4x , (3.24)

where in order to simplify our discussion we assume that the Lagrangian L depends on Φ
and its first derivatives as well as on the metric gμν but not its derivatives,4 transforms as
follows using (3.14) and (3.15):

δξSf =
1

2

∫
Tμνδξgμν

√
−g d4x+

∫
δL
δΦ

δξΦ
√
−g d4x+

∫

∂M

∂L
∂∂μΦ

δξΦ dSμ , (3.25)

where Tμν is the energy–momentum tensor of the field, which is 2-fold contravariant and
symmetric by construction:

Tμν ≡ 2√−g

∂
√−gL
∂gμν

. (3.26)

The case of scalar and electromagnetic fields

First show that if Tμν is defined by (3.26), then using (3.20) we will also have

Tμν = − 2√−g

∂(
√−gL)
∂gμν

.

The Lagrangian of a scalar field is L = − 1
2
∂μφ∂μφ− V (φ) and that of an electromagnetic field

is L = −FμνF
μν/16π. Show that their energy–momentum tensors are

Tμν = ∂μφ∂νφ− gμν

(
1

2
gρσ∂ρφ∂σφ+ V (φ)

)

and Tμν =
1

4π

(

FμρF
ρ

ν − 1

4
gμνFρσF

ρσ

)

.

(3.27)
(Since Fμν = DμAν −DνAμ = ∂μAν − ∂νAμ, the Lagrangian depends only on the metric and
not on its derivatives.)

Let us now specify how gμν , the action itself, and Φ vary under a displacement.

4The generalization to the case where the Lagrangian also depends on derivatives of the metric is not
difficult but quite tedious.
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The metric components gμν in the coordinates {xρ} are related to the metric components
g̃μν in the system {x̃ρ = xρ + ξρ} by the transformation law for 2-fold covariant tensors:

gμν(x
ρ) =

∂x̃ρ

∂xμ

∂x̃σ

∂xν
g̃ρσ(x̃

λ) = (δρμ + ∂μξ
ρ)(δσν + ∂νξ

σ)g̃ρσ(x̃
λ) , (3.28)

where xρ and x̃ρ are the coordinates of a point p in the first and the second coordinate system.
However, the variation δξgμν must be a function of only xρ (since it will be integrated over
xρ). We can then make the decomposition g̃ρσ(x̃

λ) = g̃ρσ(x
λ) + ξλ∂λgρσ to first order in ξμ,

and we find

δξgμν ≡ gμν(x
ρ)− g̃μν(x

ρ) = ξλ∂λgμν + gλμ ∂νξ
λ + gμλ ∂μξ

λ = Dνξμ +Dμξν , (3.29)

where the second equality follows from Dμgνρ = 0. (Here δξgμν is the ‘Lie derivative’ of the
metric with respect to ξμ.)

The first term on the right-hand side of (3.25) then becomes

1

2

∫
Tμνδξgμν

√
−g d4x =

∫
TμνDμξν

√
−g d4x

=

∫
Dμ(T

μνξν)
√
−g d4x−

∫
(DμT

μν)ξν
√
−g d4x

=

∫

∂M
Tμνξν dSμ −

∫
(DμT

μν)ξν
√
−g d4x ,

(3.30)

because Dμ(T
μνξν)

√−g = ∂μ(T
μνξν

√−g) [see (3.21)] and owing to the divergence theorem
(3.15).

Moreover, since L is a scalar, we have δξL = ξμ∂μL, and from (3.29) and (3.20) we deduce
that δξ

√−g =
√−gDμξ

μ = ∂μ(
√−gξμ), so that the variation of the action [the left-hand

side of (3.25)] is a surface term:

δξSf =

∫
δξ(L

√
−g) d4x =

∫
d4x ∂μ(

√
−gLξμ) =

∫

∂M
L ξμdSμ . (3.31)

We note that the variation of the action vanishes if the vectors ξμ are taken to be zero on
the boundary ∂M of the domain M. We also see explicitly that the action (which is just
a number for a given configuration Φ and metric gμν) does not depend on the choice of
coordinate system.

Finally, the configuration of the field Φ also changes. If Φ ≡ φ is a scalar field, we have
δξφ = ξμ∂μφ.

Therefore, (3.25) can be rewritten as follows in the case where the matter is a scalar field:
∫

∂M

(
Θ ν

μ − T ν
μ

)
ξμdSν =

∫ (
∂μφ

δL
δφ

−DνT
ν
μ

)
ξμ

√
−g d4x , (3.32)

where Tμν is defined in (3.26), δL/δφ in (3.14), and

Θ ν
μ ≡ δνμL − ∂L

∂∂νφ
∂μφ (3.33)

is the Noether canonical energy–momentum tensor.
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At this stage we see that in fact the vector ξμ does not need to be infinitesimal. We
could have introduced ε ξμ with finite ξμ and ε � 1. Then after dividing by ε we would have
obtained (3.32) for a finite vector ξμ.

The vector ξμ is arbitrary. Its value in M is independent of its value on ∂M, where it
does not necessarily vanish. Therefore, for (3.32) to be satisfied, the integrands of the left-
and right-hand sides must vanish separately. We then have

Θ ν
μ = T ν

μ and ∂μφ
δL
δφ

= DνT
ν
μ . (3.34)

Thus, on the one hand, the energy–momentum tensors Θ ν
μ and T ν

μ of a scalar field must
be equal, while on the other the Euler–Lagrange equations δL/δφ = 0 and the conservation
equation for the energy–momentum tensor DνT

ν
μ = 0 must be equivalent. (This demonstra-

tion can be generalized to fields of higher ‘spin’; see the example of spin 1 that follows.)

Examples of Noether tensors

Show that for the Klein–Gordon Lagrangian L = − 1
2
∂μφ∂

μφ− V (φ) the associated Noether
tensor (3.33) is identical to the tensor Tμ

ν defined in (3.26) and calculated in (3.27). Show that,
in addition,

DνT
ν
μ = ∂μφ

(

�φ− dV

dφ

)

,

and that therefore the conservation of the energy–momentum tensor does indeed again give the
Klein–Gordon equation of motion (if φ is not constant).

Now show that if the field Φ is a covariant vector field Φ ≡ Aμ, under an infinitesimal

displacement xρ → x̃ρ = xρ + ξρ we will have5 δξΦ ≡ Aμ(x
ρ) − Ãμ(x

ρ) = ξν∂νAμ + Aν∂μξ
ν =

ξνDνAμ +AνDμξ
ν .

Next, show that in the case of massless ‘spin-1’ fields, where L is independent of Aρ and
∂L/∂∂νAρ is antisymmetric, eqn (3.32) can be written in the following form, setting Fμν ≡
∂μAν − ∂νAμ:

∫
(
Θ ν

μsym − T ν
μ

)
ξμdSν =

∫ (

Fμρ
δL
δAρ

−DνT
ν
μ

)

ξμ
√
−g d4x , (3.35)

where Θ ν
μsym ≡ δνμL − ∂L

∂∂νAρ
Fμρ is the symmetrized version of the Noether tensor defined in

(3.33) and
√−gδL/δAρ here reduces to ∂ν

√−gL/∂∂νAρ.
Finally, show that in the specific case of the Maxwell Lagrangian L = −FμνF

μν/16π, the
quantity Θ ν

μsym is indeed again equal to Tμ
ν calculated in (3.27), and moreover

DνT
ν
μ =

1

4π
Fμρ(DνF

νρ) .

(Here we have exploited the antisymmetry of the Faraday tensor Fμν and the first group of
Maxwell equations which follow from it, namely, DμFνρ + DνFρμ + DρFμν = 0.) Therefore,
again the conservation law for the energy–momentum tensor and the Euler–Lagrange equations
of motion are equivalent.

5The variations δξAμ, like the δξgμν obtained in (3.30), are respectively the Lie derivatives of Aμ and the
metric gμν with respect to the vector ξμ; see Chapter 23. We also have δξA

μ = ξνDνAμ −AνDνξμ.
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The Einstein equations

In the absence of matter there is no gravitational field, and the spacetime which represents this
empty universe is Minkowski spacetime. (More precisely, if the gravitational field created by the
matter can be neglected, the appropriate framework for describing the matter is that of special
relativity.) The Einstein gravitational equations relate geometry and matter: specifically, they relate
the Riemann tensor, or, more precisely, the Einstein tensor, to the geometrical object describing
‘inertia’, or energy content of the matter, that is, the energy–momentum tensor.

4.1 The Einstein equations

As we saw in the preceding chapter, the tensorial object which in general relativity describes
matter in the presence of a gravitational field is the energy–momentum tensor Tμν .

A simple (that is, linear in the curvature) geometrical tensor of the same type as the
energy–momentum tensor (that is, 2-fold covariant) is Rμν − α

2 gμνR, where Rμν = Rρ
μρν is

the Ricci tensor, R = gμνRμν is the scalar curvature, and α is an a priori arbitrary constant.
After various tentative versions (in particular, an α = 0 version in 1914), the gravitational
field equations proposed by Einstein in November 1915 were

Gμν = κTμν . (4.1)

Here Gμν = Rμν − 1
2gμνR is the Einstein tensor introduced in Section 2.6 and κ is the

Einstein constant.

Ten equations for ten unknowns

The choice of the Einstein tensor on the left-hand side of (4.1) was made for the following
reason.

These equations form a set of ten nonlinear partial differential equations. The coordinate
system can be chosen arbitrarily. By means of a change of coordinates it is therefore possible to
assign, at least locally, any value to four components of the metric tensor gμν , so that the set is
reduced to a set of six functions.

However, owing to the Bianchi identities (2.30), Dμ(R
μν − αRgμν/2) ≡ 0 for α = 1 only

(Einstein and Hilbert did not know this in 1915 . . . ), and since Dμgνρ ≡ 0, it follows from (4.1)
that the tensor Tμν must be conserved, i.e., the divergence must vanish: DμT

μν = 0. The four
equations (for example, the continuity and Euler equations; see Section 3.2) which determine
the evolution of the four independent functions describing the matter (for example, its 4-velocity
uμ satisfying uμu

μ = −1 and its energy density or pressure following from an equation of state)
are therefore included in the Einstein equations.

We thus have ten equations for ten unknowns and the system is not over-determined.
General relativity differs from, for example, electromagnetism, where the Lorentz equation

giving the motion of the charges is not included in the Maxwell equations.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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We still need to relate the constant κ to Newton’s constant. In the Newtonian limit
and in a quasi-inertial frame, −g00 ∼ 1 + 2U/c2, where U is the Newtonian potential (see
Sections 1.6 and 3.1). The other components of the metric are at least of the same order. The
Christoffel symbols Γμ

νρ are therefore of order 1/c2, and their time derivatives are of order
1/c3. Consequently, at lowest order we have

R00 ∼ ∂iΓ
i
00 ∼ −1

2
∂i
(
gij∂jg00

)
∼ 1

c2
∂i

(
∂U

∂xi

)
∼ 1

c2
ΔU. (4.2)

The energy–momentum tensor of a fluid then reduces to T 00 ∼ c2, where  is the proper
mass density. These are the only terms of the Ricci and energy–momentum tensors that we
need to calculate if we rewrite the Einstein equations in the form Rμν = κ(Tμν− 1

2gμνT ). Then
in the limit of weak fields and small velocities they lead to the Poisson equation ΔU = 4πG
(see Book 1, Section 11.4) if

κ =
8πG

c4
, (4.3)

where we recall that c is the speed of light and G is Newton’s constant.1

The ‘cosmological constant’

Since in general relativity the Riemannian spacetime is endowed with a Levi-Civita connec-
tion, the covariant derivative of the metric is zero: Dμgνρ ≡ 0; see Section 2.4. The Einstein
equations (4.1) can therefore be generalized as

Gμν + Λgμν = κTμν , (4.4)

which also includes the law of motion of the matter, DμT
μ
ν = 0, if Λ is a constant of dimension

L−2.
Then in the Newtonian approximation we have [cf. (4.2) and (4.3)]

ΔU = 4πG− 2Λc2 ,

the solution of which has the behavior U/c2 ≈ −GM/c2� − 2Λ�2, where � is the characteris-
tic length over which the potential varies. To recover the Poisson law we must have Λ�2 �
GM/c2� � 1. Since Newtonian gravity has been well tested at stellar system and even galac-
tic scales, the constant Λ can possibly play a role only at even larger scales, hence the name
cosmological constant.

Having said this, we can rewrite (4.4) as Gμν = κ(Tμν − Λgμν/κ), and interpret the term
involving Λ as the energy–momentum tensor of the ‘quantum vacuum’, whose contribution to the
gravitational field (‘�ω/2 per virtual degree of freedom’) is enormous. This is the cosmological
constant problem.2

One rather cursory way of solving this problem is to postulate that the gravitation equations
are Rμν − αRgμν/2 = κ(Tμν − Tgμν/4) with α = 1/2 (Einstein, 1919), so that the traceless
parts of the Ricci tensor and the energy–momentum tensor of the matter are related, and then
to separately impose the matter equations of motion DνT

ν
μ = 0. The vacuum energy, which

1The constant G = 6.67 × 10−11 m3 kg−1 s−2 or, in the system with c = 1, G = 2.477 × 10−38 s kg−1.
We shall often use geometrical units in which c = 1, G = 1 and masses are expressed in meters or seconds.
For example, 1M� = 2× 1030 kg = 1.5 km = 6 μs and M⊕ = 6× 1024 kg = 0.45 cm.

2See, for example, Weinberg (1989).
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is proportional to gμν , then does not contribute to gravitation. Then, taking the divergence
of the equations and using the Bianchi identities, we have ∂νR = −κ ∂νT , which implies that
R = −κT +4Λ, where Λ is an integration constant. Substituting this into the original equation,
we see that the latter is in fact strictly equivalent to (4.4), but now the cosmological constant is
no longer related to the vacuum energy.3

4.2 The 1+3 decomposition

In Section 4.1 we mentioned that the Einstein equations, while leaving the choice of coordinate
system free, are ten equations for ten unknowns. Now let us examine their structure more
carefully.4

Let us distinguish one coordinate, which we call w, and denote the three others as xi. It
is an easy exercise to find the dependence of the Einstein tensor on the second derivatives of
the metric with respect to w:

Gw
w = Cw

w , Gw
i = Cw

i ,

Gi
j =

1

2

[
δlj(g

iwgkw − gwwgik)− δij(g
kwglw − gklgww)

]
∂2
wwgkl + Ci

j ,
(4.5)

where the Cμ
ν do not contain any second derivatives with respect to w.

We can therefore fix gww and gwi (in agreement with the fact that the coordinate system
can be freely chosen), but there exist four constraint equations on the gij and their first
derivatives, namely, Gw

μ = κTw
μ . Here we rediscover the fact well known in gauge theory (for

example, in the Maxwell theory; see Book 2, Section 14.1) that each gauge invariance, here
invariance under diffeomorphisms, that is, under changes of coordinates, corresponds to a
constraint. As for Gi

j = κT i
j , these are six evolution equations for the six second derivatives

∂wwgij .
Let us push this ‘1+3 decomposition’ a bit farther. To this end we shall at first use the

special coordinates (w, xi) called Gauss coordinates (or synchronous coordinates if w is the
time coordinate). Then the metric takes the following form (we note that this coordinate
system is not unique):

ds2 = ε dw2 + hij(w, x
k) dxidxj (4.6)

with ε = −1 if the coordinate w is the time and ε = +1 if it is a spatial coordinate. Here hij

are the components of the induced metrics on the surfaces w = const. In addition,

Kij ≡
1

2
∂whij (4.7)

will be referred to as the extrinsic curvature of the surfaces w = const. Then we can find the
components of the Einstein tensor:

3See, for example, Ellis et al. (2011).
4For an introduction to the structure of the Einstein equations and, among other things, the solution

of the ‘Cauchy problem’, that is, of the evolution equations, see Wald (1984), and also Hawking and Ellis
(1973). For a deeper discussion see Choquet-Bruhat (2009) or J. Isenberg (2013).
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⎧
⎪⎪⎨

⎪⎪⎩

Gw
w =

ε

2
(K2 −KijKij)−

1

2
R̄ , Gw

j = εD̄i(K
i
j − δij K) ,

Gi
j = −ε ∂w(K

i
j − δijK)− ε

(
KKi

j −
1

2
δijK

klKkl −
1

2
δijK

2

)
+ Ḡi

j ,

(4.8)

where D̄, Ḡi
j , and R̄ are the covariant derivative, the Einstein tensor, and the scalar curvature

of the induced metric. We again find that Gw
w and Gw

j depend only on the first derivatives of

the metric with respect to w, and so the equations Gw
μ = κTw

μ are four constraint equations;5

cf. (4.5).

Propagation of the constraints

Let us use the Bianchi identities to show that if the constraints are satisfied on a surface
w = w0, then they will be satisfied on all surfaces w = const.

In the system of Gaussian coordinates (4.6), (4.7) we have Γw
ij = −εKij , Γ

i
wj = Ki

j , and

Γi
jk = Γ̄i

jk. The Bianchi identities DμG
μ
ν ≡ 0 then can be written out as

∂wG
w
w + D̄iG

i
w +KGw

w −Ki
jG

j
i ≡ 0 and ∂wG

w
i + D̄jG

j
i +KGw

i ≡ 0 .

If now the evolution equations are satisfied on a given surface w = w0, that is, if Gi
j |0 = 0 and

∂jG
i
k|0 = 0 (for simplicity we work in the vacuum), the Bianchi identities give

(∂wG
w
w ++D̄iG

i
w +KGw

w)0 = 0 and (∂wG
w
i +KGw

i )0 = 0 .

Therefore, if the constraints are satisfied at w = w0, that is, if G
w
w|0 = Gi

w|0 = Gw
i |0 = ∂iG

i
w|0 =

0, then they will be satisfied for all w (at least if they are analytic).

It will often prove useful to generalize this 1+3 decomposition by working in an arbitrary
system of coordinates xμ = (t, xi) (not necessarily Gaussian) which, however, is still adapted
to the foliation, that is, to the ensemble of hypersurfaces Σ defined by t = const, which we
choose to be space-like.

Let gμν be the metric coefficients in these ‘ADM coordinates’6 xμ. At each point of Σ it is
possible to define three basis vectors V μ

i of components δμi ; see Fig. 4.1. The (covariant) vector
nμ normal to Σ and of unit length satisfies gμν n

μ δνi = gμi n
μ = ni = 0 and gμν nμ nν = −1.

Its components (after choosing the sign) are therefore nμ = (−1/
√

−g00, 0, 0, 0) and nμ =

(
√

−g00, −g0i/
√

−g00). Now let us decompose the vector tangent to the time lines, with
components δμ0 , on the normal vector and the three basis vectors of Σ: δμ0 = Nnμ + N iδμi ,

where N = 1/
√
−g00 and N i = −g0i/g00 are the lapse and the shift.

The lapse and the shift, along with the metrics hij = gij |t induced on the surfaces Σ
defined by t = const, constitute the ADM variables. In terms of these variables the metric
components gμν become

5We note that if the induced metric does not depend on w, then Kij = 0 and the vacuum Einstein
equations require that Ḡij = 0. Then the solution is just Minkowski spacetime, because the Riemann tensor
is proportional to the Einstein tensor in three dimensions; see Section 2.6.

6Arnowitt, Deser, and Misner (1962). See also Misner, Thorne, and Wheeler (1973), as well as Wald (1984),
Gourgoulhon (2012), and Poisson (2002). What are now called ADM coordinates were actually introduced
by Yvonne Choquet-Bruhat in 1947.
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Σ

x1

x2

nμ

N

V
μ

1

V
μ

2

N i

t

Fig. 4.1 The 1 + 3 decomposition.

⎧
⎨

⎩

g00 = −N2 +NiN
i , g0i = Ni , gij = hij ,

g00 = − 1

N2
, g0i =

N i

N2
, gij = hij − N iN j

N2

(4.9)

(where all indices are moved using the induced metric hij and its inverse; we note that√−g = N
√
h). Finally, we introduce the extrinsic curvature

Kij ≡ Dinj =
1

2N
(ḣij − D̄iNj − D̄jNi) , (4.10)

where the dot denotes the derivative with respect to the coordinate t and D̄ is the covariant
derivative associated with hij . [This expression does indeed reduce to (4.7) in Gaussian
coordinates.]

A rather tedious but easy calculation allows us to write the components of the Riemann
tensor in the ADM variables. Denoting nμTμν··· ≡ Tnν···, we find

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rijkl = R̄ijkl +KikKjl −KilKjk

Rijkn = D̄iKjk − D̄jKki

Rinjn = − 1

N

(
K̇ij − LNkKij

)
+KikK

k
j +

D̄2
ijN

N
,

(4.11)

where LNkKij = Nk∂kKij + Kik∂jN
k + Kjk∂iN

k is the ‘Lie derivative’ of the extrinsic
curvature Kij with respect to the shift Nk and R̄ijkl is the Riemann tensor of the induced
metric hij . The three equations in (4.11) are the Gauss equations, the Codazzi equations,
and the Ricci–York equations, respectively. Another short calculation using the expressions
hijK̇ij = K̇+2NKijKij +2KijD̄iNj and Dμn

μ = K allows us to write the scalar curvature
in the form
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R =
2

N
(K̇ −N i∂iK) +K .K +K2 + R̄− 2

N
�N

= K .K −K2 + R̄+
2√−g

∂μ(
√
−g nμ K)− 2√

hN
∂i(

√
hhij ∂jN) ,

(4.12)

where K = hijKij and K .K = KijKij , and the quantity R̄ is the scalar curvature of the
metric hij . This expression for the scalar curvature is the starting point for the Hamiltonian
formulation of general relativity; see footnote 6 and Section 4.5.

The induced metric and extrinsic curvature

Here we conclude by giving the definitions of the induced metric and extrinsic curvature
valid in any coordinate system and for any surface Σ. They reduce to (4.6) and (4.7) in the
Gaussian coordinates adapted to Σ.

We consider a length element ds2 = gμνdx
μdxν in the coordinates xμ. We take a surface Σ

in this space given by the equations xμ = xμ(yi), where yi are three parameters. Three vectors
tangent to this surface are V μ

i = ∂xμ/∂yi.
The induced metric on Σ is, in the coordinates yi, dσ2 ≡ ds2|Σ = hij dy

idyj with hij =
gμνV

μ
i V ν

j .
The vector normal to the surface, nμ, is obtained by requiring that it is orthogonal to the

tangent vectors, gμνn
μV ν

i = 0, and that it is normalized, gμν n
μnν = ε, where ε = −1 if Σ is

space-like and ε = 1 if it is time-like (its orientation relative to Σ still needs to be fixed).
The extrinsic curvature of Σ measures the way Σ is ‘curved’ in the ambient space and is

defined as
Kij = V μ

i V ν
j Dμnν , (4.13)

where D is the covariant derivative associated with gμν .
In a system of Gaussian coordinates (4.6) we have V μ

i = δμi and, choosing nμ = +δμw, we
find Kij = 1

2
∂whij . In ADM coordinates we recover (4.10).

4.3 Matching conditions

It is sometimes convenient to split spacetime into two distinct regions, an ‘exterior’ region
Ve (the vacuum, for example) and an ‘interior’ region Vi (which may contain, for example,
a perfect fluid), separated by a time-like 3-surface Σ representing, for example, the time
evolution of the boundary of a star.

To find the matching conditions for these two regions, we use the Gaussian coordinates
(4.6) with ε = +1 (Hilbert, 1916; Darmois, 1927; Lichnerowicz, 1955). A possible discontinuity
of Tμν at Σ, located at w = w0, would manifest itself at most, via the Einstein equations,
as discontinuities in the second derivatives of hij with respect to w. Therefore, the first
derivatives ∂whij and hij themselves are continuous (respectively, C0 and C1 at least).

The matching conditions for the metric at Σ are therefore the continuity of the induced
metric and the extrinsic curvature.

These matching conditions correspond to constraints on the energy–momentum tensor.
Indeed, the components Gw

μ depend only on the metric and its first derivatives with respect
to w; cf. (4.8). They are therefore continuous at Σ, and the same must hold for Tw

μ . For a
perfect fluid [Tμ

ν = (ε+ p)uμuν + p δμν with gμνu
μuν = −1; see Section 3.2], this implies that

on Σ we have Tw
w = (ε+ p)uwuw + p = 0 and Tw

i = (ε+ p)uwui = 0. The equation ui = 0 is
not a solution if the energy density ε �= 0, and so we must have
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uw = 0 and p = 0 , (4.14)

which states that the fluid is confined by Σ and that its pressure p is zero there.
Now let us assume that the two regions Ve and Vi are empty but that there exists on

Σ a thin layer of matter, that is, that the components of the energy–momentum tensor
are proportional to a Dirac delta distributions centered on a time-like Σ. Then, owing to
the Einstein equations, the second derivatives of the hij contain delta distributions, and
so the extrinsic curvature is discontinuous (proportional to a Heaviside distribution) and
the induced metric is continuous (C0). The constraint equations (4.8) then imply that only
the components T i

j contain delta distributions: T i
j = τ ij δ(w). The evolution equations (4.8)

become (since ε = +1) −∂w(K
i
j−δijK)+ · · · = κ τ ijδ(w) and, after integrating across Σ, relate

the discontinuity of the extrinsic curvature to the energy–momentum tensor of the thin layer
(Israel, 1966):

−[Ki
j − δij K]+− = κ τ ij (4.15)

(where any possible sign ambiguities in the definition of the jump [Ki
j ]
+
− are resolved case by

case depending on the physics of the problem).

4.4 The Hilbert action and the Einstein equations

The Einstein equations (4.1) determining the gravitational field as a function of the matter
which is present can also be derived from a principle of least action.

Since in general relativity the gravitational field is identified with a spacetime metric gμν ,
the action of the gravitational field is a functional of gμν , SH[gμν ] =

∫
LH

√−g d4x, where
the Lagrangian LH is a scalar. Since the metric must be non-flat in order to describe a
gravitational field rather than a simple inertia field, this Lagrangian LH must be a function
of the curvature tensor. Hilbert made the following choice (in November 1915):

SH =
1

2κ

∫

M
(R− 2Λ)

√
−g d4x . (4.16)

The integral runs over a portionM of spacetime bounded by a 3-surface ∂M; cf. Fig. 3.1. The
constant κ ≡ 8πG/c4 is the Einstein constant and Λ is the cosmological constant. Finally, R
is the scalar curvature, the trace of the Ricci tensor Rμν , which itself is the contraction of
the Riemann tensor:

R = gμνRμν , Rμν = Rρ
μρν = ∂ρΓ

ρ
μν − ∂νΓ

ρ
μρ + Γρ

σρΓ
σ
μν − Γρ

σνΓ
σ
μρ , (4.17)

where Γρ
μν = 1

2g
ρσ(∂μgνσ + ∂νgρσ − ∂σgμν) are the Christoffel symbols of the metric gμν .

Therefore, 2κLH = R − 2Λ depends on the metric and on both its first and its second
derivatives.

Let us calculate the variation of SH when the metric is varied. First we have (since
δ
√−g = −√−ggμνδg

μν/2)

δ

∫
R
√
−g d4x = δ

∫
Rμνg

μν√−g d4x

=

∫ (
Rμν − 1

2
Rgμν

)
δgμν

√
−g d4x+

∫
gμνδRμν

√
−g d4x .

(4.18)
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To calculate the scalar gμνδRμν , it is useful to work in a locally inertial frame where the Γμ
νρ

vanish (see Section 2.5). Then from (4.17) we find

gμνδRμν = gμν(∂ρδΓ
ρ
μν − ∂νδΓ

ρ
μρ) = DμV

μ with V μ = gνρδΓμ
νρ − gμνδΓρ

νρ . (4.19)

Since this is a vector equation, it holds in any frame (V μ is indeed a vector, because the
difference δΓρ

μν of two Christoffel symbols is a tensor under coordinate transformations; see
Section 2.4).

Then, recalling that for any vector V μ we have
√−gDμV

μ = ∂(
√−gV μ), we find

2κ δSH =

∫
(Gμν + Λgμν)δg

μν√−g d4x+

∫
∂μ(

√
−gV μ)d4x , (4.20)

where Gμν = Rμν − 1
2gμνR is the Einstein tensor. The last term, a divergence, does not

contribute to the equations of motion because it vanishes owing to Gauss’s theorem if the
variations of gμν and ∂ρgμν are taken to be zero on the boundary ∂M (in this the Hilbert
action differs from the action of an ordinary field theory, where only the variations of the
fields and not of their derivatives are taken to be zero on the boundary).7

The Gibbons–Hawking–York boundary term

The boundary term in (4.20) with V μ given in (4.19) is written as
∫

M∂μ(
√−gV μ)d4x =

∫

∂MV μdSμ, where, expanding the δΓ and then the Dνδgρσ,

V μ = (gμσgνρ − gμνgρσ)Dνδgρσ = (gμσgνρ − gμνgρσ)(∂νδgρσ − Γλ
νρδgλσ) .

Now let us work in a system of Gaussian coordinates (w, xi), where the boundary equation
is w = w0 and the metric is ds2 = ε dw2 + hijdx

idxj with ε = ±1 depending on whether
the boundary is time-like or space-like. Introducing also the extrinsic curvature of ∂M, Kij =
∂whij/2 [cf. (4.7)], it is easy to see that the boundary term becomes

∫

w=w0

V 0√−g d3x = −ε

∫

w=w0

[
2δ
(√

|h|K
)
−
√

|h|
(
Kij−hijK)δhij

)]
d3x .

Therefore, if the Hilbert action (4.16) is replaced by the Gibbons–Hawking–York action,

2κSGHY =

∫

M
(R− 2Λ)

√
−g d4x+ 2ε

∫

∂M
K
√

|h| d3x , (4.21)

we will have

2κ δSGHY =

∫

M
(Gμν + Λgμν)δg

μν√−g d4x+ ε

∫

∂M
(Kij − hijK) δhij

√
|h|d3x , (4.22)

and the last term will not contribute to the field equations if, in accord with the usual variational
principles, only the variation of the metric δhij is required to vanish at the boundary.

7It should be noted that only the Hilbert Lagrangian leads, at least in four dimensions (as shown by
Cartan), to second-order equations. The equations of motion derived from, for example, L = f(R) are of
fourth order.
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Let us now consider the source of the gravitational field, described by the action Sm.
The extremization of Sm with respect to the matter field gives the equations of motion; see
Section 3.3. Its extremization with respect to the gravitational field gμν ,

δSm = −1

2

∫
Tμνδg

μν√−g d4x

=
1

2

∫
Tμνδgμν

√
−g d4x ,

(4.23)

defines the energy–momentum tensor of the field, Tμν(= gμρgνσT
ρσ); see Section 3.4.

The extremization of the total action describing the system of gravitation plus matter,
S = Sm + SH, then leads naturally to the Einstein equations for the gravitational field: δSH

is given in (4.20) and δSm in (4.23); the variation δ(SH + Sm) will vanish for any variation
δgμν (which at the boundary is zero and has derivatives equal to zero) if the integrand is
zero, that is, if

Gμν + Λgμν = κTμν . (4.24)

The Palatini variation

Let us introduce the notation ĝμν ≡ √−ggμν and rewrite the Hilbert action (4.16) as (setting
Λ = 0)

2κSH =

∫

R̂ d4x , where R̂ = ĝμνRμν with Rμν = ∂ρΓ
ρ
μν − ∂νΓ

ρ
μρ + Γρ

σρΓ
σ
μν − Γρ

σνΓ
σ
μρ ,

(4.25)
which we view as a functional of the independent quantities ĝμν and Γρ

μν . Its variation will then
be given by

2κ δSH =

∫ (

Rμνδĝ
μν +

δR̂

δΓρ
μν

δΓρ
μν

)

d4x+

∫

∂M

∂R

∂∂σΓ
ρ
μν

δΓρ
μνdSσ

with
δR̂

δΓρ
μν

≡ ∂R̂

∂Γρ
μν

− ∂σ
∂R̂

∂∂σΓ
ρ
μν

.

If the action Sm describing the matter does not depend on Γρ
μν , then the total action SH + Sm

will be an extremum (for variations δΓρ
μν which cancel on the boundary of the domain) if

δR̂

δΓα
βγ

= 0 , that is, if ĝμνΓβ
μνδ

γ
α + ĝβγΓε

αε − ĝεγΓβ
εα − ĝεβΓγ

εα − ∂αĝ
βγ + δγα∂εĝ

βε = 0 . (4.26)

Introducing the covariant derivative D with connection Γμ
νρ, it can easily be shown that

∂μĝ
νρ = Dμĝ

νρ + ĝνρΓλ
μλ − ĝλρΓν

μλ − ĝνλΓρ
μλ . (4.27)

Therefore, (4.26) reduces to Dαĝ
βγ = 0, which means (Palatini, 1919) that the connection must

be the Levi-Civita connection (see Section 2.4):

Γρ
μν =

1

2
gρσ(∂μgνσ + ∂νgρσ − ∂σgμν) .

In general relativity there is therefore no need to require a priori that the connection be the
Levi-Civita connection; this will follow from the variation of the action, with the condition that
the matter Lagrangian depends only on the metric and not on its derivatives.
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A ‘special relativistic’ interpretation of gravitation

The Palatini variation allows the Hilbert action to be interpreted as the action of a tensor
field defined on a flat spacetime (Deser, 1970). Here is an alternative demonstration of this.

Let us work within special relativity and in an inertial frame where events are referenced
by the Minkowski coordinates Xμ and the length element is written as ds2 = ημνdX

μ dXν .
We consider the symmetric tensor fields ĝμν(Xσ) and Γρ

μν(X
σ). The field ĝμν is 2-fold con-

travariant, and so it transforms as ĝμν → ĝ′μν = Λ μ
ρ Λ ν

σ ĝρσ under Lorentz transformations
Xμ → X ′μ = Λμ

νX
ν . The field Γρ

μν transforms in a similar manner; see Book 2, Section 1.3.
Now the determinant ĝ with field components ĝμν (not to be confused with the trace ημν ĝ

μν

!) is easily seen to transform as a scalar: ĝ′ = ĝ. Finally, the (ordinary) derivatives ∂σΓ
ρ
μν are

the components of a tensor which is singly contravariant and 3-fold covariant under Lorentz
transformations.

The Hilbert action (4.25) can then be interpreted as the action describing the dynamics of
the fields ĝμν and Γμ

νρ in an inertial frame where the volume element is d4X. The action of the
matter, a Klein–Gordon field, for example, can be written [in four dimensions; see (4.31) below]
as Sf = −

∫ (
1
2
ĝμν∂μφ∂νφ+

√
−ĝ V (φ)

)
d4X.

The equations of motion are easily found. The equation for the field φ is

∂ν(ĝ
μν∂μφ)−

√
−ĝ

dV

dφ
= 0 . (4.28)

That for the field Γμ
νρ is given by (4.26) and has the solution

√
−ĝ Γρ

μν =
1

2
ĝρσ

(
∂μ

(√
−ĝĝνσ

)
+ ∂ν

(√
−ĝĝμσ

)
− ∂σ

(√
−ĝĝμν

))
, (4.29)

where ĝμν denotes the inverse of ĝμν , ĝμρĝ
νρ = δνμ. [Notice that ĝμν 	= ημρηνσ ĝ

ρσ.] The field
ĝμν transforms as a 2-fold covariant tensor under Lorentz transformations, as can be shown by
explicit calculation. Equation (4.29) is not a dynamical equation because the action depends
only linearly on the Γμ

νρ.
Finally, the equation of motion for the field ĝμν is

Rμν = κ(∂μφ∂νφ+
√

−ĝĝμνV (φ)) with Rμν ≡ ∂ρΓ
ρ
μν − ∂νΓ

ρ
μρ + Γρ

σρΓ
σ
μν − Γρ

σνΓ
σ
μρ. (4.30)

Now we introduce the auxiliary field gμν and its inverse gμν , defined as

gμν ≡ ĝμν/
√

−ĝ, gμρg
νρ=δνμ, so that g≡detgμν =(detgμν)−1= ĝ (in four dimensions). (4.31)

The equations of motion (4.28)–(4.30) in terms of these auxiliary quantities become those of
general relativity:

gμνDμDνφ− dV

dφ
= 0, Γρ

μν =
1

2
gρσ(∂μgνσ + ∂νgρσ − ∂σgμν), and Rμν = κ(∂μφ∂νφ+ gμνV (φ)),

where Dμ is the covariant derivative associated with the ‘metric’ gμν , Rμν is defined in (4.30)
as a function of the associated ‘Christoffel symbols’ Γρ

μν , and the free choice of the four field
components gμν due to the Bianchi identities is interpreted as a gauge invariance, just as in
electromagnetism.
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4.5 The gravitational Hamiltonian

The action of the gravitational field, which here, as an example, we couple to a scalar field, is

S =

∫ (
R

2κ
− 1

2
gμν∂μφ∂νφ− V (φ)

)√
−g d4x . (4.32)

As we saw in Section 4.2, the length element, when written in terms of the ADM variables,
that is, the lapse N , shift Ni, and 3-metric hij , reads

ds2 = −(N2 −NiN
i)dt2 + 2Nidx

i + hijdx
idxj , (4.33)

where the indices are raised using the inverse metric hij . The decomposition of the scalar
curvature R was given in (4.12), and S, up to boundary terms which we ignore because they
do not contribute to the equations of motion, becomes

S =

∫
L
√
−g d4x

with

⎧
⎪⎨

⎪⎩

L=
1

2κ
(K.K−K2+R̄)+

1

2N2
(φ̇−N i∂iφ)

2− 1

2
hij∂iφ∂jφ−V (φ)

Kij =
1

2N
(ḣij − D̄iNj − D̄jNi) and

√
−g = N

√
h ,

(4.34)

where hij is the metric induced on the surfaces t = const, Kij is their extrinsic curvature, and
R̄ is their scalar curvature. In addition, K = hijKij , K .K = KijKij , and the dot denotes
differentiation with respect to t.

The Hamiltonian of the system is now constructed in the usual way (see, for example,
Book 2, Sections 9.1 and 14.3 for an introduction to the Hamiltonian formalism in field
theory).

The variables are {hij , N,Ni, φ}, and N and Ni do not have conjugate momenta. The
conjugate momenta of hij and φ are

pij ≡ ∂(L√−g)

∂ḣij

=

√
h

2κ
(Kij −Khij) , π ≡ ∂(L√−g)

∂φ̇
=

√
h

N
(φ̇−N i∂iφ) . (4.35)

The ‘velocity extensions’ ḣij and φ̇ are obtained by inversion:

ḣij =
4κN√

h

(
pij −

1

2
phij

)
+ D̄iNj + D̄jNi , φ̇ =

N√
h
π +N i∂iφ . (4.36)

The Hamiltonian of the system is H =
∫
(pij ḣij +πφ̇−√−gL)d4x ≡

∫
H√−g d4x, where the

Hamiltonian density H√−g is, again up to a divergence, given by

√
−gH =

√
h(NC +N iCi)

with

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C =
2κ

h

(
p.p− 1

2
p2
)
− 1

2κ
R̄+

1

2h
π2 +

1

2
hij∂iφ∂jφ+ V (φ) ,

Ci = −2D̄j

(
pji√
h

)

+
π√
h
∂iφ .

(4.37)
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The Hamilton equations then are

⎧
⎪⎨

⎪⎩

C = 0 , Ci = 0 ,

δ(
√−gH)

δpij
= ḣij ,

δ(
√−gH)

δhij
= −ṗij ,

δ(
√−gH)

δπ
= φ̇ ,

δ(
√−gH)

δφ
= −π̇ .

(4.38)

They are equivalent to the Einstein equations:

κ−1Gμν = ∂μφ∂νφ−
(
1

2
(∂φ)2 + V (φ)

)
.

The proof can be found in the references cited in footnote 6.
We see that on the mass shell, that is, when the equations of motion are satisfied, we

have
√−gH = 0 up to divergences. The energy of the system of gravitational field plus

matter, H =
∫
H√−g d4x, then reduces to a boundary term. This result is consistent with

the equivalence principle, which states that a gravitational field can be effaced locally, and
so its energy cannot be localized, as we shall see in detail in the following chapter.
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5

Conservation laws

As already mentioned when we introduced matter energy–momentum tensors in Section 3.4, the
concepts of energy, momentum, and angular momentum are related to the invariance properties of
the solutions of the equations of motion under spacetime translations or rotations. Here we shall
study in greater detail how these ‘spacetime symmetries’ can generate first integrals of the equations
of motion which simplify their solution and also make it possible to define conserved quantities, or
‘charges’, characterizing the system.

5.1 Isometries and Killing vectors

A (pseudo-)Riemannian metric gij(x
k) possesses an isometry if it is invariant under a dis-

placement from point P to point P̃ along a certain path. Let us explain what this means.
We consider the length element ds2 = gijdx

idxj between two neighboring points P and

P + dP , and we transport P and P + dP along the line integral of a vector field ξi at P̃
and P̃ + dP̃ . The length element between P̃ and P̃ + dP̃ is ds̃2. Since x̃k = xk + ξk, we
have δgij ≡ gij(x̃

k) − gij(x
k) = ξk∂kgij and δ(dxk) ≡ dx̃k − dxk = (∂iξ

k)dxi. The metric is
invariant and therefore possesses an isometry defined by ξi if δ(ds2) ≡ ds̃2 − ds2 = 0, that
is, if

ξm∂mgij + gmi∂jξ
m + gmj∂iξ

m = 0 ⇐⇒ Djξi +Diξj = 0 . (5.1)

These equations, whose equivalence is easily shown, state that the Lie derivative Lξgij of
the metric along the vector ξi is zero. The vector ξi along which the metric is invariant is a
Killing vector, and (5.1) constrains both ξi and the metric.

Another (passive rather than active) way of expressing the conditions for the existence
of symmetries of a space is to make an infinitesimal change of coordinate xk → x̃k = xk + ξk

(we have already seen this in Book 2, Section 8.5 and also Section 3.4). The components
gij(x

k) of the metric in the system {xk} at the point P with coordinates xk are related to its
components g̃ij(x̃

k) at P in the system {x̃k} by the transformation law for 2-fold covariant
tensors:

gij(x
k) =

∂x̃k

∂xi

∂x̃l

∂xj
g̃kl(x̃

p) = (δki + ∂iξ
k)(δlj + ∂jξ

l)g̃kl(x̃
p) . (5.2)

Now if we write g̃kl(x̃
p) = g̃kl(x

p)+ ξm∂mgkl, that is, if we introduce the metric at the point
P̃ , which in the system {x̃k} has the same coordinates as the point P in the system {xk},
we find

gij(x
k) = g̃ij(x

k) +Djξi +Diξj . (5.3)

If gij(x
k) = g̃ij(x

k), the space possesses a symmetry, and we recover the Killing equation
(5.1).
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Isometries of Minkowski spacetime

In Book 2, Section 8.5 we saw that Minkowski spacetime M4 possesses 10 Killing vectors:
four translations, three spatial rotations, and three boosts.

The fact that the Minkowski metric possesses four translation Killing vectors is a consequence
of the spatio-temporal homogeneity of flat space, and the fact that it possesses six rotational
ones is a consequence of the isotropy of the space.

We can deduce from the Killing equations that D̃αD̃
αξβ = 0 (because Minkowski covariant

derivatives commute). To determine a Killing field everywhere, it is therefore sufficient to know
the value of the field and its first derivatives at a point, which corresponds to 10 initial conditions
(since the 16 first derivatives obey the 10 Killing equations). Therefore, the maximum number of
Killing vectors that a metric can possess is 10 [or, more generally, N(N +1)/2 in N dimensions].
Minkowski spacetime is therefore maximally symmetric.

In curved space the Killing equation is very restrictive because we have1

DiDjξk = Rl
ijkξl . (5.4)

Therefore, the values of ξi and its derivatives at a point determine all its higher derivatives at
this point and thus its value at all points. Since in a manifold of N dimensions the vector ξi

has N independent components and its derivative has N(N − 1)/2 of them [owing to (5.1)],
we see that an N -dimensional manifold possesses at most N(N + 1)/2 independent Killing
vectors.

A space may, of course, not possess the maximum number of possible Killing vectors.
Indeed, we have in particular2 that the ξi and their derivatives are constrained by

(DiR
m
jkl −DjR

m
ikl)ξm + (δni R

m
jkl − δnj R

m
ikl + δnl R

m
kji − δnkR

m
lji)Dnξm = 0 . (5.5)

5.2 First integrals of the geodesic equation

The motion of a test particle in a gravitational field is governed by the geodesic equation,
which is written in covariant form as

uμDμuν = 0 or
duν

dτ
=

1

2
uμuρ∂νgμρ , (5.6)

where uμ = dxμ/dτ is the 4-velocity and τ the proper time; see (3.4). We suppose that in
the chosen coordinates xμ, the ‘adapted’ coordinates, none of the metric coefficients depends
on a given coordinate xi, which is termed cyclic. We then have the first integral

ui = const along the trajectory because ∂i gμρ = 0, ∀μ, ρ . (5.7)

For example, if the spacetime is stationary, that is, if in adapted coordinates none of the
metric coefficients gμρ depends on the time coordinate t, then the geodesic equation possesses

1In fact, for any form [cf. (2.10)] we have (DiDj −DjDi)ξk = −Rm
kijξm, which, owing to the first Bianchi

identity [Rk
(lji)

= 0; see Section 2.6] and the fact that ξi is a Killing vector and therefore satisfies the

condition (5.1), implies that DiDjξk +DjDkξi+DkDiξj = 0 or DiDjξk −DjDiξk = −DkDiξj , from which
(5.4) follows.

2Using (5.1) and (5.4) and the fact that DiDjDkξl − DjDiDkξl = −Rm
kijDmξl − Rm

lijDkξm; see, for

example, Stephani (1990).
A detailed discussion of maximally symmetric spaces will be given in Section 17.1.



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 445 — #457

Chapter 5: Conservation laws 445

a first integral ut = const, which we identify as the energy per unit mass of the particle. Sim-
ilarly, if none of the gμρ depends on the azimuthal coordinate φ, then the angular momentum
uφ will be conserved.

Now, if none of the metric coefficients depends on the coordinate xi, the vector ξμ(i) = δμi
is a Killing vector. Indeed, we then have ξμ(i) = gμi, and so

Dμξρ(i) +Dρξμ(i) = ∂μgρi + ∂ρgμi − 2Γσ
μρξσ(i) = ∂igμρ = 0 , (5.8)

because 2Γσ
μρξσ(i) = ξσ(i)(∂μgρσ + ∂ρgσμ − ∂σgμρ) with ξσ(i) = δσi .

In an arbitrary coordinate system, possible invariances of the spacetime will no longer be
apparent because the metric coefficients can depend on all the coordinates. However, if there
exists a Killing vector ξμ such that Dμξν +Dνξμ = 0, then, taking its scalar product with
the geodesic equation, we will have

ξμ
Duμ

dτ
=

D(ξμu
μ)

dτ
− uμDξμ

dτ
=

d(ξμu
μ)

dτ
− uμuνDνξμ =

d(ξμuμ)

dτ
= 0 , (5.9)

because uμuνDνξμ = uμuν(Dνξμ +Dμξμ)/2 = 0. In adapted coordinates where ξμ = δμi , we
recover (5.7).

The case of a static, spherically symmetric field

As we shall see in detail in Section 6.1, the length element of a static, spherically symmetric
spacetime can be written in adapted coordinates as

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2) . (5.10)

The vectors ξμ(t) = (1, 0, 0, 0) and ξμ(φ) = (0, 0, 0, 1) are two Killing vectors respectively represent-

ing the stationarity of the spacetime and the symmetry of the spacetime under rotation about
the ‘z axis’. From (5.7) and (5.9) we then have the two first integrals

ut = −eν(r)
dt

dτ
≡ −E and uφ = r2 sin2θ

dφ

dτ
≡ L , (5.11)

where the constants E and L are interpreted as the specific energy and the angular momentum
of the particle in the field.

5.3 Isometries and energy–momentum

The equations of motion of a massive system in the presence of a gravitational field are
derived from the conservation law of its energy–momentum tensor DνT

ν
μ = 0, as we have

seen in Section 3.2 in the case of fluids and in Section 3.3 in the case of matter fields.
If the gravitational field possesses symmetries, that is, if the spacetime possesses isometries

and therefore Killing vectors ξμ, it is possible to extract first integrals from the law of motion
DνT

ν
μ = 0. Indeed, following the reasoning of Book 2, Section 8.5 for flat spacetime but an

accelerated reference frame, we have

0 = ξμDνT
ν
μ = Dν(ξ

μT ν
μ )− TμνDνξμ = Dν(ξ

μT ν
μ ) (5.12)
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because the Killing vector ξμ satisfies Dμξν +Dνξμ = 0. Then, using (3.21) we can write

Dν(ξ
μT ν

μ )=0 ⇐⇒ ∂ν(
√
−gξμT ν

μ )=0 ⇐⇒ ∂t(
√
−gξμT 0

μ)=−∂i(
√
−gξμT i

μ) . (5.13)

We integrate this over dx1dx2dx3 ≡ drdθdφ = d3x and use the divergence theorem (3.15) to
obtain

d

dt

∫

Σ

ξμT 0
μ

√
−g d3x = −

∫

S

ξμT r
μ

√
−g dθdφ . (5.14)

The right-hand side, evaluated on the 2-sphere S bounding the 3-volume Σ, is zero if S is
located outside the fluid or if the fields fall off sufficiently rapidly at spatial infinity. We then
find that

Qξ ≡ −
∫

Σ

ξμT 0
μ

√
−g d3x (5.15)

is a constant of the motion, that is, dQξ/dt = 0.

The case of a static, spherically symmetric field

As in (5.10), we consider a static, spherically symmetric spacetime in which the length
element is written as

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2) =⇒
√
−g = e

1
2
(ν+λ)r2 sin θ . (5.16)

Let us consider a perfect fluid at rest in this field. Its energy–momentum tensor is [cf. Section 3.2]
Tμν = (ε+ p)uμuν + pgμν , where ε(r) and p(r) are the energy density and pressure of the fluid,
and, since the fluid is static, its 4-velocity is uμ = (u0, 0, 0, 0) with u0u0 = −1. Therefore,
T 0
0 = −ε(r).

The vector ξμ(t) = (1, 0, 0, 0) is the Killing vector representing the static nature of the space-

time. The associated conserved quantity (5.15), which we can view as the energy of the fluid in
the presence of the gravitational field, is then given by

Qt = 4π

∫ R

0

ε e
1
2
(ν+λ)r2dr . (5.17)

It should be noted that this quantity is not what is called the proper mass, which is defined as

Mp = 4π

∫ R

0

ε e
λ
2 r2dr , (5.18)

where e
λ
2 r2 sin θ drdθdφ is the volume element on the surface t = const.

5.4 Noether charges
In Section 3.4 we defined the (symmetric) energy–momentum tensor Tμν of a matter field immersed
in a gravitational field. We saw that it is conserved when the equations of motion are satisfied:

DνT
ν
μ = 0 or ∂ν T̂

ν
μ =

1

2
T̂ νρ ∂μgνρ , where T̂ ν

μ ≡
√
−g T ν

μ . (5.19)

In general, that is, in the absence of a Killing vector, it is not possible to extract from (5.19) a

quantity conserved in the motion (for example, the energy) by integrating over spacetime. Moreover,
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it is necessary to take into account the contribution of the gravitational field ‘responsible’ for the

fact that ∂μgνρ cannot be cancelled out everywhere. In order to define conserved quantities of a

gravitationally interacting system, we shall study how the total action S = Sc + Sg of the matter

and the gravitational field transforms under displacements (rather than considering just the matter

action, as in Section 3.4).3

As we saw in Section 4.4, the Hilbert action of the gravitational field, SH ∝
∫√−gR d4x,

even though it contains second derivatives of the metric, does however lead to second-order
equations, the Einstein equations. The reason is that the second derivatives of the metric
present in

√−gR combine to form a divergence. Indeed, it is easily shown (using the relations
dg = −ggμνdg

μν and ∂ρg
μν = −Γμ

λρg
λν − Γν

λρg
μλ) that

R̂ = Ĝ+ ∂μv̂
μ with

{
G = gμν

(
Γλ
μρΓ

ρ
νλ − Γρ

μνΓ
λ
ρλ

)
,

vμ = gνρΓμ
νρ − gμνΓρ

νρ ,
(5.20)

where from now on a hat will denote multiplication by
√−g: f̂ ≡ √−g f . The first term

Ĝ contains only first derivatives of the metric, and the second, ∂μv̂
μ, is a divergence which

does not contribute to the field equations. Therefore, the Euler–Lagrange equations obtained
from extremizing the Hilbert action are indeed of second order.4

However, it is not a very good idea to choose (as Einstein did)
∫
Ĝ d4x as the gravitational

action, because G is not a scalar, since the Christoffel symbols do not behave as tensors
under general coordinate transformations. However, it is easy to covariantize G using the
fact that differences of the Christoffel symbols are tensors; cf. (2.21). We therefore introduce
another spacetime M̄, called the reference spacetime, with given metric ḡμν in the selected
coordinates xμ.

We now consider the action [noting the resemblance between vμ in (5.20) and the vec-
tor kμ]

Sg = SH − S̄H +
1

2κ

∫
∂μk̂

μ d4x, where SH =
1

2κ

∫
R̂ d4x and S̄H =

1

2κ

∫
R̂ d4x ,

and where kμ = −
(
gνρΔμ

νρ − gμνΔρ
νρ

)
with Δμ

νρ ≡ Γμ
νρ − Γ̄μ

νρ .

(5.21)

The terms added to the Hilbert action do not contribute to the field equations, which thus
remain the Einstein equations (the first, S̄H, because Sg is extremized with respect to gμν
and not ḡμν , and the second because the integrand is a divergence).

3We shall follow the line of attack of Katz et al. (1997), which is the covariantized version of the approach
of Einstein (1918) and Freud (1939).

Other approaches can be found in, for example, Wald (1984) (who used the Komar integrals); Landau and
Lifshitz (1972) [who used their ‘pseudo-tensor’ (1962) or the Einstein tensor (1918)]; and also Arnowitt, Deser,
and Misner (1962) (the Hamiltonian formalism). See also the references cited in footnote 6 of Section 4.2.

For a comparison of the various approaches, see Poisson (2007), Jaramillo and Gourgoulhon (2010), or
Blau (2016).

For a review, see, for example, Szabados (2004).
4Comparing (4.18) and (5.20), we necessarily have

∂Ĝ

∂gμν
− ∂ρ

∂Ĝ

∂∂ρgμν
= Ĝμν and

∂Ĝ

∂gμν
− ∂ρ

∂Ĝ

∂∂ρgμν
= −Ĝμν ,

where Gμν is the Einstein tensor.
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The Einstein and Gibbons–Hawking–York actions

Setting 2κSg ≡
∫
L̂g d

4x with L̂g ≡ R̂− R̂+ ∂μk̂
μ, using (5.20) and (5.21) we can show that

L̂g = Ĝ+ ∂μ(v̂
μ + k̂μ)− R̂ = Ĝ+ ∂μ

(
ĝνρΓ̄μ

νρ − ĝμν Γ̄ρ
νρ

)
− R̂

= ĝμρ
(
Δλ

μσΔ
σ
ρλ −Δσ

μρΔ
λ
σλ

)
+
(
ĝμν − ĝ

μν
)
R̄μν .

Therefore, 2κSg is indeed the covariantized version of the Einstein action
∫
Ĝ d4x. It has the

advantage over the Hilbert action of leading to the Einstein equations when only the metric (and
no longer its derivatives) is fixed at the boundary.

In Gaussian coordinates, where the length element is written as ds2 = ε dw2 + hijdx
idxj

and the boundary equation is w = w0, we have
∫
∂μk̂

μ d4x =
∫

w0
kw
√

|h| d3x with, cf. (5.21),

kw = 2ε
[
K − K̄ − 1

2
(hij − h̄ij)K̄ij

]
, where Kij = 1

2
∂whij and K̄ij = 1

2
∂wh̄ij are the extrinsic

curvatures of the boundary immersed respectively in M and M.
The boundary term appearing in the action (5.21) is therefore different from that of the

Gibbons–Hawking–York action (4.21), 2κSGHY =
∫
R̂ d4x + 2ε

∫
K
√

|h| d3x. The latter also
leads to the Einstein equations when only the metric is fixed on the boundary; cf. (4.22).

In the transformation xρ → x̃ρ = xρ + ξρ the metrics of M and of M̄ change by δξgμν
and δξ ḡμν , respectively. Then using (4.18) and (4.19) we have

2κ δξSg =

∫ (
Ĝμνδξg

μν − Ĝμνδξ ḡ
μν + ∂μ(V̂

μ − V̂
μ

+ δξk̂
μ)
)
d4x . (5.22)

In Section 3.4 we saw how a metric and a vector vary under a displacement [see (3.29) and
footnote 5 of Section 3.4; these are their ‘Lie derivatives’]: δξgμν = Dμξν + Dνξμ (and so

δξ ḡμν = D̄μξν + D̄νξμ) and δξk
μ = ξνDνk

μ − kνDνξ
μ. Since moreover δξL̂g = ∂μ(L̂gξ

μ), an
easy calculation discussed in detail below shows that (5.22) can be reduced to

∫
∂μ

(
∂ν Ĵ

[μν]
)
d4x = 0 with κĴ [μν] = D[μξ̂ν] −D[μξ̂ν] + ξ̂[μkν] , (5.23)

where the brackets denote antisymmetrization: J [μν] ≡ 1
2 (J

μν − Jνμ). Here J [μν] is the Katz
superpotential.

The Katz superpotential

Here we shall show how to transform (5.22) into (5.23) using the fact that δξgμν = Dμξν +
Dνξμ and δξk

μ = ξνDνk
μ − kνDνξ

μ.

First of all we have Ĝμνδξg
μν = −2GμνD

μξ̂ν = −2Dμ(G
μ
ν ξ̂

ν) + 2ξ̂νDμG
μ
ν = −2∂μ(G

μ
ν ξ̂

ν),

because δgμν = −2D(μξν), DμG
μ
ν ≡ 0 (the Bianchi identities), and DμV̂

μ = ∂μV̂
μ. (The fact

that Dμgνρ ≡ 0 means that we can place the hat wherever we want.)
We can also show that V μ defined in (4.19), V μ = gνρδΓμ

νρ−gμνδΓρ
νρ, can also be written as

V μ = (gμνgρσ − gμρgνσ)Dρδξgνσ .



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 449 — #461

Chapter 5: Conservation laws 449

We then have V̂ μ = 2ĝμ[νgρ]σDρδgνσ = 4ĝμ[νgρ]σDρD(νξσ) = DνD
μξ̂ν + �ξ̂μ − 2DμDν ξ̂

ν =

−2∂ν(D
[μξ̂ν]) + 2Rμ

ν ξ̂
ν by the commutation rule for covariant derivatives (2.9), 2D[μDν]ξ

ρ =

Rρ
σμνξ

σ, and because DμF̂
[μν] = ∂μF̂

[μν].

Finally, we find δξk̂
μ = kμDν ξ̂

ν + ξ̂νDνk
μ − kνDν ξ̂

μ = −2∂ν(ξ̂
[μkν]) + ξ̂μDνk

ν .

Since moreover the Lie derivative of a scalar density L̂g is δξL̂g = ∂μ(Lg ξ̂
μ), using Lg given

in (5.21) we can write (5.22) as

∫

∂μ

(
Rξ̂μ −Rξ̂μ + ξ̂μDνk

ν
)
d4x = 2

∫

∂μ

(
−Gμ

ν ξ̂
ν +Gμ

ν ξ̂ν
)
d4x

+2

∫

∂μ

(
−∂ν(D

[μξ̂ν]) +Rμ
ν ξ̂

ν
)
d4x− 2

∫

∂μ

(
−∂ν(D[μξ̂ν]) +Rμ

ν ξ̂ν
)
d4x

+

∫

∂μ

(
−2∂ν(ξ̂

[μkν]) + ξ̂μDνk
ν
)
d4x .

Since Gμ
ν = Rμ

ν − 1
2
δμνR, putting everything on the left-hand side we see that (5.22) reduces

to (5.23).

The identities (5.23) lead to conservation laws. Indeed, the first thing to note is that, as
in Section 3.4, the vector ξμ does not need to be infinitesimal. Using the divergence theorem,
(5.23) becomes, in adapted coordinates [see (3.15)–(3.18) and Fig. 3.1],

0 =

∫
∂μ

(
∂ν Ĵ

[μν]
)
d4x =

∫

∂M
∂νJ

[μν]dSμ

=

∫

Σ

d3x ∂iĴ
[0i]
∣∣∣
t2

t1
+

∫ t2

t1

dt

∫

S

∂ν Ĵ
[rν] dθ dφ .

(5.24)

If the second term in (5.24) vanishes, that is, if there is no flux through the 2-sphere S at
infinity, then applying the divergence theorem again we find that

Q ≡ −
∫

Σ

d3x ∂iĴ
[0i] = −

∫

S

Ĵ [0r] dθ dφ (5.25)

is a constant [the expression for Ĵ [μν] being given in (5.23)].5

The Freud superpotential and Einstein pseudo-tensor

It is easy to show (using Dμξ
ν = D̄μξ

ν + Δν
μρξ

ρ) that the Katz superpotential (5.23) can
also be written as

κĴ [μν] =
(
ĝρ[μ − ĝρ[μ

)
D̄ρξ

ν] + ξ̂[μgν]ρΔσ
ρσ + ξ̂[νgρσΔμ]

ρσ + ξ̂σgρ[μΔν]
ρσ .

5It may have been noticed that we have not added the matter contribution Sc to Sg . This is because Sc

does not contribute to the charge Q since, as shown in Section 3.4 (at least in the cases of the Klein–Gordon
and Maxwell fields), the integrands of both sides of (3.32) and (3.35) vanish identically (and the same occurs
for perfect fluids).
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The first term vanishes at spatial infinity (where Ĵ [μν] is evaluated) if the reference spacetime
M̄ is chosen to asymptotically approach M, and the three following terms are the covariantized
version of the Freud superpotential (1939).

Now the current Ĵμ ≡ ∂νJ
[μν] derived from the superpotential Ĵ [μν], which is conserved

because Ĵ [μν] is antisymmetric, reduces to the following when ḡμν = ημν and if ξμ is a constant
vector:

κĴμ = (Gμ
ν + tμν )ξ̂

ν with ∂μĴ
μ = 0 ,

where the Einstein equations give Gμ
ν = κTμ

ν , and tμν is the Einstein pseudo-tensor, quadratic in
the Christoffel symbols. Katz et al. (see footnote 3 above) showed that this pseudo-tensor is the
(non-symmetrized) Noether canonical (pseudo)-tensor associated with the Einstein ‘Lagrangian’

Ĝ:

2κ t̂μν = δμν Ĝ− ∂Ĝ

∂∂μgρσ
∂νgρσ .

This Einstein pseudo-tensor is only useful for defining the energy (because ξμ must be constant

in Minkowski coordinates) and, in contrast to the superpotential Ĵμν , it does not permit the
angular momentum of a gravitational system to be defined [see the discussion of this subject by
Landau and Lifshitz (1972)].

In the absence of gravitational radiation, the charge Q, defined in (5.25) by an integral
over the 2-sphere at infinity, is constant for any vector ξμ. However, let us suppose that
spacetime is asymptotically flat. Then the vector ξμ representing time translations will be
associated with a charge Q ≡ Mc2, where M will naturally be identified as the inertial
mass of the gravitational system in question. In addition, the vector representing rotations
about the (Minkowski) ‘axis’ Oz will be associated with a charge Jz identified as the angular
momentum of the system, and so on.

We again find that these conserved quantities are defined by integrals over the boundary
of spacetime, as suggested by the analysis of the Hamilton equations made in Section 4.5.

The Komar integrals

The first term of the Katz superpotential (5.23) is also related to the Komar integrals; see
footnote 3 above.

Let us consider the integrals over the 2-sphere at infinity:

κIξ ≡ −αξ

∫

S

D[0ξ̂r] dθ dφ , (5.26)

where αξ is a constant which may depend on the choice of vector ξμ. We can transform them

into volume integrals using the ‘inverse’ Stokes theorem: κIξ = −αξ

∫

Σ
Dμ(D

[0ξμ])
√−g d3x.

If now spacetime is stationary everywhere and, for example, axially symmetric, we take
the ξμ to be the Killing vectors corresponding to these isometries (see Section 5.1). Since now

D(μξν) = 0, we haveDμ(D
[νξμ]) = −�ξν . However, for any Killing vector we have �ξν = −Rν

λξ
λ,

where Rμ
ν is the Ricci tensor; see Section 5.1. Therefore, κIξ = −αξ

∫

Σ
R0

μξ
μ√−g d3x.

The Einstein equations Rμ
ν = κ

(
Tμ
ν − 1

2
δμν T

)
then give

Iξ = −αξ

∫

Σ

(T 0
μ − 1

2
δ0μT )ξ

μ√−g d3x . (5.27)
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Let us assume that the fluid is perfect [Tμν = (ε+p)uμuν +p gμν ] and static (u0u0 = −1). In the
adapted coordinates where the metric coefficients are independent of time, the Killing vector ξμ

expressing the static nature has the components ξμ(t) = (1, 0, 0, 0), and I(t) is then given by the

Tolman formula (1930):

I(t) =

∫

Σ

(ε+ 3p)
√
−g d3x , (5.28)

where we have chosen α(t) = +2 so that I(t) is equal to the mass of the source of the gravitational
field in the Newtonian approximation, when p � ε.

As we shall see in some examples below, the Komar integral (5.26) also gives the angular
momentum of a rotating stationary body [the Killing vector ξμ(φ) = (0, 0, 0, 1) is then the one

which expresses the axial symmetry of the spacetime] if we choose α(φ) = −1.

The strong equivalence principle

In general relativity the ‘inertial’ mass of matter, the sum of the masses of its elementary
constituents and their non-gravitational interaction energy (electromagnetic, for example), which
is what is measured in a locally inertial frame, is encoded in its energy–momentum tensor Tμν ,
which is a ‘local’ quantity since it is a function of the point.

This local energy density curves spacetime according to the Einstein equations, and this
curvature is interpreted as the gravitational field created by the matter. The energy of this
gravitational field cannot be described by a tensor. Indeed, it cannot be localized because the
equivalence principle requires that the gravitation be locally effaced in freely falling reference
frames.

Here we have revealed the remarkable fact that the total energy of the matter and the
gravitational field that it creates, that is, the inertial massMin of the system, is in fact determined
by the asymptotic behavior of the gravitational field.

On the other hand, the asymptotic behavior of the metric, in particular that of the component
g00 ≈ −(1+2U/c2), where U is the Newtonian potential, also determines the gravitational mass
of the system, because in lowest order U ≈ −GMgrav/r.

In the following chapters we shall give some concrete examples which demonstrate that
Min = Mgrav, indicating that general relativity satisfies the strong equivalence principle, namely,
that the gravitational mass equals the inertial mass when all interactions, including gravity, are
taken into account.
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Part II

The Schwarzschild solution and
black holes

I have read your paper with the utmost interest. I had not expected that one could formulate
the exact solution of the problem in such a simple way. I liked very much your mathematical
treatment of the subject. Next Thursday I shall present the work to the Academy with a few
words of explanation.

A. Einstein to K. Schwarzschild, January 1916,
cited by J. Eisenstaedt, in Einstein and the History of General Relativity:

Einstein Studies, Vol. 1. Birkhauser, Boston (1989).
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6

The Schwarzschild solution

To find the gravitational potential U produced by a spherically symmetric object in the Newtonian
theory, one has to solve the Poisson equation 
U = 4πG, where the matter density  and U
depend only on the radial coordinate r and possibly on the time t. Outside the source the solution
is U = −GM/r, where M = 4π

∫
 r2dr is the source mass. In general relativity the problem is to

find the ‘spherically symmetric’ spacetime solutions of the Einstein equations, and the analog of the
vacuum solution U = −GM/r is the Schwarzschild metric.

6.1 The Schwarzschild metric

Static and spherically symmetric spaces

A spacetime is said to be stationary if there exist coordinate systems in which none of the
metric coefficients depends on the time-like coordinate t. The length element is then written as
(where i = {1, 2, 3})

ds2 = g00(x
k) dt2 + 2g0i(x

k) dt dxi + gij(x
k)dxidxj .

A spacetime is said to be static if the length element is, in addition, invariant under time reversal,
that is, if g0i = 0:

ds2 = g00(x
k) dt2 + gij(x

k) dxidxj .

A spacetime is spherically symmetric if there exist spatial coordinates xi ≡ (R, θ, φ) (where the
angles θ and φ respectively vary from 0 to π and from 0 to 2π) such that the spatial sections
t = const can be ‘foliated’ by 2-spheres labeled by R,

ds2|t = gRR(R)dR2 + f(R)(dθ2 + sin2θ dφ2) ,

where the coordinate R can be redefined such that, for example, f(R) = r2 with r ∈ [0,∞[.
Spacetimes whose length element can be cast into this form possess a Killing vector (see

Section 5.1) corresponding to invariance under time translations and having components ξμ(t) =

(1, 0, 0, 0), and three other Killing vectors corresponding to the isometries of 2-spheres at constant
t and r [if we limit ourselves to the θ = π/2 ‘plane’, they reduce to ξμ(φ) = (0, 0, 0, 1); see (5.10)].

Let us consider a static, spherically symmetric spacetime. In Schwarzschild–Droste adapted
coordinates, the length element is written as

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2θdφ2) , (6.1)

where ν and λ are functions only of r. The circumference of a sphere of radius r is 2πr,
but since spacetime is a priori curved, the ratio of the circumference of a sphere and its

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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proper radius,
∫
dr exp(λ/2), is not necessarily 2π. Moreover, the relation between the time

coordinate t and the proper time τ of clocks at rest in the chosen system can vary from point
to point as τ = t exp(ν/2). These functions ν and λ must be determined by the Einstein
equations.

Outside the matter the Einstein equations are Gμν = 0. The Einstein tensor is calculated
using its definition as a function of the Christoffel symbols (see the definitions of the Ricci
and Einstein tensors in Section 2.6, the definition of the Riemann tensor in Section 2.2, and
the definition of the Christoffel symbols in Section 2.4):

Γt
tr =

ν′

2
; Γr

rr =
λ′

2
; Γθ

θr = Γφ
φr =

1

r
; Γr

tt =
1

2
eν−λν′ ;

Γr
θθ =

Γr
φφ

sin2 θ
= −re−λ ; Γϕ

θϕ = −
Γθ
ϕϕ

sin2 θ
=

cos θ

sin θ
,

(6.2)

where the prime denotes the derivative with respect to r. From this we can extract the
nonzero components of the Einstein tensor:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Gtt =
1

r2
eν

d

dr

[
r
(
1− e−λ

)]
; Grr = − 1

r2
eλ
(
1− e−λ

)
+

1

r
ν′;

Gθθ =
1

2
r2e−λ

[

ν′′ +
(ν′)2

2
+

ν′

r
− ν′λ′

2
− λ′

r

]

; Gφφ = sin2 θ Gθθ .

(6.3)

Integration of Gtt = 0 gives e−λ = 1 − rg/r, where rg is an integration constant, and
integration of Grr = 0 gives ν = −λ+C. We then see that the equation Gθθ = 0 is satisfied
identically (actually, owing to the Bianchi identities). Finally, the constant C can be absorbed
in a redefinition of the coordinate t so that in the end

ds2 = − (1− rg/r) c
2dt2 +

dr2

1− rg/r
+ r2(dθ2 + sin2θdφ2) . (6.4)

This is the Schwarzschild metric (1916).1

When r → ∞ this metric tends to the Minkowski metric in spherical coordinates. The
coordinates (t, r, θ, φ) then measure the proper time of observers at infinity, as well as the
proper distances separating them. In the Newtonian limit we must have −g00 ∼ 1 + 2U/c2,
where U = −GM/r is the Newtonian potential (see Sections 1.6 and 4.1). The Schwarzschild

1The derivation we have given here is that of Droste (December 1916). Schwarzschild himself had solved
the Einstein equations using the coordinate system (x0, x1, x2, x3) in which the static, spherically symmetric
metric is written as

ds2 = −f0dx
2
0 + f1dx

2
1 + f2[dx

2
2/(1− x2

2) + (1− x2
2)dx

2
3] ,

where the fi = fi(x1) satisfy f0f1f2
2 = 1, so that the metric determinant is −1 (this condition had been

imposed by Einstein and simplifies, among other things, the calculation of the Ricci tensor). Once the fi
were obtained, he made the change of coordinates x3 = φ, x2 = cos θ, and r = (3x1 + r3g)

1/3 so as to write

the metric in the form (6.4). However, in his mind the ‘center’ of the field was at x1 = 0 and not at r = 0.
See Schwarzschild (1916) and Schwarzschild (1916a) for the English translation of his two articles.
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radius rg must therefore be identified as 2GM/c2, where M is the (gravitational) mass of
the central object giving rise to the field:

rg =
2GM

c2
≡ 2m. (6.5)

We note that the metric coefficients are singular at r = rg, which is therefore called the
Schwarzschild singularity. However, like Schwarzschild himself, we note that the radius of a
star like the Sun (R� ≈ 700,000 km), within which the vacuum solution is no longer valid,
is much larger than r�g ≈ 3 km.

The Birkhoff–Jebsen theorem

Let us recall the hypotheses made by Schwarzschild in obtaining his solution. He assumed
that the (four-dimensional) spacetime is static and spherically symmetric, and that it is ‘Ricci-
flat’ (Rμν = 0). We note that it is not necessary to assume that spacetime is asymptotically
flat.

Jebsen (in 1921) and then, independently, Birkhoff (in 1923) showed that the unique (local)
solution of the vacuum Einstein equations which is only spherically symmetric (and not neces-
sarily static) is in fact the Schwarzschild solution. This is the relativistic version of one of the
aspects of Newton’s theorem; see Book 1, Section 11.4.

Exercise 1: Show that any two-dimensional metric is diagonalizable and that therefore we can
use the following ansatz for the metric of a spherically symmetric spacetime: ds2 = −gtt(t, r)dt

2+
grr(t, r)dr

2 + r2(dθ2 + sin2θdφ2).
Exercise 2: Now, by calculating the Einstein tensor, show that the vacuum equations require

that λ and ν be independent of time, and so their solution is the Schwarzschild solution.

6.2 Static, spherically symmetric stars

In the study of stellar structure, that is, the stellar mass and radius as a function of the state of

the matter composing a star, general relativity is needed only if the parameter rg/R, where R is the

stellar radius, is of order 1. (We note that this ratio is 1.4 × 10−9 for the Earth and 4 × 10−6 for

the Sun, but about 0.2 for neutron stars.) We see from the expression for the Schwarzschild metric

that this means that the spacetime must be sufficiently curved in order for relativistic effects to

significantly modify the Newtonian results. Since it is these relativistic effects that we are interested

in, here we shall limit ourselves to obtaining the equations determining the structure of a star

composed of a perfect relativistic fluid, which we assume to be static, spherically symmetric, and

non-rotating.

The metric of a static, spherically symmetric spacetime is written in Droste coordinates
as [cf. (6.1)] ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2 θdφ2), where ν = ν(r) and λ = λ(r). The
energy–momentum tensor of a perfect fluid is (see Section 3.2) Tμν = (ε + p)uμuν + pgμν ,
where ε = ε(r) and p = p(r) are the energy density and pressure of the star. Since the fluid
is static, its velocity vector uμ is uμ = (u0, 0, 0, 0), and since uμu

μ = −1 we have u0 = e−ν/2.
The nonzero components of Tμν then are

T00 = ε eν ; Trr = p eλ ; Tθθ = r2p ; Tφφ = sin2θ Tθθ . (6.6)

The stellar structure is therefore described by four functions ν, λ, ε, and p, which must be
determined by the Einstein equations and the state of the matter making up the star.
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The first relation comes from the conservation of Tμν imposed by the Bianchi identities
(DνT

μν = 0), which in the case of spherical symmetry reduce to DμT
μ
r = ∂μT

μ
r + Γμ

μνT
ν
r −

Γν
μrT

μ
ν = 0 with the Christoffel symbols given in (6.2). This relation is

(ε+ p)
dν

dr
= −2

dp

dr
. (6.7)

The (00) and (rr) components of the Einstein equations Gμν = κTμν give two more equations
[see (6.3) for the nonzero components of the Einstein tensor in Droste coordinates]:

2
dμ

dr
= r2ε ,

dν

dr
= κ

2μ+ r3p

r(r − 2κμ)
,

where μ(r) ≡ r

2κ
(1− e−λ) is the mass function.

(6.8)

Eliminating dν/dr from (6.7) and (6.8), we can replace the second equation in (6.8) by the
Tolman–Oppenheimer–Volkov equation (1939), and the system to be integrated becomes

2
dμ

dr
= r2ε , 2

dp

dr
= −κ(ε+ p)

2μ+ r3p

r(r − 2κμ)
, (6.9)

for a given equation of state p = p(ε).
To integrate (6.9) numerically and find μ(r) and ε(r) and then p(ε(r)), we actually need

only a single initial condition, namely, the central density ε(0). Indeed, μ(0) must be zero
because the spacetime, and grr = eλ = (1 − 2κμ(r)/r)−1 in particular, must be regular
at r = 0. Therefore, to determine the structure of a relativistic star which is static and
spherically symmetric, it is sufficient to specify an equation of state and a central density.
The boundary of the star is the surface where the pressure and density vanish, and so the
stellar radius R is defined by p(R) = ε(R) = 0.

Outside the star the metric must be the spherically symmetric vacuum solution of the
Einstein equations, that is, the Schwarzschild metric (6.4) for which eν = e−λ = 1−2GM/r ≡
1− 2m/r.

The matching conditions were determined in Section 4.3. In Gaussian coordinates the
exterior and interior metrics are written as

ds2 = −eνdt2 + dρ2 + r2(ρ)(dθ2 + sin2 θdφ2),

with eλ/2dr = dρ. The metrics induced on the surface of the star must be continuous, and so
ν must be continuous at r = R. Moreover, the extrinsic curvatures must also be continuous.
Their components are

Ktt = −1

2
∂ρe

ν = −1

2
ν′e(−λ/2+ν) and Kθθ =

1

2
∂ρr

2 = re−λ/2 . (6.10)

The continuity of Kθθ, that is, of λ, gives [using the definition of μ in (6.8) and the first
equation in (6.9)]

m = κμ(R) = 4πG

∫ R

0

ε r2dr . (6.11)

The continuity of Ktt reduces to continuity of ν′, which is guaranteed by the second equation
in (6.8) evaluated at r = R, where p = 0.
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6.3 A ‘star’ of constant density

The equation of state ε = const in the interior of a star (and ε = 0 outside it), while of course
not very realistic, does possess the features of many models. In this case, the mass function
(6.9) is simply μ(r) = r3ε/6, which gives eλ = (1 − κεr2/3)−1. Equation (6.7) is written as
dν = −2dp/(ε + p) and gives ε + p = Be−ν/2, where B is a constant. Finally, the equation
(6.8) for ν, after setting z = eν/2 − 3B/2ε, gives eν = (3B/2ε −D

√
1− κεr2/3)2, where D

is another constant.
The conditions for matching to the exterior Schwarzschild metric are the same as before:

λ, ν, and ν′ must be continuous and pmust vanish at r = R. This implies that κε/3 = 2m/R3,
B = ε

√
1− 2m/R, and D = 1/2.

We thus obtain the metric in the interior of the star (Schwarzschild, 1916):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ds2 = −
(
3

2

√
1− 2m/R− 1

2

√
1− 2mr2/R3

)2

dt2 +
dr2

1− 2mr2/R3

+r2(dθ2 + sin2θdφ2) ,

p = ε

√
1− 2mr2/R3 −

√
1− 2m/R

3
√

1− 2m/R−
√

1− 2mr2/R3
.

(6.12)

This solution is valid if the stellar radius R is larger than the star’s Schwarzschild radius,
which is the case for objects such as the Earth, the Sun, white dwarfs, and neutron stars.2

The proper mass of a star

The Schwarzschild mass (6.11), namely, M = 4π
∫ R

0
ε(r)r2dr, which is the gravitational

mass of the star, is not equal to the star’s proper mass, namely, the integral of the density over

the proper volume: Mp = 4π
∫ R

0
ε(r)r2 [1− 2κμ(r)/r]−

1
2 dr; cf. (5.18). The difference can be

interpreted as a gravitational binding energy, because this is what it reduces to in the Newtonian
limit. When the density is constant, we have M = 4πR3ε/3 and

Mp =
3M

2(2GM/R)3/2

(

ArcSin

√
2GM

R
−
√

2GM

R

√

1− 2GM

R

)

= M

(

1 +
3GM

5R
+ · · ·

)

,

so that M − Mp = −3GM2/5R + · · ·, which is indeed the Newtonian gravitational energy of
the object; cf. Book 1, Section 15.2. This result is an indication that in general relativity the
gravitational mass of a body, here its Schwarzschild mass M , is equal to its inertial mass, the
sum of its proper mass Mp and its gravitational energy.

In addition, we note that the quantity Qt ≡
∫
ε
√−g d3x, defined in (5.17) using

ξν(t)DμT
μ
ν = 0, is Qt = M(1− 3GM/5R + · · ·) for the Schwarzschild metric. The Tolman mass,

equal to the Komar mass defined in (5.28), It ≡ (α/2)
∫
(ε+ 3p)

√−gd3x, is It = M for α = 2.

2We note that the spatial sections are 3-spheres. As shown by Shepley and Taub (1967) as well as Buchdahl
(1971) [see also Shankar and Whiting (2007)], this metric is also conformally flat, that is, it can be written
as ds2 = Ω2[−dT 2 + dR2 +R2(dθ2 + sin2 θdφ2)], where the conformal factor Ω is a known function of (T,R)
under a suitable change of coordinates (t, r) → (T,R).

We also note that if R = 2m, then p = −ε and the metric becomes the de Sitter metric; see Section 17.4
(but it can never be matched to the Schwarzschild metric because p is never zero).
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The inertial mass of a star

In Section 5.4 we saw how to associate a spacetime with Noether charges which, when the
spacetime is asymptotically stationary, are identified as the ‘inertial’ mass. Let us calculate the
mass Min of a spacetime whose metric for r → ∞ is written as

ds2 ≈ −(1− 2GM/r + · · ·) + (1 + 2γGM/r + · · ·)dr2 + r2(dθ2 + sin2 θdφ2)

(which reduces to the asymptotic Schwarzschild metric for γ = 1) using the Katz superpotential;
cf. (5.25):

Min = −
∫

S

Ĵ [tr]dθdφ , where κĴ [μν] = D[μξ̂ν] −D[μξ̂ν] + ξ[μk̂ν].

Here S is the 2-sphere at infinity; the hat denotes multiplication by
√−g; a bar indicates that

the quantity is evaluated in Minkowski spacetime in spherical coordinates; ξμ = (1, 0, 0, 0) is
the Killing vector associated with the stationarity of the spacetime and therefore satisfying
Dμξν +Dνξμ = 0; and, finally, kμ is the Katz vector:

kμ = −(gνρΔμ
νρ − gμνΔρ

νρ) , where Δμ
νρ ≡ Γμ

νρ − Γ̄μ
νρ .

We have D[0ξ̂r] = −√−ggttgrr∂rgtt/2 = −GM sin θ +O(1/r) and D[0ξ̂r] = 0.

Moreover, kr = −(gttΔr
tt + 2gθθΔr

θθ) + grr(Δt
rt + 2Δθ

rθ) with Δr
tt = GM/r2 + · · ·, Δr

θθ =

2γGM + · · ·, Δt
rt = GM/r2 + · · ·, and Δθ

rθ = 0, so that ξ̂[tkr]=−GM(2γ − 1) sin θ + · · ·.
Assembling these results, we find

Min = −
∫

S

dθdφ

κ
GM sin θ(−1− (2γ − 1)) = γM .

Therefore, since γ = 1 we find that the inertial mass of the star (that is, the energy it contains)
is indeed equal to its gravitational mass, as the post-Newtonian calculation done above suggests
(the first term is half the Komar mass; see Section 5.4). Therefore, at least in this particular
case, general relativity satisfies the strong equivalence principle.

At a given time t and in the ‘plane’ θ = π/2, the spatial geometry in Schwarzschild
coordinates is determined outside and inside the star by

dσ2
ext=dr2

(
1− 2m

r

)−1

+ r2dφ2 , dσ2
int=dr2

[
1− 2m

R

( r
R

)2]−1

+ r2dφ2 . (6.13)

These two-dimensional spaces can be embedded in a three-dimensional Euclidean space of
metric dS2 = dr2 + r2dφ2 + dz2. Indeed, the metric induced on a surface z = z(r) is dσ2 =
(1 + z′2)dr2 + r2dφ2, where z′ ≡ dz/dr.

On the exterior we have 1+z′2 = (1−2m/r)−1 and the surface is a paraboloid of equation
z2 = 8m(r − 2m).

In the interior the geometry is that of a sphere, regular everywhere, including at r = 0.
Indeed, setting

√
2m/R (r/R) = sin θ, we see that the metric (6.13) is written as dσ2

int =

(R3/2m)(dθ2 + sin2 θdφ2), which is the metric of a 2-sphere of radius
√

R3/2m, as noted by
Schwarzschild himself. Since z′2 = (1− 2mr2/R3)−1 is continuous at r = R, the paraboloid
and the sphere join together smoothly.
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The global geometry can therefore be visualized as an elastic ‘sheet’ which is deformed at
its center by the ‘weight’ of the star. This is called Flamm’s paraboloid (1916) (see Fig. 6.1).

z

Fig. 6.1 A representation of the Flamm paraboloid.

The central pressure, cf. (6.12), is p(0) = ε(1−
√

1− 2m/R)/(3
√

1− 2m/R−1). In order
for it to remain finite we must have m < 4R/9, or, since m = (4π/3)εR3, m < mcrit with
mcrit = 4/(9

√
3πε). If we take ε = 1015 g/cm3, the density of a nucleus, we find mcrit � 4M�.

In the Newtonian limit the pressure p = εm/2R remains finite.

The concept of critical mass

Within the framework of the Newtonian theory, a polytrope, that is, a body whose equation
of state is p = Kργ , has, if γ = 4/3, a mass which does not depend on the central density:

M = 2.02(4/
√
π)(K/G)3/2 (see, for example, Book 1, Section 15.3). Frenkel in 1928, and also

Anderson and Stoner in 1930, obtained the equation of state of a degenerate Fermi gas at zero
temperature, which can describe white dwarfs. When the electron speed becomes close to the
speed of light, the star turns out to be a polytrope with γ = 4/3. The coefficient K is known,

K = (3π2)1/3�c Y
4/3
e /4m

4/3
B , where Ye ≈ 0.5 is the number of electrons relative to the number

of baryons and mB is the baryon (proton–neutron) mass. The mass is therefore also known:
M = 1.46M�. In 1930 Chandrasekhar understood that this is a critical mass: “A star of large
mass cannot pass into the white-dwarf stage, and one is left speculating on other possibilities.”

The same, at least in order of magnitude, result can be obtained by an energy argument,
which Landau made in 1931. We consider a degenerate Fermi gas of N electrons in a sphere
of radius R which for simplicity we take to be homogeneous. The internal energy of these
electrons is Eint = NĒ with Ē =

∫
Ep2dp/

∫
p2dp, where the integrals run up to pF, the Fermi

momentum. In the ultrarelativistic limit Ē ∝ pF with pF ∝ N1/3/R at zero temperature.

Therefore, Eint ∝ NpF ∝ N4/3/R ∝ M4/3/R. In addition, the gravitational energy of the star
in the Newtonian limit is Egrav = −3GM2/5R; see Book 1, Section 15.2. The total energy of the

star is therefore E ∝ (1− (M/Mcrit)
2/3)(M4/3/R). The precise calculation gives Mcrit ≈ 1.7M�.

The equilibrium configuration minimizes E. If M > Mcrit, E is negative. It decreases as R
decreases, and so the density increases and R continues to decrease. Thus, according to Landau,
“. . . the density of matter becomes so great that atomic nuclei come in close contact, forming one
gigantic nucleus”, that is, a neutron star, a possibility already suggested by Baade and Zwicky
in 1933 (we recall that the neutron was discovered by Chadwick in 1932).

To study the equilibrium of neutron stars, for which 2m/R ≈ 0.3, gravitation must be
described using general relativity. If such a star is treated as a degenerate Fermi gas of neutrons
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at zero temperature, then the critical Chandrasekhar or Landau masses obtained when gravity
is treated using Newtonian physics are four times larger than the critical mass of a white dwarf
(because M ∝ Y 2

e , where now Ye = 1) or about 6M�, which does not agree with observation. If,
on the other hand, the same gas is described using general relativity and the TOV equations (6.9)
are integrated (numerically), we obtain Mcrit ≈ 0.7M� (Oppenheimer–Volkov, 1939), which is
also in disagreement with observation . . . . The equations of state at these densities are in fact
poorly known, but none of them admits a stable configuration beyond a neutron star, the mass
of which is estimated to be of the order of a few solar masses.3

A star whose mass exceeds the critical mass, for example, owing to accretion processes, will
collapse on itself. If the collapse is spherically symmetric, the gravitational field outside the star
will still be represented by the Schwarzschild metric (6.4), owing to the Birkhoff–Jebsen theorem.
However, when the radius of the object becomes less than 2m, this metric contains pathologies.
It took about fifty years to understand the nature of these pathologies, and in the 1960s the idea
of a ‘black hole’ was born.

Currently, about a dozen good candidates for black holes of the stellar type have been found.
The best known is Cygnus X-1, discovered in the 1970s, and the currently most convincing
candidate is GS 2023+338 (V 404 Cygni). Quasars are probably also black holes (of 106 to 109

solar masses), and many galaxies contain extremely massive black holes at their center, like our
own Sagittarius A*.4

6.4 Gravitational collapse and black holes

Let us assume that a star has exceeded its critical mass and collapses on itself while preserv-
ing its spherical symmetry. The exterior gravitational field is then the Schwarzschild field
and, since the pressure in the interior rapidly becomes negligible compared to the gravita-
tional attraction, the surface can be described as an ensemble of particles in free fall. This
corresponds to the Oppenheimer–Snyder model.5

The motion of a test particle in a gravitational field is governed, as we saw in Section 3.1,
by the geodesic equation

Duμ

dτ
≡ duμ

dτ
+ Γμ

νρu
νuρ = 0 , (6.14)

where uμ = dxμ/dτ is the 4-velocity of the world line xμ = xμ(τ).
Let us consider radial motion in a static, spherically symmetric field. With the Christof-

fel symbols given in Section 6.1, eqn (6.14) for the component u0 reduces to du0/dτ +
2Γt

tru
0ur =0 because uθ = uφ = 0, or du0/dτ + ν′u0ur = 0, or also du0/dτ + u0dν/dτ = 0,

since ur = dr/dτ . The solution is u0 = Ce−ν , where C is a constant [the same result is
obtained using the static nature of the solution; see (5.11)].

Moreover, if τ is the proper time along the world line, the 4-velocity uμ is normalized,
gμνu

μuν = −1, or −eν(u0)2 + eλ(ur)2 = −1.
If the metric is the Schwarzschild metric we have eν = e−λ = 1 − 2m/r, and then the

radial geodesic equation reduces to

3To learn more about the structure of relativistic stars, see, for example, Collins (2003), Chapter 6, and
also Grandclément (2008).

The quotations are from Chandrasekhar (1934) and Landau (1932).
4See, for example, Mueller (2007) for more details.
5Oppenheimer and Snyder (1939). Incidentally, the same issue (dated 1 September) contains the article

by Bohr and Wheeler entitled The Mechanism of Nuclear Fission.



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 463 — #475

Chapter 6: The Schwarzschild solution 463

(
1− 2m

r

)
dt

dτ
=

√

1− 2m

R
;

(
dr

dτ

)2

= −2m

R
+

2m

r
, (6.15)

where τ is the proper time of an ‘observer’ on the surface of the star and we have used the
fact that the observer velocity is zero at R, the initial radius of the star. The second equation
is integrated in parametric form:

r =
R

2
(1 + cos η) ; τ =

R

2

√
R

2m
(η + sin η) , (6.16)

where η varies from 0 to π. Therefore, the proper time effectively measured by an observer
located on the surface of the star to fall from r = R to r = 0 is finite and equal to

τcollapse = τ(π)− τ(0) =
π

2
R

√
R

2m
. (6.17)

Setting R = 2mx, we have τcollapse = πmx3/2. Therefore, a star of the size and mass of the
Sun (m ≈ 5 μs, x ≈ 2.3× 105), will collapse in about half an hour. If the initial radius of the
star is of the order of the Schwarzschild radius [x = O(1)], then τcollapse = O(m), which is a
few microseconds for m of the order of a solar mass. Finally, the collapse of the center of a
supernova will take a few milliseconds.6

Let us now describe the collapse using the coordinate time t, the proper time of an
observer at rest (constant r, θ, φ) at infinity. From (6.15) we obtain

t = −
∫ r

R

dr
√

1− 2m/R

(1− 2m/r)
√

2m/r − 2m/R
→ ∞ when r → 2m. (6.18)

Therefore, when described using the time t, the collapse takes infinitely long.
More precisely, let us imagine that an observer on the surface of the star and moving

along with its collapse sends to the observer at rest a succession of light signals at regular
infinitesimal intervals Δτem of his proper time. This time Δτem corresponds to a coordinate
time given by (6.15): Δtem = Δτem(

√
1− 2m/R)/(1 − 2m/rem), where rem = r (tem) is the

stellar radius at the instant of emission. On the other hand, for the observer at rest at infinity
Δtrec = Δτrec. The light signals follow the null radial geodesics of the Schwarzschild metric
with equation dr/dt = 1 − 2m/r. We therefore have Δtrec = Δtem − Δrem/(1 − 2m/rem),
where the second term is just the Doppler shift due to the fact that the emitter is moving.
Here Δrem and Δτem are related by the second expression in (6.15) (with Δrem < 0) and so

Δτrec =
Δτem

1− 2m/rem

(√
1− 2m/R+

√
2m/rem − 2m/R

)
, (6.19)

which tends to infinity when the star approaches its Schwarzschild radius rem = 2m: the
signals are shifted more and more toward the red.

6As Drumeaux noted in 1936, (6.15) governing the radial fall and its solution (6.16) are the same in
Newtonian gravity (see for example, Book 1, Section 16.1), with the condition that the proper time τ is
replaced by Newton’s universal time t.
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The description of the gravitational collapse of a dust cloud therefore depends critically
on the observer. The observer who moves along with the collapse crosses the surface r = 2m
without any problem and reaches r = 0, where the density becomes infinite in a finite proper
time. The observer who remains far away sees the star become black when it reaches the
Schwarzschild radius r = 2m, which for this reason is called the horizon of the black hole.

We have seen that the equations of null radial geodesics are

dr

dt
= ±(1− 2m/r) . (6.20)

The horizon is therefore a light-like surface where the photons are at rest as measured using
the time t of an observer at rest at infinity.

6.5 The Lemâıtre–Tolman–Bondi solution

The spacetime outside a spherically symmetric dust cloud is the Schwarzschild spacetime.
On the inside the metric is the solution of the Einstein equations in the presence of a perfect
fluid at zero pressure.

Let us therefore consider a spherically symmetric cloud of incoherent matter (p = 0)
which is not necessarily homogeneous. We seek the solution of the Einstein equations in a
synchronous frame with coordinates (τ, ρ, θ, φ) such that the metric has the form

ds2 = −dτ2 + eλ(ρ,τ)dρ2 + r2(ρ, τ)(dθ2 + sin2 θ dφ2) , (6.21)

where λ and r are functions of the radial coordinate ρ and the time τ . In this system of
co-moving coordinates the trajectories (ρ, θ φ) = const are geodesics and τ is their proper
time.7 The useful components of the Einstein tensor are (the others are either zero or are
redundant owing to the Bianchi identities)

{
Gρ

τ = e−λ(−2ṙ′ + λ̇r′)/r , Gρ
ρ = −(1 + 2rr̈ + ṙ2 − e−λr′2)/r2 ,

Gτ
τ = e−λ(2rr′′ + r′2 − rr′λ′)/r2 − ṙ(rλ̇+ ṙ)/r2 − 1/r2 ,

(6.22)

where the dot denotes the derivative with respect to τ and the prime denotes the derivative
with respect to ρ. The components of the energy–momentum tensor are all zero except for
T τ
τ ≡ −ε(ρ, τ). Integration of the first expression in (6.22), Gρ

τ = 0, then gives (unless r′ = 0)

eλ =
r′2

1 + 2E
, (6.23)

where E is an arbitrary function of ρ. The second expression, Gρ
ρ = 0, can be written as

2rr̈ + ṙ2 − 2E = 0, the first integral of which is

ṙ2 = 2E + 2μ/r , (6.24)

where μ(ρ) is a new arbitrary function. Finally, it is usual to write the solutions of (6.24) in
parametric form as

7Indeed, if the initial velocity is uμ
in = (1, 0, 0, 0), then the acceleration, given by the geodesic equation, is

dui/dτ |in = −Γi
00 = 0 in a synchronous frame.
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r =
μ

−2E
(1 + cos η) , |τ0 − τ | = μ

(−2E)3/2
(η + sin η) , E < 0

r =
μ

2E
(cosh η − 1) , |τ0 − τ | = μ

(2E)3/2
(sinh η − η) , E > 0

r3 = (9μ/2)(τ0 − τ)2 , E = 0 ,

(6.25)

where τ0(ρ) is a third arbitrary function. The desired metric then is

ds2 = −dτ2 +
r′2dρ2

1 + 2E
+ r2dΩ2

2 with dΩ2
2 ≡ dθ2 + sin2 θdφ2 , (6.26)

where r(ρ, τ) is given in (6.25). Since a redefinition of the coordinate ρ allows one of the
functions, for example, E(ρ), to be chosen arbitrarily, the solution will actually depend on
two functions describing the physics of the problem, μ(ρ) and τ0(ρ). The energy density
follows from the last equation in (6.22), Gτ

τ = 8πT τ
τ :

4πε

3
=

μ′

(r3)′
. (6.27)

This solution was first obtained by Lemâıtre (1933), and then rediscovered by Tolman (1934)
and later Bondi (1947).

6.6 The interior Friedmann solution

Just as Schwarzschild assumed a constant matter density in constructing his static stellar
model (see Section 6.1), here we shall assume that a star undergoing collapse has zero pressure
and is isotropic but also homogeneous, that is, its energy density ε depends only on the time:
ε = ε(τ).

The Lemâıtre solution obtained in Section 6.5 then is simplified as follows. First of all,
(6.27) implies that r(ρ, τ) has the form r=a(τ)(2μ(ρ)/am)1/3, where a(τ)=(3am/8πε(τ))1/3

and am is a constant. In view of (6.26), we next see that we can choose the coordinate ρ such
that 2μ(ρ) = amρ3. The metric (6.26) then becomes ds2 = −dτ2+a2(τ)[dρ2/(1+2E)+ρ2dΩ2

2].
Secondly, if we choose −2E(ρ) = ρ2, then the spatial sections τ = const will be 3-spheres.

Finally, if we choose τ0(ρ) = 0 and the case where a decreases with τ , the Lemâıtre solution
will reduce to the Friedmann solution (1922):

ds2=−dτ2+ a2(τ)

(
dρ2

1−ρ2
+ρ2dΩ2

2

)
, where

⎧
⎪⎨

⎪⎩

a =
am
2

(1 + cos η)

τ =
am
2

(η + sin η)
and ε=

3am
8πa(τ)3

(6.28)

(with dΩ2
2 ≡ dθ2 + sin2 θdφ2).

To complete the description of this dust cloud undergoing collapse, we still need to match
the exterior (Schwarzschild) and interior solutions. To do this, we calculate the circumference
of the star in Droste coordinates: C = 2πr, where r(τ) is given by the geodesic equation
(6.16). However, in the coordinates used in (6.28) it is written as C = 2πρ0a(τ), where ρ0,
the coordinate radius of the star, is also a geodesic. Equating the two expressions for these
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coordinate choices, we obtain R = ρ0am and R
√
R/2m = am, thus obtaining am and ρ0 as

functions of R and m, the initial radius and mass of the star. (It can be verified explicitly that
the extrinsic curvature of the surface of the star, defined in Section 4.3, is indeed continuous.)

Therefore, the geometry and gravitation in the interior of this cloud are homogeneous
and isotropic. There is no privileged direction (no more than on the surface of a 2-sphere).
Nevertheless, it possesses a center because it has finite extent (like a spherical cap). As seen
by a freely falling observer, its volume decreases from 2π2R3 to zero, while the density ε
grows from 3m/4πR3 to infinity.
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The Schwarzschild black hole

At the end of its thermonuclear evolution, a star collapses and, if it is sufficiently massive, does not
become stabilized in a new equilibrium configuration. We have described an example of this collapse
in the preceding chapter. The Schwarzschild geometry therefore represents the gravitational field of
such an object up to r = 0. The Schwarzschild metric in its original form is however singular, not
only at r = 0 where the curvature diverges,1 but also at r = 2m, a surface which can nevertheless be
crossed by geodesics. We shall see that by a judicious change of coordinates it is possible to eliminate
this singularity and reveal an extended spacetime, that of a black hole.

7.1 The Lemâıtre coordinates

As we have seen in Section 6.5, the Lemâıtre–Tolman–Bondi metric (6.25)–(6.27) describes
a spherically symmetric spacetime. It depends on three functions: E(ρ), μ(ρ), and τ0(ρ).

We shall require that it describe a space devoid of matter. Then the function μ reduces to
a constant, μ = m [cf. (6.27)], and according to the Jebsen–Birkhoff theorem (see Section 6.1)
the metric can be transformed into the Schwarzschild metric no matter what the functions
E(ρ) and τ0(ρ) are.

Let us choose, as did Lemâıtre in 1933, E = 0 and τ0 = ρ. Then the metric reduces to
[cf. (6.25)–(6.26)]

ds2=−dτ2 +
dρ2

(r/2m)
+ r2(dθ2 + sin2 θdφ2) with r(ρ, τ)=2m

[(
3

4m

)
(ρ− τ)

] 2
3

. (7.1)

The metric is now manifestly regular on the surface r = 2m of equation ρ− τ = 4m/3.
We still need to specify the change of coordinates (τ, ρ) → (t, r).
First of all, from (7.1) we find dr =

√
2m/r(dρ− dτ).

Next we need to find the functions f(τ, ρ) and g(τ, ρ) defining the differential dt =
f(τ, ρ)dτ + g(τ, ρ)dρ.

For this we use the fact that in the co-moving system (τ, ρ), the coordinate lines ρ= ρ0
are radial geodesics of proper time τ whose equations in Droste coordinates are known [see
(6.15)]: dr|ρ0

= ±
√
2m/r − 2m/Rdτ and dt|ρ0

=
√

1− 2m/R(1− 2m/r)−1dτ .

The identification of dr|ρ0
= −

√
2m/r dτ with dr|ρ0

= ±
√

2m/r − 2m/Rdτ requires
that we take the minus sign and choose R = ∞, so that we have dt|ρ0

= (1 − 2m/r)−1 dτ .
This gives f(τ, ρ) = (1− 2m/r)−1.

Finally, the integrability condition ∂f/∂ρ=∂g/∂τ easily gives g(τ, ρ)=−2m/(r − 2m).
In the end, after inverting we obtain the desired result:

1The Kretschmann invariant, which will be calculated in Section 25.6, is RμνρσRμνρσ = 48m2/r6.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ = t+

∫
dr

√
2m/r

1− 2m/r
= t+ 2m

[

2
√
r/2m+ ln

(
|
√

r/2m− 1|
√

r/2m+ 1

)]

,

ρ = t+

∫
dr

(1− 2m/r)
√

2m/r

= t+ 2m

[
√
r/2m (2 + r/3m) + ln

(
|
√

r/2m− 1|
√

r/2m+ 1

)]

.

(7.2)

The transformation is singular at r = 2m. The spacetime described by the metric (7.1) is
therefore an ‘extension’ of that described by the Schwarzschild metric in its original form
(just as the Euclidean plane in Cartesian coordinates is an extension of the plane in polar
coordinates because it includes the origin).

The Schwarzschild ‘singularity’

The singularity of the Schwarzschild metric (6.3) at r = rg = 2m has been studied since
1916. It is not eliminated by a change of coordinate r → r(ρ), as we can see from the following
example:

r > 2m : ds2 = −(1− 2m/r(ρ))dt2 + dρ2 + r2(ρ)dΩ2
2

with r = m(1 + coshu) , ρ = m(u+ sinhu)

r < 2m : ds2 = −dρ2 + (2m/r(ρ)− 1)dt2 + r2(ρ)dΩ2
2

with r = m(1− cosu) , ρ = m(u− sinu) .

For r < 2m, ρ → τ is a time coordinate and t → ρ is a radial coordinate. The metric, of the
Kantowski–Sachs type, is a particular case of the Lemâıtre–Tolman–Bondi metric obtained by
requiring that r depend only on ρ ≡ τ ; see Section 6.5.

In 1921 Painlevé and Gullstrand made the same change of time coordinate t → τ(t, r) as
Lemâıtre, cf. (7.2), without touching the radial coordinate and obtained ds2 = −(1−2m/r)dτ2+

2
√

2m/r drdτ + d�x2. (In these coordinates the spatial sections are Euclidean.) They concluded
that the Schwarzschild geometry is ‘ambiguous’.

In 1924 Eddington suggested the form (rediscovered by Finkelstein in 1958)

ds2 = −(1− 2m/r)dt̄2 + (4m/r)drdt̄+ (1 + 2m/r)dr2 + r2dΩ2
2

with t̄ = t+ 2m log(r/2m− 1), which by setting t̄ = v − r can be simplified to

ds2 = −(1− 2m/r)dv2 + 2drdv + r2dΩ2
2 . (7.3)

In these systems the metric coefficients no longer diverge at r = 2m (but some vanish). We note
that when r → 2m and t → +∞, the value of the coordinate v can remain finite.

7.2 The Kruskal–Szekeres extension

Before describing the Kruskal–Szekeres extension,2 let us do a preparatory exercise.

2Kruskal, 1960; Szekeres, 1960; among the precursors is Synge, 1949.
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From Rindler spacetime to M4

We have stated that the spacetime of a black hole is much ‘larger’ than the spacetime covered
by the Schwarzschild coordinates. As a preliminary exercise, we shall use the results of Book 2,
Section 5.2 to show how the spacetime covered by the Rindler coordinates can be ‘extended’ to
all of Minkowski spacetime.

We consider the two-dimensional metric

dσ2 = −x2dt2 + dx2 , t ∈ [−∞,+∞] , x ∈]0,+∞] . (7.4)

Here we recognize the Rindler metric (see Book 2, Section 5.2; we have set x = 1 + gz and
g = 1). It is singular at x = 0. This singularity, which is the analog of the origin of the Euclidean
plane in polar coordinates, is associated with the choice of coordinate system and not with the
structure of spacetime (because the Riemann tensor is zero). The problem here is to find a new
system of coordinates analogous to the Cartesian coordinates of the Euclidean plane which are
regular everywhere (see Fig. 7.1).

To do this,3 we consider the light-like (dσ2=0) geodesics of equation t = ± lnx+const, and
introduce the so-called null coordinates

u = t− lnx , v = t+ lnx , u, v ∈ [−∞,+∞] , (7.5)

in which the metric (7.4) becomes

dσ2 = −ev−udu dv .

Next we make the new change of coordinates

U = −e−u , V = ev , U ∈ [−∞, 0] , V ∈ [0,+∞] . (7.6)

T

X

t = const

x 
=
 c
on

st

I

Fig. 7.1 Rindler and Minkowski spacetimes.

3Here we follow the presentation of Wald (1984), p. 149 et seq.
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The metric then becomes dσ2 = −dU dV . This metric is regular everywhere and we can extend
the ranges of variation of U and V to the entire (U, V ) plane. A final change of coordinates
T = (U + V )/2, X = (V − U)/2 then leads to the familiar metric

dσ2 = −dT 2 + dX2 , T ∈ [−∞,+∞] , X ∈ [−∞,+∞] . (7.7)

In passing from Rindler coordinates (t, x) to Minkowski coordinates (T,X), we have thereby not
only eliminated the singularity at x = 0, but also extended the spacetime, because the Rindler
coordinates cover only the region X2−T 2 > 0 of Minkowski spacetime. Inside this region we have

T = x sinh t , X = x cosh t . (7.8)

Since the singularity of the Schwarzschild metric at r = 2m is not an intrinsic singu-
larity, there exists a change of coordinates analogous to that taking Rindler coordinates to
Minkowski coordinates which will eliminate it.

The sections θ = const, φ = const of Schwarzschild spacetime have the metric

dσ2 = −(1− 2m/r)dt2 + dr2/(1− 2m/r) , t ∈ [−∞,+∞] , r ∈ ]2m,+∞] . (7.9)

Light-like radial geodesics of the Schwarzschild metric (dσ2 = 0) have the equations t =
±r∗ + const, where r∗ is the tortoise coordinate (the name is due to J. A. Wheeler) r∗ =
r + 2m ln(r/2m − 1). One then introduces the null coordinates (also called the Eddington–
Finkelstein coordinates)

u = t− r∗ , v = t+ r∗ , u, v ∈ [−∞,+∞] , (7.10)

in which the metric (7.9) becomes dσ2 = −(1− 2m/r)du dv, where r is given implicitly as a
function of r∗ and therefore of (v − u).

Next we make the new change of coordinates

U = −e−u/4m , V = ev/4m , U ∈ [−∞, 0] , V ∈ [0,+∞] , (7.11)

which leads to a metric which is regular everywhere except at r = 0:

dσ2 = −(32m3/r) e−r/2mdU dV.

The ranges of variation of U and V can thus be extended to the entire (U, V ) plane.
The final coordinate change T = (U + V )/2, X = (V − U)/2 leads to the Kruskal metric

(1960), which is regular everywhere except at r = 0:

ds2 =
32m3

r
e−

r
2m

(
−dT 2 + dX2

)
+ r2

(
dθ2 + sin2 θdφ2

)
,

T ∈ [−∞,+∞] ; X ∈ [−∞,+∞] .

(7.12)

In passing from Schwarzschild–Droste coordinates (t, r) to Kruskal coordinates (T,X) (see
Fig. 7.2), we have not only eliminated the singularity at r = 2m, but also extended the
spacetime because the coordinates (t, r) cover only the region X2 −T 2 > 0. In this quadrant
corresponding to r > 2m the coordinate transformation is

⎧
⎪⎨

⎪⎩

T =
√

r/2m− 1 er/4m , sinh t/4m, X =
√

r/2m− 1 er/4m cosh t/4m,

( r

2m
− 1
)
exp

r

2m
= X2 − T 2 , tanh

t

4m
=

T

X
.

(7.13)

In the other quadrants only the function r(T,X) needs to be defined: we set
(r/2m− 1)exp(r/2m) = X2 − T 2 for all r.
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E
X

T

r=
2m

, t = −∞

r = 0

r = 0

O

S

N
Δτr

Δτe
r=

2m
, t

=
+ ∞

Fig. 7.2 The Kruskal diagram.

Regularization of a metric

Any two-dimensional metric with coefficients γab in the coordinates xa (a = 1, 2) is, at least
locally, conformally flat, that is, we can write

dσ2 = γab dx
a dxb = e2U γ̄ab dx

a dxb ,

where the scalar curvature of γ̄ab, which determines the curvature in two dimensions, is zero
and U(xa) is the conformal factor. Indeed, a simple calculation gives4 R̄ = e2U (R + 2�U).
Then if γ̄ab is flat, we have R̄ = 0 and the conformal factor is a solution of �U = −R/2, where

�U ≡ γabDabU =
√

|γ|−1
∂a(
√

|γ|γab∂bU). (We write DaDb ≡ Dab.)

If the metric dσ2 is static and the coordinates xa = (t, x) are adapted coordinates, we can
set γtt ≡ −f(x) and γxx ≡ 1/g(x). Then requiring that U = U(x) (in this case fg > 0), we find

R = −
√

g

f

(

f ′
√

g

f

)′
, �U =

√
g

f
(
√

fg U ′)′ ;

the solution of �U = −R

2
then is e2U =

1

(CC1)2
f e

2C
∫ dx√

fg ,

(7.14)

where C and C1 are constants of integration and the prime denotes differentiation with respect
to x.

Now to find the transformation from the coordinates xa = (t, x) to the Minkowski coordinates
Xa = (T,X), where dσ2 = e2U (−dT 2 + dX2), we use the transformation laws of the Christoffel
symbols and the metric coefficients:

4We have γ̄ab = e−2Uγab and γ̄ab = e2Uγab. Then Γ̄a
bc = Γa

bc − (δab ∂cU + δac ∂bU − γbc∂
aU) and R̄a

bcd =

Ra
bcd +2δa

[c
Dbd]U − 2γb[cD

a
d]
U +2δa

[c
∂bU∂d]U − 2γb[c(∂

aU∂d]U − δa
d]
∂eU∂eU); R̄bd = Rbd +(D− 2)DbdU +

γbd�U + (D − 2)(∂bU∂dU − γbd∂eU∂eU); R̄ = e2U [R+ 2(D − 1)�U − (D − 1)(D − 2)∂eU∂eU ], where D is
the spatial dimension.
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∂2Xi

∂xb∂xc
=

∂Xi

∂xa
Γ̄a
bc , γ̄ab =

∂Xc

∂xa

∂Xd

∂xb
ηcd . (7.15)

The first equation is written out as T̈ = Ṫ Γ̄t
tt + T ′Γ̄x

tt, and so on, where a dot denotes differen-
tiation with respect to t and a prime differentiation with respect to x. The Γ̄a

bc are expressed as
a function of the Γa

bc as (cf. footnote 4) Γ̄t
tt = Γt

tt − (2∂tU − γtt∂
tU), and so on. If the metric

is static and the coordinates xa are adapted, γtt ≡ −f(x) and γxx ≡ 1/g(x), the only nonzero
Christoffel symbols will be, for the conformal factor found in (7.14),

Γ̄x
xx = − g′

2g
− U ′ = − g′

2g
− f ′

2f
+

C√
fg

, Γ̄x
tt =

f ′g

2
− fg U ′ = −C

√
fg ,

Γ̄t
tx =

f ′

2f
− U ′ = − C√

fg
.

The first equation in (7.15) is then easily integrated and gives T (t, x) and X(t, x), and the second
equation allows us to fix the integration constants. In the end we obtain dσ2 = −f(x)dt2 +
dx2/g(x) = e2U (−dT 2 + dX2), where U is given in (7.14) and

T = −C1e
−C

∫ dx√
fg sinhCt , X = C1e

−C
∫ dx√

fg coshCt =⇒ X2 − T 2 = C2
1e

−2C
∫ dx√

fg . (7.16)

Here C1 is just a dimensionalization constant, but C can be used to regularize the metric. Indeed,
if near x = 1 we have f = (x − 1)p(1 + · · ·) and g = (x − 1)q(1 + · · ·), with p + q = 2, then
[cf. (7.14)] e2U ∝ (x− 1)p+2C , which does not vanish if we choose C = −p/2.

In the case where the metric is the Rindler metric, we have f(x) = x2 and g(x) = 1, and
so p + q = 2. Then [cf. (7.14)] e2U = x2+2C/(CC1)

2. Let us choose C = −1 (and C1 = 1).
The conformal factor e2U = 1 is then regular everywhere and (7.16) again gives the Rindler
transformation: T = x sinh t, X = x cosh t.

If the metric is the Schwarzschild metric we have f(x) = g(x) = 1 − 1/x (with x ≡ r/2m),
and so again p+ q = 2. Equation (7.14) then gives

e2U =
1

(C1C)2
e2Cr

r
(r − 2m)1+4mC ,

which is regular at r = 2m and equal to

e2U =
32m3

r
e−r/2m

for C = −1/4m (and C1 = 1/
√
2m). Equations (7.16) then again give the Kruskal transforma-

tion (7.13).

Let us consider the surfaces (θ, φ) = const. The curvature singularity r = 0 is represented
in the Kruskal diagram (T,X) by the two space-like hyperbolas T 2−X2 = 1. In general, any
curve in the (t, r) plane is represented two times in the (T,X) plane. Therefore, the straight
lines r = const > 2m (trajectories of observers at rest in the Schwarzschild coordinates)
are represented by hyperbolas in the east and west quadrants, and the straight lines r =
const < 2m are represented by hyperbolas in the north and south quadrants. The coordinate
singularity r = 2m is represented by the light cone T = ±X. It should also be noted that
the ‘origin’ of the Kruskal diagram is actually a 2-sphere of radius 2m (this distinguishes the
topology of the surface T = 0 from that of the Euclidean sections of the Rindler–Minkowski
spacetime.) Finally, the lines t = const correspond to the straight lines T/X = const (we
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note that in the west quadrant t decreases when T grows), and the radial trajectories of
photons are straight lines T = ±X + const.

In this Kruskal diagram the graphical representation of light being redshifted as a star
collapses, as described in Section 6.4, is particularly simple.

Let us expand on the analogy between the Rindler or Schwarzschild coordinates (t, r)
and the Minkowski or Kruskal coordinates (T,X). An observer at r = const in Schwarzschild
coordinates can be compared to an accelerated observer in Rindler coordinates (neither one
is undergoing free motion), and an observer freely falling toward the center is analogous to
an inertial observer. Therefore, in the same way as an inertial observer leaves the horizon of
a uniformly accelerated observer when he crosses the Rindler future horizon T = X (x = 0,
t = ∞), an observer freely falling toward the center of a black hole leaves the horizon of an
exterior observer when he crosses the Schwarzschild future horizon r = 2m, t = ∞. In both
cases the signals sent to the outside are shifted an infinite amount toward the red.

Similarly, the analog of an inertial observer who enters the horizon of an accelerated
observer at T = −X (x = 0, t = −∞) is, in the spacetime of a black hole, an observer
emerging from a white hole through the past horizon at r = 2m, t = −∞. However, it is
important to note that this last case is only possible if the black hole is eternal and not the
product of the collapse of a star which was initially larger than its Schwarzschild radius.

Finally, these analogies between the Rindler and Schwarzschild horizons should not ob-
scure the fact that whereas an inertial observer, after crossing the Rindler future horizon,
remains in causal contact with all of Minkowski spacetime (only observers who are acceler-
ated ad aeternam will be inaccessible), an observer who has crossed the Schwarzschild future
horizon will no longer be able to communicate with the outside of the black hole, that is, with
the region r > 2m. The light rays sent by this observer all converge toward the singularity at
r = 0 which, since it is space-like, is not situated ‘somewhere’, but ‘everywhere in the future’.

7.3 The Penrose–Carter diagram

As we have seen in Section 7.2, any two-dimensional metric is conformally flat. The Penrose–
Carter diagrams exploit this fact and provide a powerful graphical tool for obtaining the
‘maximal extension’ of a manifold.5

Let us first consider the simple case of Minkowski spacetime in spherical coordinates:
ds2 = −dt2 + dr2 + r2dΩ2

2 with dΩ2
2 = dθ2 + sin2 θ dφ2, t ∈ [−∞,+∞], r ∈]0,∞]. We

introduce two new coordinates (Ψ, ξ) such that t+ r = tg 1
2 (Ψ + ξ) and t− r = tg 1

2 (Ψ− ξ),
with (Ψ + ξ) ∈ [−π,+π] and (Ψ− ξ) ∈ [−π,+π]. The condition r > 0 restricts ξ to positive
values. We then obtain

ds2 = Ω2ds̃2 with ds̃2 = −dΨ2 + dξ2 + sin2ξ dΩ2
2

and Ω2 =
1

4 cos2 1
2 (Ψ + ξ) cos2 1

2 (Ψ− ξ)
.

(7.17)

The metric ds̃2 is that of the ‘Einstein static universe’ whose spatial sections are 3-spheres
of constant radius ξ = 1. The sections (θ, φ) = const are represented by the Penrose diagram
of Fig. 7.3.

The Penrose–Carter diagram of Kruskal spacetime is obtained in a similar manner. First
let us consider the east quadrant of the Kruskal diagram (X > 0, T+X > 0, and T−X < 0).
We make the same coordinate change as before: (T,X) → (Ψ, ξ) such that T+X = tg 1

2 (Ψ+ξ)

5In this section we follow the now-classic presentations of Hawking and Ellis (1973), Chapter 5, and
Misner, Thorne, and Wheeler (1973), Chapter 33.
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i0

i−

r
 =

0

r
 =

 co
n
st

t = const

J−

J+

i+

Fig. 7.3 The Penrose diagram of Minkowski spacetime.

and T −X = tg 1
2 (Ψ− ξ). The conditions on X and T imply that (Ψ+ ξ) ∈ [0,+π], (Ψ− ξ) ∈

[−π, 0] and ξ > 0. The Kruskal metric in this quadrant is then written as

ds2 = Ω2ds̃2 with ds̃2 = −dΨ2 + dξ2 + r2Ω−2dΩ2
2

and Ω2 =
32m3

r

e−r/2m

4 cos2 1
2 (Ψ + ξ) cos2 1

2 (Ψ− ξ)
.

(7.18)

The sections (θ, φ) = const of the metric ds̃2 are therefore represented by compactification
of the east quadrant of the Kruskal diagram; see Fig. 7.4. The west quadrant is obtained by
changing the signs: X → −X, T → −T , Ψ → −Ψ, ξ → −ξ.

Now let us consider the north quadrant (T > 0, T +X > 0, T −X > 0, and T 2−X2 < 1),
and introduce the coordinates (Ψ, ξ) by the same transformations as before. The sections
(θ, φ) = const of the metric ds̃2 are represented by compactification of the north quadrant of
the Kruskal diagram, where the curvature singularity r = 0 is space-like. The south quadrant
is obtained by changing the signs.

Finally, to find the Penrose–Carter diagram of the entire Kruskal spacetime and thereby
obtain the maximal extension of the Schwarzschild spacetime, we only need to ‘glue’ these
two blocks together such that any time-like curve ends up either at infinity or at the curvature
singularity; see Fig. 7.4.
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r = 0

r = 0

H −
H −

i 0

J−

J +

H +
H +

i−

i+

Fig. 7.4 The Penrose diagram of Kruskal spacetime.

The advantage of this diagram is that it clearly shows the causal structure of the spacetime
of a Schwarzschild black hole. We see in particular that if the black hole is the result of the
collapse of a star, only the east and north blocks are relevant; see Fig. 7.5. We also note
that since the diagram is symmetric under time reversal, it can be imagined that a star
could emerge from the past horizon: the black hole would then become a ‘white hole’ . . . .
The complete diagram applies only to an eternal black hole. Since the trajectories of light
rays are straight lines Ψ = ±ξ + const, we see that the north and south quadrants cannot
communicate with each other.

i0

J−

J+
H +

i+

i−

Fig. 7.5 The Penrose diagram of the spacetime of a collapsing star.
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The Einstein–Rosen bridge

We have seen that the geometry of the sections (t = const, θ = π/2) for r > 2m of the
Schwarzschild metric in Schwarzschild coordinates [dσ2 = dr2(1− 2m/r)−1 + r2dφ2] is that of a
paraboloid z2 = 8m(r−2m) embedded in a Euclidean space with metric dS2 = dz2+dr2+r2dφ2

(see Section 6.3). If we consider a black hole, and therefore do not match this paraboloid to an
interior metric (see Fig. 6.1), then we see that it connects two asymptotically flat regions, which
is consistent with the above results. If we are interested only in the topology of this surface, that
is, if we deform it, we can transform it into a wormhole (the terminology is that of Wheeler,
1962), also known as an Einstein–Rosen bridge (1935).

The following question then arises (see, for example, the discussion in Misner, Thorne, and
Wheeler, p. 836 et seq.): if we take the two asymptotic regions to be identical, is it conceivable
that a light signal might propagate from A to B, where these are two points located far from the
black hole in a quasi-Minkowskian region of spacetime, by two different routes, one remaining in
the asymptotic region and the other passing through the wormhole? Furthermore, is it possible
that the second route could be faster than the first, in which case a signal could be sent from A
to B at a speed greater than the speed of light?

Looking at the Penrose–Carter diagram of Fig. 7.4, we can see that the answer is ‘no’: a
(radial) light signal emitted far from the black hole toward the black hole in the east quadrant
will encounter the r = 0 singularity of the north quadrant and can never reach the west region.
Therefore, a Schwarzschild black hole cannot serve as a ‘time machine’ to go back in time.

We can also answer this question by following a different argument. Namely, we can study
how a wormhole (see Fig. 7.6), which is a ‘photograph’ of spacetime at a given time t, evolves
as a photon sent by A at t = 0 approaches it. As long as the photon is outside the horizon, the
coordinate t is regular and the wormhole is static: the route followed by the photon is a curve
on the paraboloid. However, after crossing the horizon the geometry of the spatial section on
which the photon propagates is no longer that of a paraboloid because the signature of the metric
dσ2 = −dr2/(2m/r−1)+r2dφ2 has changed: it is now that of the closed surface z2 = 8m(2m−r)
embedded in the pseudo-Euclidean space of metric dS2 = −dz2+dr2+r2dφ2. The route traveled
by the photon inside the horizon is a curve on this surface, and we see that it ends up (r decreases)
at the curvature singularity r = 0, in agreement with the preceding analysis.

A

B

Fig. 7.6 The Einstein–Rosen wormhole.

The various notions of horizon

As we saw in Section 6.4, the surface r = 2m is a surface of infinite redshift: light signals of
a given proper frequency observed at r > 2m are shifted more and more to the red the closer
the source is. This is therefore a horizon.
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As we saw from the Penrose–Carter diagrams in Figs. 7.4 and 7.5, this horizon is located on the
past cone of the future infinity i+. It bounds the universe visible to all external observers, and
is therefore called the event horizon.

Since spacetime is stationary, the vector ξμ = (1, 0, 0, 0) is a Killing vector (such that Dμξν+
Dνξμ = 0, corresponding to invariance of the metric under time translations). Its norm ξμξ

μ =
(1 − 2m/r) vanishes at r = 2m. It therefore becomes light-like there and so r = 2m is also a
Killing horizon.

The Schwarzschild horizon is also a light-like surface, that is, a null surface: the covector
nμ normal to the 3-surfaces r = const with components (0, nr, 0, 0) has norm grr(nr)

2 = (1 −
2m/r)(nr)

2 which vanishes at r = 2m.
We have also seen that photons there are at rest at the time t of an observer at infinity,

[cf. (6.20)], and for this reason it is also called a trapped surface. Finally, it is a surface beyond
which ‘incoming’ and ‘outgoing’ light signals are all directed toward the curvature singularity
r = 0 (as illustrated by the Kruskal diagram of Fig. 7.2). Such surfaces are apparent horizons.6

7.4 The Reissner–Nordström black hole

The spherically symmetric solution of the Einstein equations in the presence of a radial
electric field [Gμν = κTμν with Tμν = FμρFν

ρ− 1
4gμνFρσF

ρσ, where Fμν = ∂μAν −∂νAμ and
Aμ = (Φ, 0, 0, 0)] was obtained by Reissner (1916) and Nordström (1918). The metric and
potential are written in Schwarzschild coordinates as

ds2 = −(1− 2m/r + q2/r2)dt2 +
dr2

1− 2m/r + q2/r2
+ r2 dΩ2

2 , Φ =
q√
Gr

, (7.19)

where dΩ2
2 ≡ dθ2 + sin2 θdφ2, and m ≡ GM and q ≡

√
GQ are the mass and electric charge

of the black hole in geometrical units.
The origin r = 0 is a singularity where the curvature invariants diverge [the scalar curva-

ture is zero because the Maxwell energy–momentum tensor is traceless, but RμνR
μν = 4q4/r8

and RμνρσR
μνρσ = 8(7q4 − 12mqr + 6m2r2)/r8].

If q2 > m2, the curvature singularity r = 0 is ‘naked’: particles visible from infinity can
reach it and leave it. It is assumed that this never happens (a wish piously baptized as the
cosmic censorship hypothesis by Penrose in 1969).7

If q2 < m2, the spacetime represents a black hole possessing two horizons r±, the roots of
r2−2mr+q2 = 0. Since in the region 0 < r < r− the signature is (−,+,+,+) (the same as for
r > r+), the curvature singularity r = 0 is time-like and not space-like as in the Schwarzschild
case. We can introduce two sets of new coordinates (one for each horizon) according to the
rules of Section 7.2, analogs of the Kruskal coordinates (T,X), in which the metric is regular
at r+ or r−. We then obtain a Kruskal diagram covering the region r− < r < ∞ and another
covering the region 0 < r < r+. The introduction of new coordinates analogous to (Ψ, ξ)
introduced in Section 7.3 in each of the regions r+ < r < ∞, r− < r < r+, and 0 < r < r−
then allows us to construct the three blocks of the Penrose–Carter diagram in Fig. 7.7.

6For a review of these various concepts of horizon in the case where they do not coincide, see Gourgoulhon
and Jaramillo (2008).

7See, for example, Penrose (1998). However, we note that if Q and M are the electron charge and mass,
we have q/m ≈ 2× 1022 > 1.
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Fig. 7.7 The three blocks of the Penrose–Carter diagram.
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Fig. 7.8 The Penrose diagram of a Reissner–Nordström black hole.

Finally, to obtain a representation of the maximal extension of the Reissner–Nordström
solution, we ‘glue’ these three blocks together such that any time-like curve will end up either
at infinity or at the curvature singularity. We thus obtain the diagram of Fig. 7.8 (Graves
and Brill, 1960 and Carter, 1966), where the region 0 < r < ∞ is represented an infinite
number of times, rather than ‘only’ twice as in the case of a Schwarzschild black hole. We see
that a particle falling into the black hole can avoid the singularity and reemerge in another
asymptotic region. The diagram also shows that signals from a light source received by an
observer at infinity which cross the interior horizon are infinitely blue-shifted. Finally, the
Cauchy expansions of space-like 3-surfaces Σ, that is, the ensemble of events located in the
future cone of each of their points, do not cover the entire diagram, and so it is composed of
causally disconnected regions.
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Geodesics

The geodesics representing the world lines of objects in free fall (which are therefore elec-
trically neutral) are obtained as in the Schwarzschild case (see Section 6.4), or by using the
conservation laws (5.11) associated with the static, spherically symmetric nature of the solution:
their 4-velocity is normed and the components u0 and uφ are conserved, u0 = −E, uφ = L.
Therefore [cf. (7.19)],

f ṫ = E and r2φ̇ = L with f ≡ 1− 2m/r + q2/r2

such that ṙ2 = E2 − Ue , where Ue = (1− 2m/r + q2/r2)(1 + L2/r2) .
(7.20)

As we can see from Fig. 7.9 showing the ‘effective potential’ Ue, any particle originating
outside the black hole will penetrate the region r < r− but will never reach the singularity
r = 0 where Ue → +∞ and will turn back; gravity appears to be repulsive in this region. This is
another point on which the Reissner–Nordström solution differs from the Schwarzschild solution,
where Ue → −∞ at r = 0 and particles, radial or with sufficient energy E, reach the singularity
at r = 0 in a finite proper time; see, for example, (6.17) and Chapter 10.

As we shall see in the following chapter, the internal horizon r = r− of the Reissner–
Nordström black hole is unstable, and so the geometry for r < r+ is unknown. Therefore, the
trajectories of particles trapped there are also unknown.

Ue

r− r+
r

E2

Fig. 7.9 The effective potential of radial geodesics.

The case q2 = m2

When q2 = m2, the Reissner–Nordström solution is

ds2 = −
(r −m

r

)2

dt2 +

(
r

r −m

)2

dr2 + r2dΩ2
2 .

The surface r = m is, as in the general case, a light-like surface of infinite redshift, and the
Penrose diagram is constructed from only two blocks (Carter, 1966). However, it should be
noted that the method described in Section 7.2 for regularizing a 2-metric does not apply in this
case (because q+p = 4 rather than 2), and it is not possible to find coordinates which will allow
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us to write dσ2 ≡ −(1−m/r)2dt2+dr2/(1−m/r)2 in the Kruskal form dσ2 = Ω2(−dT 2+dX2)
with Ω nonzero8 at x = 1.

Now, the metric near the horizon r = m is

ds2 ≈ −(r/m− 1)2dt2 + dr2/(r/m− 1)2 +m2dΩ2
2 .

The curvature of the 2-space (t, r) is R = −2. This is the anti-de Sitter hyperboloid AdS2,
which is perfectly regular everywhere. The spacetime near the horizon then is AdS2 × S2. It
turns out that this metric is an exact solution of the Einstein–Maxwell equations called the
Robinson–Bertotti solution (1959). It is not spherically symmetric because the spatial sections
are not foliated by 2-spheres.

Moreover, we note that the coordinate r is time-like between the two horizons r± of a generic
Reissner–Nordström black hole, so that the proper time needed to go from one to the other at
t = const is

Δτ = −
∫ r−

r+

r dr

(r − r+)(r − r−)
= πm .

It does not depend on the ratio q/m, and so the limit q → m is singular.

8On this subject, see Carter (1972), as well as, for example, Carroll et al. (2009).
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The Kerr solution

“It is a remarkable fact that there are roughly 1020 rotating black holes in the observable universe,
and the spacetime near each one of them is given to a very good approximation by a simple explicit
exact solution of the Einstein vacuum equations called, after its discoverer, the Kerr metric.”

Gibbons, Lü, Page, and Pope, The general Kerr–de Sitter metrics in all dimensions,
hep-th/0404008.

8.1 Kerr–Schild metrics

The Einstein equations are nonlinear. However, there exists a class of “Kerr–Schild” metrics
which linearize them. Using some appropriate coordinate system, let us consider metrics with
the components

gμν = gμν + lμν with lμν = f(xρ)lμlν , (8.1)

where gμν is a metric of a known ‘background’ spacetime, f(xρ) is an a priori arbitrary
function, and the vector field lμ = gμν lν is null and geodesic, that is, it satisfies

gμν l
μlν = 0 , lνDν l

μ = 0 , (8.2)

where D is the covariant derivative associated with ḡμν . The calculation of the Ricci tensor
of such a metric is a good exercise. We find

Rμ
ν = R

μ

ν − lμρRρν +Dρ(g
μλΔρ

νλ) , where Δμ
νρ =

1

2
(Dν l

μ
ρ +Dρl

μ
ν −D

μ
lνρ) (8.3)

(the indices can be raised or lowered with either metric gμν or ḡμν). This expression, which
is exact, is linear in the ‘perturbation’ lμν . The curvature scalar reduces to

R = R− lμνRμν +DμV
μ , where V μ = lμDν(fl

ν) , (8.4)

so that
√−ḡ DμV

μ = ∂μ[l
μ∂ν(

√−ḡf lν)].
Therefore, given a background metric gμν and a null geodesic vector lμ, the equation

R = 0 will determine the function f . The metric gμν is then known, but it still must be
checked to see whether or not it is a solution of the vacuum equations, that is, if it is Ricci-
flat, Rμ

ν = 0. As we shall see, all the solutions of the Einstein–Maxwell equations (in four
dimensions) describing black holes are of the Kerr–Schild type.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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The case of spherical symmetry

Let us take as the background metric the Minkowski metric in spherical coordinates, ds2 =
−dT 2 + dr2 + r2(dθ2 +sin2 θdφ2), and as the null geodesic vector lμ = (1,−1, 0, 0) [of course, we

could also choose the ‘outgoing’ vector k
μ
= (1, 1, 0, 0)]. For a function f depending only on r,

the equation (8.4) for R = 0 reduces to (r2f)′′ = 0, the solution of which is f(r) = (c+ dr)/r2,
where c and d are constants.

Now we see that Rμ
ν = 0 if c = 0. The desired length element then is (setting d = 2m)

ds2 = −
(

1− 2m

r

)

dT 2 +
4m

r
dr dT +

(

1 +
2m

r

)

dr2 + r2(dθ2 + sin2 θdφ2) , (8.5)

which is just the Schwarzschild metric [in Eddington coordinates (1924); see (7.3)], as can be
seen explicitly by making the change of coordinate T → t = T −T0(r) with T ′

0 = −2m/(r − 2m).
The trace of the Einstein–Maxwell equations is also R = 0 because the trace of the energy–

momentum tensor of an electromagnetic field is zero in four dimensions, and the solution is
again f(r) = (c+ dr)/r2. We then find that the traceless part of the equations Rμ

ν = 8πTμ
ν with

Tμ
ν = Fμ

ρFν
ρ − 1

4
δμνFρσF

ρσ and Fμν = ∂μAν − ∂νAμ is indeed satisfied for the vector potential
Aμ = (q/r, 0, 0, 0) if we choose c = q. This is the Reissner–Nordström solution in Kerr–Schild
coordinates.

The tour de force of R. Kerr in 1963 was to find a solution of the vacuum Einstein
equations of the Kerr–Schild type which describes a rotating object.

8.2 The Kerr metric

Spheroidal coordinates

It has been known since the work of Maclaurin (1742) that in Newtonian physics a rotating
self-gravitating body is not a sphere, but rather a spheroid, owing to the centrifugal force. The
gravitational potential created by such a body possesses the same symmetry: the equipotentials
are spheroids; see Book 1, Section 15.5. It is therefore useful to solve the Laplace equation
determining the potential, 
U = 0, using spheroidal coordinates (r, θ, ϕ) related to Cartesian
coordinates (X,Y, Z) as

X =
√

r2 + a2 sin θ cosϕ , Y =
√

r2 + a2 sin θ sinϕ , Z = r cos θ . (8.6)

Since X2+Y 2

r2+a2 + Z2

r2
= 1, the surfaces r = const are indeed spheroids. (The coordinate r is

identified as the usual radial coordinate only when a = 0.)
The surface r = 0 is a disk of radius a in the Z = 0 plane. The origin X = Y = Z = 0

corresponds to r = θ = 0. The locus of points (r = 0, θ = π/2) is the circle X2 + Y 2 = a2 in the
Z = 0 plane.

In these coordinates the Euclidean length element is easily found to be

dl2 =
r2 + a2 cos2 θ

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θ dϕ2 . (8.7)

The Laplacian then is 
 = (1/
√
e)∂i

√
eeij∂j , where eij is the inverse metric and

√
e = (r2 +

a2 cos2 θ) sin θ, so that the solution of the Laplace equation 
U = 0 which vanishes at infinity
is, for U = U(r),
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U =
GM

a

(
arctg

r

a
− π

2

)
.

This is the gravitational potential of a ring singularity located at r = 0, where U is finite but
has nonzero derivative.

To obtain the Kerr solution in Kerr–Schild coordinates, as the background metric we take
the Minkowski metric in spheroidal coordinates:

ds̄2 = −dT 2 +
ρ2

r2 + a2
dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dϕ2 with ρ2 ≡ r2 + a2 cos2 θ , (8.8)

where a is a constant, and as the null geodesic vector we take

lμ =

(
1,−1, 0,

a

r2 + a2

)
=⇒ lμ =

(
−1,− ρ2

r2 + a2
, 0, a sin2 θ

)
. (8.9)

[We could just as well have chosen the ‘outgoing’ vector k
μ
= (1, 1, 0, a/(r2 + a2).]

Solving the equation R = 0 [cf. (8.4)], we easily find f = (c(θ)+ d(θ)r)/ρ2. Next we must
check to see if the metric we have found is Ricci-flat. The answer ‘miraculously’ turns out to
be ‘yes’: we find Rμ

ν = 0 [with Rμ
ν given in (8.4)] if c(θ) = 0 and d(θ) = 2m, that is, if

f =
2mr

ρ2
. (8.10)

This is the Kerr solution (1963) in the form obtained by Kerr and Schild in 1964. Rearranging
the intermediate results, it can be written as

ds2 = −
(
1− 2mr

ρ2

)
dT 2 +

ρ2

r2 + a2

(
1 +

2mr

r2 + a2

)
dr2 + ρ2dθ2

+

(
r2 + a2 +

2mra2 sin2 θ

ρ2

)
sin2 θdϕ2

+4mr

(
dT dr

r2 + a2
− a sin2 θ

ρ2
dT dϕ− a sin2 θ

r2 + a2
dr dϕ

)

with ρ2 ≡ r2 + a2 cos2 θ .

(8.11)

For m = 0 it reduces, by construction, to the Minkowski metric (8.8) in spheroidal coordi-
nates, and for a = 0 it reduces to the Schwarzschild metric (8.5) in Eddington coordinates.

We note that it is regular everywhere except at ρ2 = 0, that is, at r = 0, θ = π/2, which
turns out to be a curvature singularity; see Section 8.4. We also see that light signals sent by
an object at constant (r, θ, ϕ) are more shifted toward the red the closer the object is to the
surface ρ2 = 2mr.

The coefficients of the Kerr metric (8.11) do not depend on either T or ϕ. The spacetime
is therefore stationary and axisymmetric, and the two Killing vectors associated with these
isometries are ξμT = (1, 0, 0, 0) and ξμϕ = (0, 0, 0, 1).
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In addition, the Kerr spacetime possesses the remarkable property of being circular, that
is, its Killing vectors satisfy the following equations1:

dξT ∧ ξT ∧ ξϕ = 0 , dξϕ ∧ ξT ∧ ξϕ = 0 . (8.12)

This property guarantees that the cross terms involving dT dr and dT dϕ present in (8.11)
can be eliminated by a change of coordinates2 (T, ϕ) → (t, φ). Boyer and Lindquist (1967)
found

T = t+ 2m

∫
r dr

Δ
, ϕ = φ+ 2ma

∫
rdr

Δ(r2 + a2)
, where Δ = r2 − 2mr + a2 . (8.13)

This makes it possible to write the Kerr metric in a less forbidding form, for example (the
algebra is elementary),

ds2 = −Δρ2

Σ
dt2 +

Σsin2 θ

ρ2
(dφ− ωdt)2 +

ρ2

Δ
dr2 + ρ2dθ2

= −
(
1− 2mr

ρ2

)
dt2+

ρ2

Δ
dr2+ρ2dθ2+

Σ

ρ2
sin2θ dφ2− 4mra sin2θ

ρ2
dt dφ

(8.14)

with

ω ≡ − gtφ
gφφ

=
2mra

Σ
and

{
Σ ≡ ρ2(r2 + a2) + 2mra2 sin2 θ

= (r2 + a2)2 − a2Δsin2 θ .
(8.15)

We recall that Δ ≡ r2 − 2mr+ a2 and ρ2 ≡ r2 + a2 cos2 θ. In these coordinates we also have

gttgφφ − g2tφ = −Δsin2 θ ,
√
−g = ρ2 sin θ , gtφ = − gtφ

gttgφφ − g2tφ
= −2mra

ρ2Δ
,

gtt =
gφφ

gttgφφ − g2tφ
= − Σ

ρ2Δ
, gφφ =

gtt
gttgφφ − g2tφ

=
Δ− a2 sin2 θ

ρ2Δsin2 θ
.

(8.16)

The null vectors lμ [defined in (8.9)] and kμ have the following components in Boyer–Lindquist
coordinates xμ = (t, r, θ, φ):

⎧
⎪⎪⎨

⎪⎪⎩

lμ∂μ =
r2 + a2

Δ
∂t − ∂r +

a

Δ
∂φ =⇒ lμdx

μ = −dt− ρ2

Δ
dr + a sin2 θdφ ,

kμ∂μ =
r2 + a2

Δ
∂t + ∂r +

a

Δ
∂φ =⇒ kμdx

μ = −dt+
ρ2

Δ
dr + a sin2 θdφ .

(8.17)

If m2 > a2, Δ = 0 possesses two roots. Then the change of coordinates (8.13) is singular,
which introduces coordinate singularities into the metric (8.14).

1These equations, written using concepts from differential calculus presented below in Part V, are easy
to write out using the fact that the ‘exterior’ product ∧ denotes antisymmetrization, so that, for example,
(ξT ∧ ξϕ)μν = 1

2
(ξTμ ξϕν − ξTν ξϕμ ), while the ‘exterior’ derivative d satisfies (dξT )μν = 1

2
(∂μξTν − ∂νξTμ ). It

can therefore easily be shown (preferably with the aid of an algebra program!) that (8.12) is satisfied for any
function f = n(r)/ρ2 and therefore for the Kerr metric, where n(r) = 2m.

2Details can be found in, for example, Straumann (2013).
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At infinity, r → ∞, the asymptotic expansion of the Kerr metric (8.14) is

ds2 → −
(
1− 2m

r

)
dt2 + dr2 + r2(dθ2 + sin2 θdϕ2)− 4ma sin2θ

r
dt dφ . (8.18)

Hence the solution turns out to be asymptotically flat, and the gravitational mass of the
object whose gravitational field it represents is read off from the component gtt: Mgrav =
m/G. The cross term gtφ is the same as that characterizing the rotation in the θ = π/2 ‘plane’
of a star with Newtonian angular momentum GJN = ma, as we shall see in Section 11.7, eqn
(11.47) when we study relativistic celestial mechanics. The Kerr metric therefore describes
the gravitational field of a rotating object.

It should, however, be noted that there is no metric solution of the Einstein equations
in the presence of matter (with a realistic equation of state) which can be matched to the
Kerr metric. For example, the metric outside a neutron star matches the Kerr metric only
at lowest order (8.18).3

The Kerr–Newman solution

In 1965 Newman et al. generalized the Kerr solution and obtained an axially symmetric
solution of the Einstein equations in the presence of an electromagnetic field. This solution is
also of the Kerr–Schild type. In Boyer–Lindquist coordinates the metric is written as

ds2 = −Δ

ρ2
[
dt− a sin2 θ dφ

]2
+

sin2 θ

ρ2
[
(r2 + a2)dφ− a dt

]2
+

ρ2

Δ
dr2 + ρ2dθ2 , (8.19)

where Δ ≡ r2 − 2mr + a2 + q2 and ρ2 ≡ r2 + a2 cos2 θ. [It reduces to (8.14) for q = 0.] The
Faraday tensor is given by1

F =
q

ρ4
[
(r2 − a2 cos2 θ)dr ∧ (dt− a sin2 θdφ) + 2ar cos θ sin θ dθ ∧ [(r2 + a2)dφ− adt]

]
.

The magnetic field at infinity is Fθφ/r
2 sin θ ≈ 2aq cos θ/r3 and Fφr/r sin θ ≈ aq sin θ/r3. This is

the field of a dipole of moment μ ≡ qa. Since the angular momentum of the object creating the
field is J = ma, we have μ = qJ/m ≡ g(qJ/2m), where the Landé g-factor is 2 and therefore
the same as that of an electron; see Book 2, Section 13.4. We note that for an electron of spin
�/2 we have a/m ≈ 3× 1046.

8.3 The geodesic equation

Since the Kerr solution is stationary and axially symmetric, the geodesic equation possesses
two first integrals. In adapted coordinates, for example, Boyer–Lindquist coordinates (8.14),
we have (see Section 5.2)

ut ≡ gttṫ+ gtφφ̇ = −E , uφ ≡ gφtṫ+ gφφφ̇ = L , (8.20)

where ut and uφ are the covariant components of the 4-velocity uμ = (ṫ, ṙ, θ̇, φ̇), the dot
denotes differentiation with respect to the proper time τ , and where the constants E and

3See, for example, Hartle and Thorne (1969).
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L are interpreted as the specific energy and angular momentum of the particle. Then by
inverting and using (8.16) we find

⎧
⎪⎪⎨

⎪⎪⎩

dt

dτ
= Lgtφ − Egtt

=
ΣE − 2mraL

ρ2Δ
,

⎧
⎪⎪⎨

⎪⎪⎩

dφ

dτ
= Lgφφ − Egtφ

=
2mraE + (L/ sin2 θ)(ρ2 − 2mr)

ρ2Δ
.

(8.21)

The normalization of uμ, gμνu
μuν = −ε (ε = 1 for time-like geodesics and ε = 0 for light-like

ones), then gives only one additional relation between ṙ and θ̇, and so the variables θ and r
are not obviously separable.

At this point it is useful to recall that, as we saw in Section 6.1, the Birkhoff–Jebsen
theorem reveals an a priori unexpected property of spherically symmetric spacetime solutions
of the vacuum Einstein equations, namely, that they are also static. They therefore possess
an additional Killing vector associated with the invariance of the solution under time-like
translations. A similar ‘miracle’ occurs for the Kerr solution.4

Indeed, the Kerr solution possesses, in addition to the two Killing vectors associated with
its stationarity and axial symmetry, a Killing tensor ξμν which is symmetric and satisfies

D(μξνρ) = 0 , (8.22)

namely (Penrose–Walker, 1969),

ξμν = Δ l(μkν) + r2gμν , (8.23)

where lμ and kμ are the null vectors defined in Boyer–Lindquist coordinates by (8.17). [Ver-
ifying that (8.23) satisfies (8.22) is a good exercise.]

This allows us to reduce the integration of the geodesic equation to a quadrature. Indeed,
if ξμν is a Killing tensor, we have

d

dτ
(ξμνu

μuν) = uρDρ(ξμνu
μuν)

= uρuμuνDρξμν + ξμν [u
ν(uρDρu

μ) + uμ(uρDρu
ν)] = 0 ,

(8.24)

where the first term is zero because the tensor is a Killing tensor, and the other terms are zero
owing to the geodesic equation. Therefore, ξμνu

μuν = K, where K is the Carter constant.
Combining this result with the normalization gμνu

μuν = −ε, after some algebra using (8.23),
(8.20), and (8.21) we find

⎧
⎪⎪⎨

⎪⎪⎩

ρ2
dr

dτ
= ±
√
[E(r2 + a2)− La]

2 −Δ(K + εr2) ,

ρ2
dθ

dτ
= ±
√
K − εa2 cos2 θ − (aE sin θ)2 − (L/ sin θ)

2
+ 2ELa .

(8.25)

4Chandrasekhar wrote in The Mathematical Theory of Black Holes (1983): “This discovery, by Carter,
was the first of the many properties which have endowed the Kerr metric with the aura of the miraculous.”
[In 1966, B. Carter demonstrated the separability of the Hamilton–Jacobi equation rather than the existence
of the Killing tensor, which is equivalent; see, for example, Frolov and Novikov (1998).]



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 487 — #499

Chapter 8: The Kerr solution 487

Now we still need to integrate these equations and choose the initial conditions. Except in
special cases, this is done numerically.5

Schwarzschild geodesics

The equations of motion of a free particle in the Schwarzschild field are obtained directly
by using the fact that the spacetime is static and spherically symmetric (see Section 5.2). We

can choose θ = π/2, and then ut = −(1 − 2m/r)ṫ = −E and uφ = r2φ̇ = L. The equation for
r(τ) is then obtained by normalizing the 4-velocity; see the special case of L = 0 in (6.15) and
also (7.20). Of course, it can also be obtained by setting a = 0 (and K = L2) in eqns (8.21) and
(8.25) above. The expression for r(τ) then is

ṙ = ±
√

E2 − Veff with Veff =

(

1− 2m

r

)(

ε+
L2

r2

)

. (8.26)

In Newtonian gravity, any particle of nonzero angular momentum can have a stable orbit
about the central object. In general relativity it is necessary that L2 > 12m2c2 (see Fig. 8.1).
Moreover, we see that light does not travel in a straight line; it can even orbit a black hole at
r = 3m.

L2 = 12m2c2

L2 > 12m2c2

L2 < 12m2c2

Veff

r
r= 2m

1

E 2

Fig. 8.1 The effective potential Veff .

Here we shall just make a few remarks about the solutions (8.21) and (8.25) which will
serve as an introduction to the following section.

• Geodesic motion can take place in the ‘equatorial plane’ θ = π/2; it is sufficient to take
K = (aE − L)2. If in addition we choose L = aE, the null geodesics (ε = 0) are the line
integrals of the null geodesic vectors kμ and lμ defined in (8.17) and we find

dr

dt
= ± Δ

r2 + a2
,

dφ

dt
=

a

r2 + a2
, where Δ = r2 − 2mr + a2 . (8.27)

5See, for example, the website of Madore and also that of Riazuelo listed in the Bibliography. A detailed
analytic study can be found in Chandrasekhar (1983).
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We see that for a2 < m2 light travels in a circle in the ‘plane’ θ = π/2 at r± = m±
√
m2 − a2

with angular velocity a/(r2± + a2) (measured with time t).
• The equations of motion of an object (ε = 1) in ‘radial’ free fall (L = 0) from infinity

(E = 1) in the ‘plane’ θ = π/2 reduce to

dr

dτ
= −
√

2m

r

(
1 +

a2

r2

)
,

dt

dτ
=

Σ

r2Δ
,

dφ

dτ
=

2ma

rΔ
, (8.28)

where Σ = (r2+a2)2−a2Δ. We thus see that the particle reaches r = 0. However, if a2 < m2,
the coordinates t and φ diverge as ln(r − r+) near r+ = m+

√
m2 − a2. Now, we easily see

from the definitions (8.13) that the equations (8.28) written in Kerr–Schild coordinates (T, ϕ)
are regular at r = r+. On the other hand, the equation for outgoing geodesics is singular in
the Kerr–Schild coordinates (T, ϕ) constructed using the ‘ingoing’ null vector lμ.

The innermost stable circular orbit (ISCO)

Certain astrophysical phenomena are modeled as rotating compact objects surrounded by
an accretion disk lying in the equatorial plane, an ensemble of particles whose orbits become
circular and which slowly drift toward the central object before falling onto it. Therefore, the
concept of the innermost stable circular orbit (ISCO) is important.

An ISCO of the Kerr geometry is determined by the geodesic equation (8.25) with θ = π/2
and K = (aE − L)2. The quartic radial equation becomes cubic and, setting r = 1/u and
x = L− aE, can be written as

u−4u̇2 = F with F ≡ 2mu3x2 − u2(2aEx+ x2 + a2) + 2mu+ E2 − 1 .

For the radial velocity to vanish we must have F = 0; for the orbit to be circular we must
have dF/du = 0; and for the orbit to be the innermost one we must have d2F/du2 = 0. We
therefore have three equations for the three unknowns E, L, and u. It is easily seen that the third
one gives E = (6mux2−x2−a2)/(2ax). The second one then gives x2 = 1/(3u2), and finally the
first one reduces to a quartic equation for u: 9a4u4 − 28ma2u3 +6(6m2 − a2)u2 − 12mu+1 = 0.

When the metric is the Schwarzschild metric, a = 0 and we have r = 6m, L2 = 12m2, and
E = 2

√
2/3. Therefore, the particle can radiate up to E − 1 = 1− 2

√
2/3 = 5.7% of its mass as

it falls toward the central object.
In the case a = m there are two solutions, one retrograde with r = 9m, E = 5/(3

√
3), and

L = −22m/(3
√
3) in which case only 3.8% of the mass can be radiated, and the other prograde

with r = m, E = 1/
√
3, and L = 2m/

√
3 in which case up to 42% of the mass can be radiated.

These results show that the surroundings of a black hole can be the site of extremely energetic
phenomena, as we shall see in detail in the following chapter.

8.4 The Kerr black hole

• The curvature singularity

As already mentioned in Section 8.2, there does not exist any object of finite size governed
by a realistic equation of state whose external gravitational field can be given by the Kerr
metric. This metric therefore can only describe a ‘collapsed’ object. Since the Kretschmann
invariant RμνρσR

μνρσ = 48m2(r2 − a2 cos2 θ)(ρ4 − 16a2r2 cos2 θ)/ρ12 (quadratic only in m
because the metric is of the Kerr–Schild type) diverges at r = 0, θ = π/2, this collapsed
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object is a curvature singularity. When r is the spheroidal coordinate of the Euclidean plane,
it is a ring (see Section 8.1), hence the name ring singularity.6

The ratio a/m

The angular momentum of the Sun is estimated (by means of helioseismology) to be J ≈
1.92×1041 kg-m2/s and the solar mass is M ≈ 1.99×1030 kg, and so we have a/m = Jc/GM2 ≈
0.22. If we view a neutron star as a homogeneous sphere, its Newtonian angular momentum will
be given by J ≈ 2MR2ω/5, and so a/m = (4/5)(Rω/c)/(2GM/c2R). For M = 1.4M�, R = 9 km
(and therefore GM/c2R ≈ 0.23), and a period of the order of a millisecond, we find a/m ≈ 0.33.
The ratio a/m is difficult to estimate for astrophysical black holes, but it seems7 that it may be
about 1.

• The horizons

Let us consider the case a2 < m2, where Δ = (r− r+)(r− r−) with r± = m±
√
m2 − a2.

The geodesic motion is governed by (8.21) and (8.25). Whatever the values of E, L, and K,
they have the same asymptotic behavior near the zeros of Δ:

dr

dt
∼ ± Δ

r2± + a2
,

dφ

dt
∼ a

r2± + a2
when r → r± (8.29)

(and also dθ/dt ∝ Δ). The radial velocity of light measured using the time of an observer at
infinity is zero at r = r±, which therefore are trapped surfaces. Any object, including light,
rotates on these surfaces about the ‘z axis’ with uniform angular velocity

Ω± =
a

r2± + a2
=

a

2mr±
(8.30)

measured using the time t of a clock at rest at infinity. These are usually interpreted as the
speeds of rotation of the surfaces r = r± themselves.

The determinant of the 3-metric induced on the surfaces r = const is, cf. (8.16), g|± =
−ρ2Δsin2 θ. It is zero at r±. The equations gijζ

j = 0, where the gij with i = {t, θ, φ} are
given in (8.15), then have a non-trivial solution at r = r±: ζ

j ∝ (1, 0,−gtφ/gφφ|± = Ω±).
This defines the vector fields

ζμ± = (1, 0, 0,Ω±) (8.31)

tangent to the surfaces and of zero norm. The surfaces r = r± are therefore light-like surfaces.
The vectors ζμ± are Killing vectors because they can be written as ζμ± = ξμ(t) + Ω±ξ

μ
(φ),

where ξμ(t,φ) are the Killing vectors associated with the stationarity and axisymmetry of the

metric. Since their norms are zero at r±, these surfaces are also Killing horizons.
We shall soon see that r = r+ is also a surface of infinite redshift and an event horizon.

6Since the geodesic equations (8.21) and (8.25) are regular at r = 0 if θ = π/2, geodesics can cross the
singularity toward r < 0. . . . We see from the metric (8.14) that gφφ can then become negative, and the
coordinate φ can become time-like. Since the latter is cyclic, there are closed time-like curves and regions
where causality is violated. To learn more, see, for example, Carter (1972).

7See, for example, Thorne (1974) and McClintock, Narayan, and Steiner (2013).
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The intrinsic geometry of the 2-surfaces r = r± at a given t is determined by the metric
induced on them, namely

dσ2
2 = ρ2±dθ

2 +
4m2r2±
ρ2±

sin2 θ dφ2 with ρ2± ≡ r2± + a2 cos2 θ . (8.32)

Their area is
A± = 4π(r2± + a2) = 8πmr± (8.33)

and their scalar curvature is R2 = 2(r2± + a2)(r2± − 3a2 cos2 θ)/ρ6±. Even though they are
often represented graphically as spheres or spheroids, they are neither of these.8

• The static limit

Let us consider an object at rest in the Boyer–Lindquist coordinate system (and therefore
also in the Kerr–Schild system). Its 4-velocity uμ = (u0, 0, 0, 0) must be time-like, that is, it
must have negative norm. Since this norm is gtt(u

0)2 = −(1− 2mr/ρ2)(u0)2, we must have

ρ2 ≥ 2mr ⇐⇒ r ≥ re with re = m+
√

m2 − a2 cos2 θ > r+ . (8.34)

Therefore, it is not possible for any material object below the static limit r = re to be at
rest relative to infinity. For reasons which will be explained in the following chapter, this is
also called the ergosphere.8

Now let us consider an object at r = const, θ = const but possessing an angular velocity
relative to infinity dφ/dt = ω. Its proper time τ is related to the time t of an observer at
infinity through the length element ds2 = −dτ2, that is,

dτ2 = −dt2(gtt + 2gtφω + gφφω
2) = −gφφ(ω − ω+)(ω − ω−)dt

2 with

ω± =
−gtφ ±

√
g2tφ − gttgφφ

gφφ
=

2mra± (ρ2/ sin θ)
√
Δ

(r2 + a2)2 − a2Δsin2 θ
.

(8.35)

Since gφφ is positive for r > r+, we must have ω ∈ [ω−, ω+] for the world line to be time-like.
However, at r < re where gtt > 0, not only ω+ but also ω− is positive. Any object below
the static limit therefore must rotate relative to infinity in the forward direction. In the limit
r = r+ where Δ = 0 we recover the result (8.30), namely, that the object must rotate at the
angular velocity Ω+ = 2mr+a/(r

2
+ + a2)2 = a/(r2+ + a2).

We can see from (8.35) that surfaces (r = const, θ = const) such that ω = ω± are surfaces
of infinite redshift. This is true, in particular, for the horizon r = r+.

• Maximal extension

The horizons r = r± are singularities of the coordinate system and not of the geometry,
as we have already noted above. The extension of the θ = 0 sections in which the metric for
φ = const reduces to

ds2 = − Δ

r2 + a2
dt2 +

r2 + a2

Δ
dr2 (8.36)

is done using the Kruskal method presented in Section 7.1 and leads to a Carter–Penrose
diagram very similar to that describing the spacetime of a Reissner–Nordström black hole;

8A more complete description of the geometry of the horizons (and of the ergosphere) of Kerr spacetime
can be found, for example, in Visser (2009).
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see Fig. 7.8. The past cone of the infinite future i+ is bounded by r = r+. Therefore, just
like the horizon in the Schwarzschild case, the surfaces r = r+ of the Reissner–Nordström
and Kerr black holes are event horizons.9

Mass and angular momentum

In Section 8.2 we identified Mg ≡ m/G as the ‘gravitational’ mass of a black hole, and
JN ≡ aMg as the angular momentum, by identifying the asymptotic Kerr metric with the
metric describing the gravitational field created by a rotating object with Newtonian angular
momentum JN in the post-Newtonian approximation.

The ‘inertial’ mass Min and angular momentum Jin can be calculated using the conservation
laws obtained in Section 5.4. The calculation of the mass is identical to that carried out in
Section 6.3 to find the mass of Schwarzschild spacetime, and we find Min = m/G. Therefore,
Min = Mg, in agreement with the strong equivalence principle.

Let us now consider the Killing vector associated with axial rotations having components
ξμ = (0, 0, 0, 1) in Boyer–Lindquist coordinates. The useful component of the Katz superpotential

(5.23) then reduces to κĴ [tr] = Dtξ̂r = − 1
2

√−ggrr(gttg′tφ + gtφg′φφ). Using (8.19), we obtain

its asymptotic form: κĴ [tr] → 3ma sin3 θ, and so the ‘inertial’ angular momentum is Jin =

−
∫

S
Ĵ [tr]dθdφ = −aMg = −JN. [The other definitions used in the literature, for example, the

Komar integrals (5.26), give Jin = JN, but after ad hoc changes of sign.]
To interpret this result we rewrite the Kerr metric (8.14) and (8.15) in the form ds2 =

ηabϑ
aϑb, that is, in terms of the tetrad (see Book 1, Section 4.3 and Book 2, Section 5.2)

ϑ0 =

√
Δρ2

Σ
dt , ϑ1 =

√

Σsin2 θ

ρ2
(dφ− ωdt) , ϑ2 =

√
ρ2

Δ
dr , ϑ3 =

√
ρ2dθ .

This tetrad defines a locally inertial frame: ϑa ∼ dXa.
In this frame dX1 = 0 defines the direction of a gyroscope pointing along the ‘X1 axis’.

In terms of φ and t, this direction is given by dφ − ωdt = 0. Since φ gives the position of
‘distant stars’, we find that their angular velocity is dφ/dt = ω > 0 (measured using the time
at infinity). A local inertial observer then sees himself rotating at angular velocity −ω. On the
horizon ω = Ω+ with Ω+ defined in (8.30). Therefore, the angular velocity of objects measured
using the time t of an observer at rest at infinity is, when they reach the horizon, the opposite
of that which a local inertial observer assigns to the black hole.

9For an in-depth study of the Kerr geometry see Carter (1972).
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The physics of black holes I

In the preceding chapters we studied the Schwarzschild and Kerr solutions of the vacuum Einstein
equations and introduced the concept of a black hole, a new object which is specific to this theory.
Here we shall describe two related physical processes which can be induced by the gravitational
field of a black hole: the Penrose process, which suggests that rotating black holes are large energy
reservoirs, and superradiance, which is the first step in the study of black-hole stability.

9.1 The Penrose process and irreducible mass

The static limit of a Kerr black hole is the 2-surface inside which any object must rotate in
the same direction as the black hole relative to an observer at rest at infinity. In Section 8.4
we saw that in adapted coordinates, for example, Boyer–Lindquist coordinates, it is given by
gtt = 0. In these coordinates the Killing vector associated with the stationarity of spacetime
has the components ξμ(t) = (1, 0, 0, 0) and its norm is gtt. It is therefore space-like below

the static limit. The 4-velocity of any material object is time-like (or light-like) everywhere.
Therefore, the scalar product −ξ(t).u can be negative only inside the static limit.1

Let us consider an object A freely falling toward a Kerr black hole. It will travel along a
geodesic, and so −ξ(t).uA = −gtμu

μ ≡ EA > 0 is a constant corresponding to its (specific)
energy; see (8.20). We imagine that after passing the static limit it breaks up into two
fragments, one of which, called B, has energy −ξ(t).uB ≡ EB < 0, which implies that it
remains confined inside the static limit. The energy of the second fragment, C, is EC ≡
−ξ(t).uC , and owing to the law of energy conservation (the ‘Einstein equivalence principle’)
EC = EA − EB > EA > 0. Therefore, this fragment can reach infinity, thereby extracting
from the black hole an energy EC −EA = |EB |. This is the Penrose process, and because of
it the static limit is called the ergosphere (and the region located between the horizon and
the static limit is called the ergoregion).2

To find the maximum energy that can be extracted from a Kerr black hole by the Pen-
rose process, let us consider the vector introduced in (8.31) ζ = ξ(t) + Ω ξ(φ), where Ω is
the constant angular velocity of rotation of the black hole and ξ(t,φ) are the Killing vectors
associated with the stationarity and axisymmetry. In Boyer–Lindquist coordinates its com-
ponents are ζμ = (1, 0, 0,Ω) with Ω = −(gtφ/gφφ)|+ = a/(r2+ + a2), where r = r+, a solution
of Δ = r2− 2mr+ a2, is its exterior horizon; cf. (8.15). Its norm is given by (see Section 8.4)

1It is easy to see this in a local Minkowski frame. If uμ = (1/
√
1− V 2, V/

√
1− V 2) with V < 1 and if

ξμ = (1, b), we have −u.ξ = (1−bV )
√
1− V 2, which cannot be negative unless b > 1, that is, if ξ is space-like.

2Penrose (1969); see also Ruffini and Wheeler (1971).
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ζ · ζ ≡ gμνζ
μζν = gtt + 2gtφΩ+ gφφΩ

2 = gφφ(Ω− ω+)(Ω− ω−)

with ω± =
−gtφ ±

√
g2tφ − gttgφφ

gφφ
=

2mra± (ρ2/ sin θ)
√
Δ

(r2 + a2)2 − a2Δsin2 θ
.

(9.1)

Since gφφ is positive outside the horizon, ζ ·ζ is negative if Ω ∈ [ω−, ω+]. This occurs near the
horizon [and, as is easily shown, in the entire ergoregion if m2 > a2(1 + 1/

√
2)]; see Fig. 9.1.

On the horizon itself ζ has zero norm.
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–0.1
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0.4

0.5

r+ re

r

m = 1

θ = π/2

a = 0.95

ω±

Fig. 9.1 ω± (for θ = π/2 and a/m = 0.95).

Since the scalar product of two time-like vectors is also time-like, we have

0 ≥ ζ · uB = (ξ(t) · uB) + Ω (ξ(φ) · uB) = −EB +ΩLB , (9.2)

where EB and LB are by definition the specific energy and angular momentum of the particle
B of 4-velocity uB and energy EB < 0 created in the ergoregion by the Penrose process. Since
particle B cannot leave the ergoregion it will decrease the effective mass of the black hole by
δM = EB < 0 and its angular momentum by δJ = LB < EB/Ω < 0. The mass and angular
momentum of the black hole will therefore vary as

δM − Ω δJ ≥ 0 , (9.3)

which translates the inequality (9.2) for the particle into an inequality for the black hole.
The equality holds when the process occurs on the horizon.

In 1970, D. Christodoulou posed and then solved the following problem: is it possible to
rewrite the inequality (9.3) in the form δF ≥ 0, where F (M,J) is a function of the intrinsic
geometry of the black hole, for example, its area F = F (A)? The answer is ‘yes’. Indeed,
since the area of the black hole A(M,J) is A = 8πmr+ = 8πGM(GM +

√
G2M2 − J2/M2)

because m = GM and a = J/M [cf. (8.33)], it can easily be shown that

δF =
dF

dA
8πG

κ
(δM − Ω δJ) =⇒ δM − Ω δJ ≥ 0 ⇐⇒ δF ≥ 0 , (9.4)

where we have set κ ≡
√
m2 − a2/(2mr+).
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The surface gravity

The coefficient κ appearing in (9.4) can be given a geometrical meaning. As we saw in
Section 8.4, the vector ζμ = (1, 0, 0,Ω), where Ω = a/(r2+ + a2) is the velocity of the black hole,
is a null vector, simultaneously tangent to and normal to the horizon r+, and it is also a Killing
vector. We define the surface gravity κ of the black hole as

κ2 = −1

2
(Dμζν D

μζν)|r+ =⇒ κ =

√
m2 − a2

2mr+
for the Kerr black hole .3

In the particular case of a Schwarzschild black hole, we can also give a ‘physical’ interpretation
to κ = 1/(4m) which explains its name. Since the 3-acceleration of a particle is ai = Dui/dτ , if
it is at rest we have uμ = (1, 0, 0, 0) with gtt(u

t)2 = −1. Therefore, ai = −Γi
tt/gtt. Since −gtt =

1/grr = 1 − 2m/r, we have ai = ((4m)−1, 0, 0) on the horizon. Its modulus |a| = √
grr/(4m)

diverges, but |a|/ut = 1/(4m) = κ is finite. Therefore, κ is the force per unit mass which must
be applied to a particle for it to remain at rest on the horizon, after correction by a ‘redshift’
factor.

Now we need to choose the (increasing) function F (A). With the goal of explaining quasars
or gamma-ray bursts as processes of energy extraction from black holes, the Princeton school
led by Wheeler2 required that F have the dimensions of a mass and chose F ≡ Mirr with

GMirr =

√
A
16π

=

√
r2+ + a2

4
=

√
mr+
2

⇐⇒ M2 = M2
irr +

J2

4G2M2
irr

. (9.5)

(The factor of 16π is chosen so that Mirr = M for J = 0, that is, for a Schwarzschild
black hole.) The quantity Mirr is the irreducible mass. Owing to (9.4), it must generically
increase when breakups, collisions, etc. occur near a black hole. If it remains constant, the
transformation is said to be reversible.

Therefore, the maximum energy that a Kerr black hole initially of mass M and angular
momentum J can lose is M −Mirr. If the black hole is a Schwarzschild one, then J = 0 and
M = Mirr, and no energy can be extracted by a Penrose process. If the angular momentum
is maximal, J = aM , the irreducible mass is minimal and equal to (since r+ = m) Mirr =
M/

√
2, and so the energy that can in principle be extracted is optimal in this case:

M −Mirr

M
= 1− 1/

√
2 = 29% . (9.6)

We see that this energy can be huge when we recall that 1 g = 5.6× 1032 eV = 0.9× 1014 J.

3The concept of ‘surface gravity’ is due to Carter; see, for example, Carter (1972). The definition we
have given here, see, for example, Wald (1984), allows κ to be calculated in Boyer–Lindquist coordinates. An
alternative definition, ζμDμζν = κζν , requires changing to coordinates which are regular on the horizon, for
example, Eddington–Finkelstein coordinates.
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Energy extraction from a black hole

To be able to extract from a Kerr black hole an energy equal to 29% of its initial mass M
by the Penrose process, the initial rotation of the black hole must be maximal: J = M2/G. In
addition, the breakup of the incident particle must take place on the horizon, and the ejected
particle of energy −EB = −LBΩ > 0 must be able to reach infinity. This is therefore more of a
gedankenexperiment than a realistic model capable of explaining observed phenomena such as
quasars, active galactic nuclei, gamma-ray bursts, and so on.

Collision processes occurring near the horizon are a more efficient means of extracting energy
from a black hole. Indeed, the particle energy can be arbitrarily large, but the conditions for
particles to be able to escape to infinity are very restrictive.4

Energy extraction from a charged black hole by the Penrose process is also possible. The
irreducible mass is obtained as above, but now by studying the trajectories of charged particles
in the Reissner–Nordström or Kerr–Newman metric. It turns out to also be given by mirr =
1
2
(r2+ + a2)

1
2 = 1

2
[(m+ (m2 − q2 − a2)

1
2 ], so that the energy which is a priori available can reach

50% of the initial mass (for a = 0 and q = m). However, the charge of a macroscopic body is
rapidly neutralized by the environment unless there exists a mechanism preventing this.5

If the black hole is surrounded by an accretion disk, one can imagine that the ambient
magnetic field could extract some of the rotational energy. This process, which was proposed by
Blandford and Znajek in 1977, was studied within the framework of the membrane paradigm, in
which locally inertial frames play an important role, with the goal of describing the horizon as
a ‘classical’ object. The origin and efficiency of the process are nevertheless still under debate,
and must be analyzed using relativistic magnetohydrodynamics.6

9.2 Superradiance

The study of the stability of black holes involves the linearization of the Einstein equations
about the Schwarzschild or Kerr solution. As we shall see in what follows, the equations of
motion for perturbations of the metric are wave equations. The problem then is to determine
whether or not these solutions are bounded.

As a preliminary exercise, let us consider a massless scalar test field propagating in
Schwarzschild spacetime (Price, 1971 and Thorne, 1972). Its equation of motion is the Klein–
Gordon equation �Φ = 0, or ∂μ(

√−ggμν∂νΦ) = 0. In Droste coordinates the metric is
ds2 = −(1− 2M/r)dt2 + dr2/(1− 2M/r)+ r2(dθ2 +sin2 θdφ2) (here we use M to denote the
geometric mass of the black hole in order to avoid confusion with the ‘quantum number’ m),
and so Φ can be expanded in spherical harmonics:

Φ(t, r, θ, φ) =
∑

lm

Y l
m(θ, φ)

Ψlm(t, r)

r
. (9.7)

4Piran and Shaham (1977) and Bejger, Piran, et al. (2012).
5On this subject, see Ruffini et al. (2010).
6Blandford and Znajek (1977); see also Komissarov (2009) as well as Lasota, Gourgoulhon, et al. (2014).
For an introduction to the ‘membrane paradigm’ see Damour (1979), and for recent developments see, for

example, Gourgoulhon and Jaramillo (2005).
An introduction to relativistic magnetohydrodynamics can be found in, for example, Lichnerowicz (1967),

or Gourgoulhon et al. (2011).
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Now we easily find the equation for the modes Ψlm:

∂2Ψlm

∂2r∗
− ∂2Ψlm

∂2t
− VeffΨlm = 0 with Veff =

(
1− 2M

r

)(
2M

r3
+

l(l + 1)

r2

)
, (9.8)

where r∗ ≡ r + 2M ln(r/2M − 1) is the tortoise coordinate introduced in Section 7.2 which
pushes away the horizon r = 2M at r∗ → −∞. The effective potential Veff can be compared
to that governing the motion of a massless particle; cf. (8.26). The essential feature here is
that Veff is positive everywhere outside the horizon; see Fig. 9.2.
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Fig. 9.2 The effective potential Veff .

Since the metric is static, we can push the separation of variables farther and reduce (9.8)
to an ordinary differential equation:

d2u

dr2∗
+
(
E2 − Veff

)
u = 0 with Ψlm(t, r) =

∫
dE e−iEt ulm(r, E) (9.9)

with E real and positive. Here we have set ulm(r, E) = u in order to simplify the notation.
At spatial infinity and near the horizon, the effective potential vanishes and the solutions

are waves:

r∗ → ∞ , u = AeiEr +Be−iEr , r∗ → −∞ , u = CeiEr∗ +De−iEr∗ , (9.10)

where the constants A, B, C, and D can depend on l, m, and E.
Multiplying (9.9) by ū and then subtracting the complex conjugate of the product, we

find that the Wronskian ūdu/dr∗ − udū/dr∗ is constant, which for E real implies that

|A|2 − |B|2 = |C|2 − |D|2 . (9.11)

For example, for C = 0 we have R + T = 1 with R ≡ |A|2/|B2| and T ≡ |D|2/|B2|.
The ‘transmission coefficient’ T , which like R a priori depends on l, m, and E, is given by
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T ∼ exp[−2
∫√

Veff − E2 dr∗] in the WKB approximation, and is sometimes referred to as
the ‘greybody factor’ (in the context of Hawking radiation; see Section 10.1).

If now we multiply (9.8) by ∂Ψ
∗
lm/∂t, add to this product its complex conjugate, and

integrate over r∗, we obtain (suppressing the indices l and m)

∂

∂t

∫
dr∗

(∣∣
∣
∂Ψ

∂t

∣∣
∣
2

+
∣∣
∣
∂Ψ

∂r∗

∣∣
∣
2

+ Veff |Ψ|2
)

=

[
∂Ψ̄

∂t

∂Ψ

∂r∗
+

∂Ψ

∂t

∂Ψ̄

∂r∗

]+∞

−∞
. (9.12)

As r∗ → ±∞, Veff → 0 and Ψlm is of the form Ψlm(r, t) = e−iEtulm(r, E), where u ≡
ulm(r, E) is given in (9.10) and satisfies the condition (9.11), so that the right-hand side of
(9.12) is zero. Then for each mode (l,m) we find that

∫
dr∗(|Ψ̇|2+ |Ψ′|2+Veff |Ψ|2)), a sum of

positive-definite terms, is a constant. Therefore, Ψlm cannot diverge in either space or time
(at least as long as we restrict ourselves to the region outside the horizon).

Now let us carry out the same analysis using the Kerr metric. Although the spacetime is
no longer spherically symmetric, the equation �Φ = 0 is still separable. We decompose Φ as

Φ(t, r, θ, φ) =
∑

l,m

∫
dE eimφe−iEtSlm(θ, E)

ulm(r, E)

r
, (9.13)

where (t, r, θ, φ) are the Boyer–Lindquist coordinates, E is real and positive, and the
spheroidal harmonics Slm(θ, E) ≡ S satisfy

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+ S

[
λ−
(
aE sin θ − m

sin θ

)2]
= 0 . (9.14)

[When aE = 0, the eigenvalue λ reduces to l/(l + 1), l ∈ N, and S becomes a spherical
harmonic.] Then, using the explicit form of the Kerr metric given in (8.14)–(8.16), we easily
find the equation for ulm(r, E) ≡ u [which generalizes (9.9)]:

d2u

dr2∗
+

(r2 + a2)2

r4
(E − E+

0 )(E − E−
0 )u = 0 . (9.15)
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Here the ‘effective potentials’ E±
0 are given by (see also Fig. 9.3)

E±
0 ≡ ma±

√
Δ
√
λ+ 2(Mr − a2)/r2

r2 + a2
. (9.16)

The tortoise coordinate r∗ satisfies dr∗/dr = r2/Δ, and we recall that Δ = r2 − 2Mr + a2.
[The similarity of this equation to the geodesic equation (8.25) should be noted.]

At spatial infinity and near the horizon the solutions are waves:

⎧
⎨

⎩

r∗ → ∞ : u = AeiEr +Be−iEr ,

r∗ → −∞ : u = Ceikr∗ +De−ikr∗ with k =
r2++a2

r2+
(E −mΩ) ,

(9.17)

where the constants A, B, C, and D may depend on l, m, and E, and Ω ≡ a/(r2+ + a2) is
the angular velocity attributed to the black hole; see (8.30). The fact that the Wronskian
ūdu/dr∗ − udū/dr∗ is constant implies the generalization of (9.11):

E(|A|2 − |B|2) = k(|C|2 − |D|2) . (9.18)

For C = 0 and setting R ≡ |A|2/|B2| and T ≡ |k| |D|2/(|B|2E) (T > 0), we then have

R = 1 + T > 1 if E −mΩ < 0 . (9.19)

An incident wave can therefore be amplified by the gravitational field of the black hole (for the
simple reason that the wave De−ikr∗ is actually traveling away from the black hole because
k < 0). This phenomenon is called superradiance, and it is the ‘wave’ version of the Penrose
process signaling an instability of the Kerr black hole.

On the stability of black holes

The linearization of the Einstein equations about the Schwarzschild solution leads to equa-
tions similar to (9.7)–(9.9) called the Regge–Wheeler (1957) and Zerilli equations (1970), and a
proof of their stability more rigorous than the Detweiler–Ipser proof (1973) presented in (9.12)
has been given by Kay and Wald (1987).

The linearization of the Einstein equations about the Kerr solution was done by Teukol-
sky (1972), and the study of superradiance (predicted by Zel’dovich in 1970) was begun by
Starobinsky in 1973, as well as by Press and Teukolsky. The explicit calculation of the trans-
mission coefficient T [see (9.19)] shows that the wave can be amplified by 0.3%, and a similar
analysis of the amplification of electromagnetic and gravitational waves indicates amplifications
of 4.4 and 138%, respectively. However, the fields of half-integer spins are not amplified. This
is because the associated currents are positive-definite, in contrast to the Klein–Gordon current
[that is, −i(Φ∂μΦ̄−c.c.); see Book 2, Section 9.3]. In 1989 Whiting showed that the superradiant
modes cannot grow exponentially with time, but as yet there is no complete and rigorous proof
of the stability of the solutions of �Φ = 0 outside the Kerr horizon.

In 1970 Vishveswara began the study of quasi-normal modes, that is, solutions of the wave
equations which are simultaneously purely incoming near the horizon and purely outgoing at
infinity, that is, of the type (9.17) with B = C = 0. Their frequencies, which are necessarily
complex, describe mode damping, in particular, damping of the gravitational waves emitted
during stellar collapse to a black hole, or after the coalescence of a binary system.
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The study of massive fields in Kerr spacetime leads to the prediction of a ‘bomb’ effect,
the black hole bomb in the superradiant regime: the waves are amplified in each reflection on
the wall of the potential which traps them near the black hole (Press and Teukolsky, 1972, and
Damour et al. 1976).

Finally, as we saw in the preceding chapters, the inner horizon r− of the Reissner–Nordström
and Kerr black holes is a Cauchy horizon (see Fig. 7.8) which implies that it is unstable, as shown
by Chandrasekhar and Hartle in 1982.7

9.3 Quantum superradiance

The phenomenon of superradiance can be understood as the spontaneous creation of particle–
antiparticle pairs due to excitation of the quantum vacuum by the gravitational field, and
the transmission coefficient T then is interpreted as the creation rate per unit time and
unit volume.

This is the gravitational version of the Schwinger effect of vacuum instability due to a
sufficiently strong electric field.

The Schwinger effect

Let us consider a particle of charge −q < 0 and mass μ (and spin 0 for simplicity) in a
constant electric field E effective over a distance L along the z axis of an inertial frame (here we
shall limit ourselves to two dimensions). Its classical motion is governed by the Lorentz equation
(see Book 2, Section 11.4), which can be compared with the geodesic equation (8.25):

μ2

(
dz

dτ

)2

= (E − E+
0 )(E − E−

0 ) with E±
0 = −qEz ± μ for z ∈ [−L/2, L/2] .

We consider the case where the field strength is above the critical value 2μ/(|q|L). The effective
potentials E±

0 shown in Fig. 9.4 are the analogs of those of Fig. 9.3. For values of E such that
−qEL/2+μ < E < qEL/2−μ, the particle will be reflected from the potential barrier. We note
that on the right E > E+

0 but on the left E < E−
0 . In addition, −E−

0 (−E,+q) = E+
0 (E,−q).

In quantum field theory the particle is described by an operator Φ̂ satisfying the equation

(∂μ − iqAμ)(∂
μ − iqAμ)Φ̂ − μ2Φ̂ = 0 with Aμ = (−Ez, 0). We expand it in modes of the form

e−iEtΨ(z), where Ψ is the solution of an equation similar to (9.15):

d2Ψ

dz2
= WΨ with W = −(E − E+

0 )(E − E−
0 ) = μ2 − (E + qEz)2 .

The solutions at z = ±∞ are Ψ → Aeik+z + Be−ik+z and Ψ → Ceik−z + De−ik−z, where
k± = [(E ± qEL/2)2 − μ2]1/2, with, according to the Wronskian theorem,

k+(|A|2 − |B|2) = k−(|C|2 − |D|2) . (9.20)

7For an introduction to the literature and recent work on the topics discussed here, see, for example,
Dafermos and Rodnianski (2010); Berti, Cardoso, and Starinets (2009); Cardoso, Dias, Lemos, and Yoshida
(2004); and Marolf and Ori (2012).
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Fig. 9.4 The Schwinger critical field.

Since on the left E < E−
0 , the mode Ce−iEteik−z represents an antiparticle of energy −E

and charge +q propagating to the left (and not to the right). Therefore, an antiparticle moving
in the direction of decreasing z corresponds to D = 0 in (9.20). Setting R = |A|2/|B|2 and
T = k−|C|2/(k+|B|2), we then have

R = 1 + T > 1

as for the case of classical superradiance studied above. In the quantum treatment we are dis-
cussing here, this is interpreted as the spontaneous creation of particle–antiparticle pairs at a
rate given by the transmission coefficient T . Using the WKB approximation, we easily find

T ≈
∫

exp[−2
√
Wdz] = e

−πμ2

|q|E .

This phenomenon was predicted by Sauter in 1931, and also by Heisenberg and Euler in 1936,
and interpreted in the context of quantum field theory by Schwinger in 1951.8

8As we saw in Book 2, Section 11.4, the effect is very weak for the electric field strengths presently
accessible in the laboratory. However, it can be important in astrophysics if black holes are charged; see
footnote 5. But the ‘Schwinger’ effect due to the rotation of a black hole can only play a role in the dynamics
of microscopic black holes whose mass is of the order of the Planck mass, 10−5 g. See Starobinsky (1973)
and Deruelle and Ruffini (1974).
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The physics of black holes II

Here we give a brief description of Hawking radiation, which involves a combination of general
relativity and quantum field theory and leads to a thermodynamical interpretation of the laws
governing the evolution of black holes.

We conclude our study of black holes with the Israel theorem, which allows one to argue that if
gravitation is described by general relativity, then not only do black holes exist, but all black holes
are represented by the Kerr–Schwarzschild solution.

10.1 Hawking radiation

In the preceding chapter we limited ourselves to studying the various physical processes which
occur outside the horizon of a black hole. However, we know that the spacetime of a black
hole is larger than the east quadrant of the Kruskal diagram (see Fig. 7.2) to which external
observers are confined. In quantum physics, the concepts of vacuum and particle are global
and thus depend on the region of spacetime under consideration. Below we shall see that, as
shown by S. W. Hawking in 1974, a consequence of this is that black holes represented by
the east and north quadrants of the Kruskal diagram radiate like black bodies.1

The Unruh effect

Here, working within special relativity, we shall show that the concepts of vacuum and
quantum particle depend on the portion of Minkowski spacetime accessible to the observer.

Let us use Rindler coordinates (t, z, x, y) in which the metric is written as

ds2 = −(1 + az)dt2 +
dz2

4(1 + az)
+ dx2 + dy2 . (10.1)

Making the transformation aT =
√
1 + az sinh at, aZ =

√
1 + az cosh at, we see that this is the

Minkowski metric ds2 = −dT 2 + dZ2 + dx2 + dy2, that the coordinates (t, z > −1/a) cover only
quadrant I defined by Z2 − T 2 > 0, and that the hyperbola z = const represents the world line
of a uniformly accelerated observer; see Book 2, Section 5.2.

Just as in Sections 9.2 and 9.3 where we studied fields propagating outside a black hole, here
we shall consider a massless scalar field Φ defined in quadrant I. We decompose it in modes in
Rindler coordinates (the analogs of Schwarzschild coordinates) as

Φ = e−iEtei(pxx+pyy)ψE,px,py (z) .

Its Klein–Gordon equation of motion �Φ = 0 then reduces to [we write ψE,px,py (z) ≡ ψ to
simplify the notation]

1Hawking (1974) and (1975).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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d2ψ

dz∗
= −ψ

[
E2 − (p2x + p2y)e

2az∗
]
,

where z∗ = 1
2a

ln(1 + az) is a tortoise coordinate which pushes away the horizon z = −1/a at
z∗ = −∞. The solution ψ(z) is a linear combination of Bessel functions which near the horizon
is a sum of incoming and outgoing modes [we choose E > 0]:

Φ ∝ αe−iE(t−z∗) + βe−iE(t+z∗) . (10.2)

The modes allow us to define the concepts of vacuum and particle in quadrant I in the standard
manner of quantum field theory. To define now these concepts in quadrants I (Z2 − T 2 > 0,
Z > 0) and II (Z2 − T 2 < 0, Z > 0) it is necessary to continue the modes (10.2) into quadrant
II (see Fig. 10.1).

X
1

T

O e1

e0

I

II

III

IV

Fig. 10.1 Rindler coordinates and quadrants of Minkowski spacetime.

For this we introduce the advanced Eddington–Finkelstein coordinate, v = t+ z∗, in which
the metric (10.1) is written as

ds2 = −(1 + az)dv2 + dv dz + dx2 + dy2 .

It is regular on the future horizon, that is, for z → −1/a, t → +∞ with v finite. As a function
of v, eqn (10.2) becomes

Φ ∝ αe−iEv(1 + az)iE/a + βe−iEv .

The second term is regular on the horizon. The first (the outgoing mode) can be analytically
continued beyond z = −1/a (writing −1 = e±iπ) as

αe−iEv(1 + az)iE/a

→ αe−iEv
[
Θ(1 + az) (1 + az)iE/a + [Θ(−1− az) (−1− az)iE/a exp(±πE/a)

]
,

(10.3)

where Θ is the Heaviside distribution and the + sign corresponds to Imz < 0. Since the vector
∂/∂v points toward the future, we choose this sign such that the mode describes an antiparticle
state, just as in the ‘standard’ quantum field theory.

The mode (10.3) is then interpreted as follows. At z > −1/a it represents a flux of |α|2
particles moving away from the horizon, and at z < −1/a it represents a flux of |α|2 exp(2πE/a)
particles moving toward increasing z. However, since the vector ∂/∂t is space-like at z < −1/a,
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these particles travel backwards in time. They are therefore antiparticles which follow the arrow
of time and move toward decreasing z. Finally, since the mode describes an antiparticle state,
it must be normalized to −1, which imposes that

|α|2 − |α|2 exp(2πE/a) = −1 =⇒ |α|2 =
1

exp(2πE/a)− 1
. (10.4)

The coefficient |α|2 is interpreted as the rate of pair creation. The distribution is that of a black
body at temperature

T =
a

2π
. (10.5)

If we now demand that the physical spacetime be represented by quadrants I and II of Minkowski
spacetime, then an observer confined to region I (and therefore necessarily accelerated) must
detect the particles, while an inertial observer does not detect any. This is the Unruh effect.2

Let us return to the study of a massless scalar field Φ propagating in Schwarzschild
spacetime as in Section 9.2. Since the metric is ds2 = −(1− 2M/r)dt2 + dr2/(1− 2M/r) +
r2(dθ2 + sin2 θdφ2), we can decompose it in the modes

Φ(t, r, θ, φ) = Y l
m(θ, φ)

ulm(r, E)

r
e−iEt ,

and the Klein–Gordon equation �Φ = 0 for each mode reduces to [setting ulm(r, E) ≡ u]

d2u

dr2∗
+
(
E2 − Veff

)
u = 0 , where Veff =

(
1− 2M

r

)(
2M

r3
+

l(l + 1)

r2

)
(10.6)

and r∗ ≡ r + 2M ln(r/2M − 1) is the tortoise coordinate which pushes away the horizon
r = 2M at r∗ → −∞.

Near the horizon the effective potential vanishes and the solutions are a sum of outgoing
and incoming waves:

Φ ∝ αe−iE(t−r∗) + βe−iE(t+r∗) . (10.7)

Now if the physical spacetime is that of a star collapsing to form a black hole (see Fig. 10.2),
it is necessary to continue these modes beyond the horizon from the west quadrant to the
north quadrant of the Kruskal diagram; see Fig. 10.2. To do this we follow step by step the
reasoning which led us to the Unruh effect above.

In terms of the Eddington–Finkelstein coordinate v = t+ r∗, the Schwarzschild metric is
written as

ds2 = −
(
1− 2M

r

)
dv2 + 2dv dr + r2(dθ2 + sin2 θ dφ2) . (10.8)

It is regular on the future horizon, that is, for r → 2M and t → +∞ at finite v. The mode
(10.7) becomes

2Unruh (1976); see also Davies (1975) and Fulling (1973). Here we follow the presentation of Damour and
Ruffini (1976). See also Damour (2004).

We note that for T = 1 K, we must have a ≈ 1.5 × 1019 g, where g = 9.8 m/s2 is the acceleration of
terrestrial gravity.
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i0

J−
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H +
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Fig. 10.2 The west and north quadrants of a star collapsing to form a black hole.

Φ ∝ αe−iEve2iEr∗ + βe−iEv = αe−iEve2iEr

(
r − 2M

2M

)4iEM

+ βe−iEv . (10.9)

The second term is regular on the horizon. The first term (the outgoing mode) can be
analytically continued beyond the horizon as

αe−iEve2iEr
[
Θ(r/2M − 1) (r/2M − 1)

4iEM

+Θ(1− 2M/r) (1− 2M/r)
4iEM

exp(+4πEM)
]
,

(10.10)

where Θ is the Heaviside distribution and the + sign was chosen so that the mode describes
an antiparticle state. The normalization of the mode requires

|α|2 =
1

exp(8πEM)− 1
. (10.11)

The coefficient |α|2 is interpreted as the number of particle–antiparticle pairs created per
mode and per unit time. The distribution is that of a black body at temperature

T =
1

8πM
. (10.12)

The creation rate then is

dN

dt
=
∑

l

∫
dE

2π

(2l + 1)Tl(E)

exp(8πEM)− 1
, (10.13)
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where Tl(E) is the ‘greybody factor’ studied in Section 9.2, which describes the flux of created
particles through the potential barrier Veff . Therefore, an observer confined to the exterior
of a ‘black’ hole will see it radiate.3

10.2 On the thermodynamics of black holes

The study of the Penrose process near a Kerr black hole leads to the conclusion that its
irreducible mass can only increase; see Section 9.1. A similar but more general conclusion
was reached by Hawking (1971), who, on the basis of a theorem of Penrose stating that
light rays that generate a horizon cannot intersect, showed that the sum of the areas of the
horizons of black holes interacting with matter can only increase, with the condition that the
cosmic censorship hypothesis is valid and that (via the Einstein equations) the matter obeys
the so-called weak energy condition (namely, that its energy–momentum tensor satisfies4

Tμνu
μuν > 0 with uμu

μ < 0).
In view of these results and also the fact that any information on the matter falling into

a black hole other than its mass and angular momentum (here we ignore electric charge) is
lost, in 1971 Bekenstein conjectured that black holes have an entropy S which, in general
relativity, is proportional to their area:

S = α
A
l2P

, (10.14)

where α is a dimensionless number and lP (in units where the Boltzmann constant is taken
equal to 1 so that S is dimensionless) has the dimensions of a length. Since it is constructed
from fundamental quantities, it can only be the Planck length, lP = (�G/c3)1/2. This length
involves, along with the constants c (= 1) and G characterizing classical Einstein gravity,
the Planck constant � characteristic of quantum phenomena. The fact that the area of a
black hole (or its irreducible mass) can only increase is then interpreted as the second law of
thermodynamics:

δS ≥ 0 . (10.15)

The area of a black hole and therefore its entropy are functions of the quantities characterizing
the black hole, namely its mass M and angular momentum J (we ignore electric charge). If
the black hole is a Kerr black hole, but the law is valid for any black hole which is a solution
of the Einstein equations, we will have [cf. (9.3)]

T δS = δM − Ω δJ with T =
κ �

8πα
, (10.16)

where Ω and κ are the angular velocity and surface gravity of the black hole [Ω = a/(r2++a2)

and κ =
√
m2 − a2/(2mr+) for a Kerr black hole].

An important property of the surface gravity κ is that, as shown by Carter, it is constant
on the horizon of the black hole. This is the zeroth law.5 The quantity T (which has the

3There are many other ways of deriving Hawking radiation. A partial list can be found in, for example,
Carlip (2009).

We note that the Hawking temperature of a black hole of mass comparable to the mass of the Sun is
negligible: T = 6× 10−8(M/M�) K.

4The proof can be found in Hawking (1972) and in, for example, Straumann (2013).
5It is proved in, for example, Straumann (2013).
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dimensions of a mass in the units where the Boltzmann constant is equal to 1) then must
be interpreted as the temperature of the black hole, and (10.16) will be the first law of
thermodynamics for black holes.

The objection which has been raised to this thermodynamical interpretation of the laws
of dynamics of black holes is that if a black hole is required to have a temperature, then it
must be radiating (and this would also be true of the static Schwarzschild black hole). But
no particle or field, at least a classical one, can emerge from the horizon. However, Hawking
has shown (see Section 10.1) that since the quantum vacuum of the spacetime of a black hole
differs from that of an observer at infinity, the hole does in fact radiate with a black-body
spectrum at temperature T = κ�/(2π) [T = �/(8πGM) if it is a Schwarzschild black hole].
Therefore, the constant α must be

α = 1/4 . (10.17)

One suspects that the meaning and implications of these results are still the subject of intense
discussions. . . .

10.3 The Israel uniqueness theorem

In Section 6.1 we saw that the only solution of the spherically symmetric vacuum Einstein equations

is the Schwarzschild solution (this is the Birkhoff–Jebsen theorem). One can pose the question of

whether or not black holes which are static but not spherically symmetric exist. The answer is ‘no’,

as was shown by Israel, whose theorem we shall present in detail here. The Israel theorem thereby

proves that the Schwarzschild black hole is unique.

• Hypotheses and statement

Spacetime is four-dimensional and static.
Its spatial sections can be foliated by closed 2-surfaces.
It satisfies the vacuum Einstein equations.
It is asymptotically flat.
It possesses a horizon, that is, a closed 2-surface of infinite redshift, where the curvature

is finite.

The spacetime is therefore spherically symmetric. Therefore, it is the Schwarzschild space-
time.6

• The equations of motion

Spacetime is four-dimensional and static. In this case there exist adapted coordinates
(t, xi) in which the length element is written as

ds2 = −V 2(xi)dt2 + hij(x
k)dxidxj (10.18)

and where the components of its Riemann and Ricci tensors are simply [cf. (4.11)]

Rijkl = R̄ijkl , Rtijk = 0 , Rtitj = V D̄2
ijV ,

Rtt = V Δ̄V , Rti = 0 , Rij = R̄ij −
D̄2

ijV

V
,

(10.19)

where the bar indicates that the quantity is constructed using the spatial metric hij .

6See Israel (1967), and also (where some misprints are corrected) Frolov and Novikov (1998) or Straumann
(2013).
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Its spatial sections can be foliated by closed 2-surfaces, for example, the surfaces V (xi) =
const. Then V can play the role of the radial coordinate and the length element becomes

ds2 = −V 2dt2 + dσ2 with dσ2 = ρ2(V, θA)dV 2 + bAB(V, θ
C)dθAdθB , (10.20)

where θA = (θ, φ). The (2 + 1) decomposition of the spatial metric is done as in Section 4.2
[taking note of the changes of sign due to the fact that here the signature is (+,+,+)] and
gives (we will not need the other components)

R̄V V = −ρ(Δ̃ρ+ ρK.K + ∂V K) ,

bABR̄AB = −1

ρ
∂V K + 2K.K −K2 − Δ̃ρ

ρ
+ R̃ ,

(10.21)

where KAB ≡ 1
2ρ∂V bAB is the extrinsic curvature of the 2-surfaces V = const, K ≡ bABKAB

and K.K ≡ KABK
AB , and Δ̃ and R̃ are the Laplacian and Gauss scalar curvature con-

structed with the 2-metric bAB . In addition, since b is the determinant of the metric bAB , we
have

D̄2
V V V = −∂V ρ

ρ
, D̄2

V AV = −∂Aρ

ρ
, D̄2

ABV =
KAB

ρ
,

Δ̄V =
1

ρ
√
b
∂V

(√
b

ρ

)

=
1

ρ3
(ρ2K − ∂V ρ) .

(10.22)

The spacetime satisfies the vacuum Einstein equations, namely, Rμν = 0. We then have,
in particular, Rtt = 0, RV V = 0, and bABRAB = 0, or, using (10.19), (10.21), and (10.22),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂V

(√
b

ρ

)

= 0 ⇐⇒ ∂V ρ = ρ2K ,

∂V K =
K

V
− Δ̃ρ− ρK.K , R̃ =

2K

ρV
−K.K +K2 .

(10.23)

Using the first equation, the last two can be written in the following useful form in terms of
ΨAB ≡ ρ

(
KAB − 1

2bABK
)
[it can be checked that they are indeed equivalent to (10.23)]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

(√
bK

√
ρV

)

+
2
√
b

V
Δ̃(

√
ρ)=−

√
b

2V ρ3/2
(
∂Aρ ∂

Aρ+2Ψ.Ψ
)
,

∂V

[√
b

ρ

(
KV +

4

ρ

)]

+V
√
b
(
Δ̃(ln ρ)+R̃

)
=−V

√
b

ρ2
(∂Aρ ∂

Aρ+2Ψ.Ψ) .

(10.24)

We see from the form of the right-hand sides that the left-hand sides must be negative or
zero. By integrating them over all space, we shall show that the conditions at infinity and
on the horizon require that they vanish. The right-hand sides then will also vanish and we
find ∂Aρ = 0 and ΨAB = 0.
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We note for what follows that

∫
dθdφ

√
b Δ̃f(ρ) = 0 ,

∫
dθdφ

√
bR̃ = 8π , (10.25)

because the 2-surfaces V = const are closed owing to the Gauss–Bonnet theorem.7

• Spacetime is asymptotically flat

In this case at spatial infinity we must have

ds2=−V 2dt2+ρ2dV 2+bABdθ
AdθB →−(1−2m/r)dt2+dr2+r2(dθ2+sin2 θdφ2) .

Therefore, V 2 ≈ 1− 2m/r, ρ dV/dr → 1, and
√
b → r2 sin θ, or also [using K = ∂V ρ/ρ

2; see
(10.23)]

ρ ≈ 4m

(1− V 2)2
,

√
b ≈ 4m2 sin2 θ

(1− V 2)2
, K ≈ 1− V 2

m
when V → 1 . (10.26)

• Spacetime possesses a regular horizon

This horizon, a closed 2-surface of infinite redshift where gtt is zero, is defined by V = 0.
It is regular if the Kretschmann invariant on it is finite. Then [see (10.19)] we have

RμνρσR
μνρσ = R̄ijklR

ijkl + 4V 2D̄2
ijV D̄ijV .

Since space is three-dimensional, the Riemann tensor R̄ijkl is expressed as a function of the
Ricci tensor and we have8 R̄ijklR

ijkl = 4R̄ijR̄
ij − R̄2. Spacetime being Ricci-flat, we then

find [cf. (10.19)] R̄ij = D̄2
ijV/V and R̄ = 0, so that the Kretschmann invariant reduces to

the following using (10.22):

1

8
RμνρσR

μνρσ =
D̄ijV D̄ijV

V 2
=

1

V 2ρ2

(
K2 +K.K +

2∂Aρ ∂
Aρ

ρ2

)
. (10.27)

In order for this sum of positive terms to be finite on the horizon V = 0, we must have

KAB → 0 and ρ → ρH when V → 0 (10.28)

since ρH is a nonzero constant.

7Let I =
∫
S

√
b Δ̃f dθ dφ =

∫
S∂Av̂A dθ dφ with v̂A =

√
b bAB∂Bf . By the divergence theorem we then

have I =
∫
∂S V AdSA. Since S is a closed surface, it has no boundary ∂S and so I = 0.

Let J =
∫
S

√
b R̃ dθdφ. It was first shown by Gauss for a special case, and then by Bonnet in 1848 and

finally Chern in 1944 (using differential geometry, which is discussed in the last part of this book), that if S
is a (regular) closed surface, then J = 8π. See Chern (1944).

8This is a consequence of the Gauss–Bonnet theorem generalized by Chern; see the last part of this book
and footnote 7 above.
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• The theorem

The first step is to integrate the field equations Rtt = 0, RV V = 0, and bABRAB = 0
over all space, the first equation in the form (10.23) and the other two in their form (10.24),
using (10.25), (10.26), and (10.28). The first gives

∫

S

√
b

ρ

∣∣∣
V=1

dθdφ =

∫

S

√
b

ρ

∣∣∣
V=0

dθdφ or AH = 4πmρH , (10.29)

where AH ≡
∫√

b|0 dθ dφ is the area of the horizon. The integrals of the left-hand sides of
(10.24) are negative and, using (10.29), give

4m ≤ ρH , AH ≥ πρ2H =⇒ 4m ≥ ρH . (10.30)

The equality then must hold and we obtain the stated result, namely, that the left-hand sides
of (10.24) vanish, and so the right-hand sides do, too. Therefore, the 2-surfaces V = const
must be such that

∂Aρ = 0 ; ΨAB = 0 . (10.31)

The second step of the proof is to show that the 2-surfaces V = const must be spheres.
We return to the field equations in the form (10.23). Using ΨAB ≡ KAB − bABK/2 = 0,
we find that the Gauss curvature of these 2-surfaces is given by R̃ = 2K/(V ρ)−K2/2 with
K = ∂V ρ/ρ

2. Since (10.31) requires that ρ depend only on the radial coordinate V , the same
is true of R̃: the curvature of the (closed) 2-surfaces is constant, and so they are spheres.

The final step is to note that since our spacetime is a static solution of the Einstein vacuum
equations and also is spherically symmetric, it can only be the Schwarzschild solution, as we
saw in Section 6.1. Q.E.D. In the coordinates (t, V, θ, φ) the length element is written as

ds2 = −V 2dt2 +
16m2

(1− V 2)4
dV 2 +

4m2

(1− V 2)2
(dθ2 + sin2 θdφ2) . (10.32)

The uniqueness of the Kerr black hole

The proof of the uniqueness of the Kerr black hole is a more difficult problem. The theorem,
stated by Carter (1971) and Robinson (1975), is the following. Stationary and axisymmetric
solutions of the vacuum Einstein equations, which possess a horizon which is regular and convex,
which are asymptotically flat, and which have no curvature singularity outside the horizon, are
Kerr solutions (specified by their mass M and angular momentum J). The theorem was extended
to the charged Kerr–Newman case by Mazur (1982) and Bunting (1983).

The idea behind the proof is the following. The metric can be written as

ds2 = −V dt2 + 2Wdt dφ+Xdφ2 + U [dλ2/(λ2 − c2) + dμ2/(1− μ2)] ,

where the functions V , W , X, and U depend only on λ and μ, and λ = c defines the horizon.
The vacuum Einstein equations reduce to two second-order differential equations for the two
‘Ernst potentials’ X(λ, μ) and Y (λ, μ): E(X,Y ) = 0 and F (X,Y ) = 0. The behavior of Y for
λ → ∞ is then determined and depends on a single parameter J .

Now we assume that the solution possesses two a priori different solutions (X1, Y1) and
(X2, Y2) parametrized by the same J .
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In 1971, Carter showed that if these solutions are separated by an infinitesimal amount
they must be identical. Then, in 1975 Robinson constructed an integral of the form

R =
∫∞
c

dλ
∫ +1

−1
dμ
[
X1
X2

(Y2 − Y1)F (X1, Y1) + · · ·
]
which is zero if the equations of motion, E = 0

and F = 0, are satisfied, and succeeded in writing the integrand as a sum of (eight!) positive-
definite terms. These then must vanish separately, which implies that X1 = X2 and Y1 = Y2.
Since the Kerr metric satisfies the equations of motion, it is therefore the only solution.9

The consequence of these theorems is that when a star collapses to form a black hole, it must
lose en route everything that characterizes it (for example, its multipole moments, its baryon
composition, and so on) in order to become in the end a Kerr black hole characterized only by
its mass and angular momentum. As summarized in a famous statement by Wheeler, “a black
hole has no hair.”

Of course, if the hypotheses on which these theorems are based are done away with, black
holes can become ‘hairy’. In fact, a number of solutions are now known in more than four
dimensions, or in the presence of various gauge fields which generalize the Maxwell field or
scalar fields φ of judiciously chosen potentials V (φ), and so on.10

9To learn more, see, for example, Carter (2004), and also Chandrasekhar (1983) and Chruściel et al.
(2012), as well as Alexakis et al. (2013).

It should be noted that the proof assumes that the horizon is not degenerate, that is, m2 = a2, and that
as yet there is no proof of the uniqueness of the Kerr–de Sitter solution (the solution of Gμν = Λgμν).

10See, for example, Emparan and Reall (2008).
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Part III

General relativity and experiment

It was my good fortune to be present at the meeting of the Royal Society in London when
the Astronomer Royal for England announced that the photographic plates of the famous
eclipse, as measured by his colleagues at Greenwich Observatory, had verified the prediction
of Einstein that rays of light are bent as they pass in the neighbourhood of the sun. The
whole atmosphere of tense interest was exactly that of the Greek drama: we were the chorus
commenting on the decree of destiny as disclosed in the development of a supreme incident.
There was dramatic quality in the very staging:—the traditional ceremonial, and in the
background the picture of Newton to remind us that the greatest of scientific generalisations
was now, after more than two centuries, to receive its first modification. Nor was the personal
interest wanting: a great adventure in thought had at length come safe to shore.

Alfred North Whitehead, description of the November 6, 1919 session
of the Royal Society, in Science and the Modern World (1925)

. . . we find that Einstein’s theory passes this extraordinarily stringent test with a fractional
accuracy better than 0.4% . . . . The clock-comparison experiment for PSR 1913 + 16 thus
provides direct experimental proof that changes in gravity propagate at the speed of light,
thereby creating a dissipative mechanism in an orbiting system. It necessarily follows that
gravitational radiation exists and has a quadrupolar nature.

Joseph H. Taylor, Jr., in Binary Pulsars and Relativistic Gravity,
Nobel lecture, December 8, 1993

The Nobel Prize in Physics 2017 was awarded to Rainer Weiss, Barry C. Barish, and Kip S.
Thorne ‘for decisive contributions to the LIGO detector and the observation of gravitational
waves’.
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11

Tests in the solar system

In the solar system we can, as a first approximation, neglect the gravitational field of all celestial
bodies except the Sun. In the Newtonian theory the planet trajectories are then Keplerian ellipses.
Relativistic effects are weak because the dimensionless ratio characterizing them is everywhere less
than GM�/c

2R� � 2 × 10−6, and so they can be added linearly to the Newtonian perturbations
due to the other planets, the non-spherical shape of celestial bodies, and so on. The present chapter
describes the observable relativistic effects in the solar system.

11.1 The solar system and the Schwarzschild metric

Here we shall describe the gravitational field of the Sun by a Schwarzschild spacetime whose
metric in Droste coordinates is (see Section 6.1; we have changed the notation as ν → 2ν,
λ → 2λ)

ds2 = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2θdφ2)

{
where e2ν=e−2λ=1−2m/r

and m≡GM�/c
2�1.5 km .

(11.1)

We can also use ‘isotropic’ radial coordinates [r = r̄(1 +m/2r̄)2] or ‘harmonic’ coordinates
(r̃ = r −m), in which the metric is written as

ds2 = −
(
1−m/2r̄

1 +m/2r̄

)2

c2dt2 +
(
1 +

m

2r̄

)4
(dr̄2 + r̄2dθ2 + r̄2 sin2θdφ2)

= −
(
r̃ −m

r̃ +m

)
c2dt2 +

[(
1 +

m

r̃

)2
δij +

(
r̃ +m

r̃ −m

)
m2

r̃4
xixi

]
dxidxj .

(11.2)

Harmonic coordinates

Coordinates x̃μ = (t, xi) are termed harmonic if �̃ x̃μ = 0, where the four x̃μ are treated as
four scalars. This condition is equivalent to

∂̃ν(
√

−g̃g̃μν) = 0 ⇐⇒ g̃ρσΓ̃μ
ρσ = 0 . (11.3)

In the Schwarzschild metric ds2 in Droste coordinates (11.1) we make the change of spatial
coordinates

x1 = r̃(r) sin θ cosφ , x2 = r̃(r) sin θ sinφ , x3 = r̃(r) cos θ ,

which gives dθ2 + sin2θdφ2 = (r̃2δij − xixj)dx
idxj/r̃4 and dr2 = r′2xixjdx

idxj/r̃2, and so
ds2 = g̃μνdx̃

μdx̃ν with

g̃tt = −(1− 2m/r) , g̃ij = (r/r̃)2δij + [r′2/(1− 2m/r)− (r/r̃)2)](xixj/r̃
2) ,

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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where r = r(r̃), r′ = dr/dr̃, and r̃2 = δijx
ixj . We also find

√
−g̃ = r2r′/r̃2 and

√
−g̃gμ1 = (0, r′ + x1x1f, x1x2f, x1x3f) with f = ((r/r̃)2(1− 2m/r)− r′2)/(r̃2r′)

and analogous expressions for
√
−g̃gμ2 and

√
−g̃gμ3. The harmonic coordinate condition then

reduces to ∂̃μg̃
μ1 = 0, or

4f + r̃f ′ + r′′/r̃ = 0 ,

a particular solution of which is r′′ = 0, 4f + f ′ = 0, that is, owing to the definition of f ,
r = r̃ +m and f = −m/r̃2.

Substituting this solution into the expressions for g̃tt and g̃ij , we see that the metric then is
just (11.2).

The smallness of m relative to the typical distances in the solar system implies that only
the first few lowest-order terms of the expansion of (11.1) or (11.2) will be needed. Indeed, if
we are interested only in the post-Newtonian corrections to the Keplerian trajectories of the
planets [which come from gtt = −(1−2m/r)], it will prove useful to generalize the expansion
of the Schwarzschild metric as

ds2 = −
(
1− 2

m

r̄
+ 2β

m2

r̄2
+ · · ·

)
dt2

+
(
1 + 2γ

m

r̄
+ · · ·

)
(dr̄2 + r̄2dθ2 + r̄2 sin2 θdφ2) ,

(11.4)

where r̄ is the isotropic coordinate (or harmonic coordinate r̃; they are equivalent at this
order), and where the Eddington parameters β and γ are equal to 1 in general relativity.
For arbitrary β and γ the metric (11.4) is a (simplified) form of the parametrized post-
Newtonian (PPN) metric, and serves as a measure of the difference between general relativity
and competing theories.1

11.2 The geodesic equation

The motion of a test particle in a gravitational field is governed by the geodesic equation
Duμ/dλ = 0, where uμ = dxμ/dλ and λ parametrizes the curve.

As we have seen in Section 5.2, the manifest static nature and spherical symmetry of the
metric (11.1) give the first integrals of the motion. First we have

ut = −e2ν
dt

dλ
= −

(
1− 2m

r

)
dt

dλ
≡ −E , uφ = r2 sin2 θ

dφ

dλ
≡ L , (11.5)

where E and L are the energy and angular momentum per unit mass of the particle. In
addition, the spherical symmetry implies that all sections θ = const are equivalent, and so
we take θ = π/2. We thus obtain the expression for the length element (11.1):

−ε = −e−2νE2 + e2λ
(
dr

dλ

)2

+
L2

r2
, (11.6)

1In Section 12.1 we shall see that this metric is also valid far away from a system of masses in the
post-Newtonian approximation of general relativity (where β = γ = 1) when the system can be assumed
stationary.
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where ε = +1 for time-like geodesics (in which case we take λ = τ so that uμu
μ = −1) and

ε = 0 for photons. As we have already seen in eqn (8.26) and Fig. 8.1, this equation can be
rewritten as (

dr

dλ

)2
= E2 − Ue with Ue =

(
1− 2m

r

)(
ε+

L2

r2

)
. (11.7)

An orbiting clock and GPS

Using the integrals (11.5) and (11.6) of geodesic motion in Schwarzschild spacetime, show

that for a circular orbit we have, as in Newtonian gravity, dφ/dt =
√

m/r3.

[Answer: since ṙ = 0 from (11.2), we find E2 = V with V = e2ν(1 +L2/r2). For the orbit to
be circular we must in addition have dV/dr = 0, which gives L. We therefore obtain

uμ = (e−ν , 0, 0,
√

ν′/r)/
√
1− rν′ ,

or dφ/dt = eν
√

ν′/r, and arrive at the result.]
Now show that the proper time ΔτO of a clock in a circular orbit at rO is related to the

proper time Δτ⊕ of a clock at rest at r = r⊕ as

ΔτO =

√

1− 3m/rO
1− 2m/r⊕

Δτ⊕ . (11.8)

This is relevant to the GPS (global positioning system): using the fact that 2m⊕ = 9 mm,
show that a clock on a GPS satellite (at an altitude of 20,000 km) runs about 40 μs per day
fast relative to a clock located on the Earth (r⊕ = 6400 km). Show that the positioning error
accumulated over the period of a day will be about 12 km if these relativistic effects are not
taken into account.

The standard method of finding the trajectory equations starting from (11.5)–(11.7) is
to take the ratio of (dr/dλ)2 and (dφ/dλ)2 and then set u = 1/r, which gives

(
du

dφ

)2

=
1

L2

(
E2 − ε

)
+ ε

2m

L2
u− u2 + 2mu3 . (11.9)

Taking the derivative, we have that

d2u

dφ2
+ u = ε

m

L2
+ 3mu2 . (11.10)

The term proportional to u2 is the relativistic correction to the Binet equation of Newtonian
gravity (see, for example, Book 1, Section 12.2). Equation (11.10) can be integrated in terms
of Weierstrass elliptic functions.

11.3 The bending of light

The propagation of light in the gravitational field of the Sun is described by (11.10) with
ε = 0.
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In Newtonian order the trajectories of light rays are straight lines u = sinφ/b, where
b is the distance of closest approach (see Fig. 11.1). In first order, (11.10) then becomes
d2u/dφ2 + u � (3m/b2) sin2 φ, a particular solution to which at the required order is

u � sinφ

b
+

3m

2b2

(
1 +

1

3
cos 2φ

)
. (11.11)

For r → ∞, that is, u → 0, φ or π − φ are small and tend to −2m/b. A light ray coming in
from infinity and passing the center at a distance b then is deflected by an angle

Δφ � 4m

b
. (11.12)

b
X

2m
 b

Y

Observer

Fig. 11.1 The bending of light.

It is an instructive exercise to calculate Δφ using the system of isotropic coordinates
and the PPN metric (11.4). In this case the trajectory of a light ray is determined by the
vanishing of the interval and the geodesic equation. Let us assume that the ray is emitted
in the plane θ = π/2 along the x̄(= r̄ cosφ) axis with impact parameter b̄. At first order in
m/r̄ we have [cf. (11.4)]

0 � −
(
1− 2m

r̄

)
dt2 +

(
1 +

2γm

r̄

)
(dx̄2 + dȳ2) ,

0 � d2ȳ

dλ2
+ Γy

tt

(
dt

dλ

)2

+ Γy
xx

(
dx̄

dλ

)2
(11.13)

(for γ=0 the spatial sections are Euclidean). From the first equation we obtain in lowest order

dt/dλ � dx̄/dλ; also, in the same order d2ȳ/dλ2 �
(
d2ȳ/dx̄2

)
(dx̄/dλ)

2
, and so the geodesic

equation reduces to d2ȳ/dx̄2 + Γy
tt + Γy

xx = 0. The Christoffel symbols can be calculated
straightforwardly: Γy

tt � mȳ/r̄3 and Γy
xx � mγȳ/r̄3. We then find

Δφ �
∫ +∞

−∞

d2ȳ

dx̄2
dx̄ � 2m(1 + γ)

∫ +∞

0

b̄dx̄

(x̄2 + b̄2)
3
2

� 2m(1 + γ)

b̄
. (11.14)

Since γ = 1 in general relativity, we recover (11.12) (at the order in which we are working
b ≈ b̄), but we see that if we had ignored the curvature of space, as Einstein himself did in
1907, we would have obtained half the value, which is the predicted bending in the Newtonian
theory (see Book 1, Section 17.1).
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For a light ray grazing the surface of the Sun m/b = 2 × 10−6, and (11.12) gives (Ein-
stein, 1915)

Δφ = 1.75”. (11.15)

Measurements of light bending

The (rather crude) measurement of the effect (11.15) during the expeditions led by Arthur
Eddington to the island of Pŕıncipe in the Gulf of Guinea and the city of Sobral in Brazil in
1919, announced at a meeting of the Royal Society in London, sealed the triumph of the theory.2

The bending of light rays can also lead to ‘gravitational mirage’ effects. This phenomenon,
predicted by Zwicky in the 1930s and studied by Einstein himself, was observed in 1979 by Walsh
et al. for quasars. At present dozens of examples are known. The formation of multiple images
and arcs can occur, depending on the geometry and the structure of the matter in the deflecting
galaxy. The bending can also be interpreted as a ‘lensing’ effect due to the deflecting object,
and it can be shown that the luminosity of the image is considerably enhanced if it is close to
the line of sight of the deflecting object. This provides a means of detecting objects which are
otherwise invisible.3

11.4 The Shapiro effect

Now let us calculate the time it takes for an electromagnetic signal to travel from a point
1 to a point 2 in the solar system. Using the first integrals (11.5), we rewrite (11.6) for the
signal trajectory (ε = 0) in the form

dr

dt
=

(
1− 2m

r

)[

1− 1− 2m/r

1− 2m/b

(
b

r

)2] 1
2

, (11.16)

where we have introduced b, the distance of closest approach to the Sun (such that dr/dt|b =
0). In first order in m/r and m/b, (11.16) becomes

dt

dr
=

r√
r2 − b2

{
1 +

2m

r

[
1 +

b

2(r + b)

]}
, (11.17)

which can be integrated to obtain the coordinate time to travel from r to b:

t(r, b) �
√

r2 − b2 + 2m ln

(
r +

√
r2 − b2

b

)

+m

√
r − b

r + b
. (11.18)

2See the quotation from Whitehead in the heading of the present part of this book. The newspaper
The Times of November 7, 1919 carried the headline Revolution in Science; New Theory of the Universe:
Newtonian ideas overthrown. And in the New York Times of November 9: ECLIPSE SHOWED GRAVITY
VARIATION; Diversion of Light Rays Accepted as Affecting Newton’s Principles; HAILED AS EPOCHMAK-
ING; British Scientist Calls the Discovery One of the Greatest of Human Achievements. [Citations are from
Isaacson (2008).]

For a complete discussion of tests of general relativity see Will (1993) and also Damour (2016).
3For an introduction, see Straumann (2013), and for a review see, for example, Bartelmann and Schnei-

der (2001).
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In isotropic coordinates r̄ or harmonic coordinates r̃, which are equal to each other at first
order in m and related to the Schwarzschild coordinate r as r̄ ≈ r̃ = r−m, the effect (11.18)
becomes

t(r̄, b̄) �
√
r̄2 − b̄2 + 2m ln

(
r̄ +
√
r̄2 − b̄2

b̄

)

+ 2m

√
r̄ − b̄

r̄ + b̄
. (11.19)

More generally, the PPN metric (11.4) in the required order and for θ = π/2 can be written as

ds2 ≈ −
(
1− 2m

r̄

)
dt2 +

(
1 +

2γm

r̄

)
(dr̄2 + r̄2dφ2) , (11.20)

where the Eddington parameter γ is 1 in general relativity. The geodesic equation possesses
two first integrals

dt

dτ
≈ E

(
1 +

2m

r̄

)
,

dφ

dτ
=

L

r̄2

(
1− 2mγ

r̄

)
, (11.21)

and the vanishing of the interval (11.20) then gives

dt

dr̄
=

r̄
√

r̄2 − b̄2

[
1 +

m(1 + γ)

r̄

(
1 +

b̄

r̄ + b̄

)]
, (11.22)

where we have traded L/E for the distance of closest approach b̄ as L/(Eb̄) = 1+m(1+γ)/b̄.
We then have

t(r̄, b̄) �
√

r̄2 − b̄2 +m(1 + γ) ln

(
r̄ +
√
r̄2 − b̄2

b̄

)

+m(1 + γ)

√
r̄ − b̄

r̄ + b̄
, (11.23)

and we indeed recover (11.19) for γ = 1.
The first term in (11.18), (11.19), or (11.23) is the equation for light propagating in a

straight line at speed c. The terms involving the logarithm are the numerically dominant
relativistic correction. The total time to go from point 1 to point 2 then is t12 = t(r1, b) +
t(b, r2) (for |φ1 − φ2| > π/2); see Fig. 11.2. If upon arriving at 2 the signal is reflected back
to 1 and the motion of 1 is neglected, the duration of the round trip is 2t12. This effect was
calculated by I. Shapiro in 1964.

Measurements of the Shapiro effect

The Shapiro effect was measured by Irwin Shapiro himself in 1968 and again in 1972 using
radar signals emitted by the stations at Haystack, Massachusetts and Arecibo, Porto Rico in
the direction of Mercury and Venus. The accuracy obtained was about 10 %. Since the delay
is about 200 μs, its accurate measurement requires good knowledge of the topography of the
planet. (For example, Venus presents altitude differences of order 1500 m or 5 μs.) Moreover,
the solar corona, on which the signals undergo refraction, introduces additional delays which
must be eliminated. Finally, since the time for a trajectory is about twenty minutes, an accuracy
of 10 μs implies that the position of the planets must be known with an accuracy of at least
1.5 km. The effect was later measured more accurately using space probes such as Mariner 6
and 7 as targets, but owing, in particular, to the solar wind their motion is quite erratic, with
leaps as high as 30 m or 0.1 μs. After the installation of a reflector on Mars by the Viking
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probe, the accuracy reached 10−3. The best measurements today were obtained by following the
Cassini probe sent to Saturn in 1997, which passed near Jupiter in 2003: the PPN parameter γ
appearing in (11.23) is now constrained to the value 1 with an accuracy of better than 10−5 [see
Will (1993) and Damour (2016)].

b

r

Earth

Sun / Jupiter

Venus / Cassini

Fig. 11.2 The Shapiro effect.

It is important to note that the accuracy of the measurements is now good enough
to distinguish between isotropic, harmonic, or Schwarzschild coordinates. We are thus led
to global tests of general relativity, where the signal arrival times are compared with the
expressions predicting them involving hundreds of parameters to take into account relativistic
effects and Newtonian perturbations.

11.5 Advance of the perihelion

Here we shall carry out the calculations at post-Newtonian order using the PPN length
element (11.4):

ds2 = −
(
1− 2

m

r̄
+ 2β

m2

r̄2
+ · · ·

)
dt2

+
(
1 + 2γ

m

r̄
+ · · ·

)
(dr̄2 + r̄2dθ2 + r̄2 sin2 θdφ2) ,

(11.24)

where we recall that the Eddington parameters β and γ are equal to 1 in general relativity.
The static nature and spherical symmetry imply that we can limit ourselves to geodesics

in the ‘plane’ θ = π/2, and the components ut and uφ of the 4-velocity are constant:

(
1− 2

m

r̄
+ 2β

m2

r̄2
+ · · ·

)
dt

dτ
= 1 + En ,

(
1 + 2γ

m

r̄
+ · · ·

)
r̄2

dφ

dτ
= L ,

(11.25)

where τ , satisfying dτ2 = −ds2, is the proper time and En and L are constants of the motion
which can be identified as the energy and orbital angular momentum per unit mass of the
planet.
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We then can extract from the length element (11.24)

(
dr̄

dτ

)2

=

(
2En +

2m

r̄
− L2

r̄2

)

+

(
E2

n +
4(1− γ)Enm

r̄
+

2(2− β − 2γ)m2

r̄2
+

4γL2m

r̄3

)
+ · · ·

(11.26)

Setting ū = 1/r̄, from (11.25) and (11.26) we find the equations for the trajectory ū(φ):

(
dū

dφ

)2

=
2En

L2

(
1 +

En

2

)
+

2m

L2
(1 + 2(1 + γ)En) ū

−
(
1− 2(2− β + 2γ)m2

L2

)
ū2 + · · ·

(11.27)

[If a radial coordinate different from r̄ = r̃+O(m2) is used, a term proportional to u3 arises.]
Differentiating (11.27) then gives4

d2ū

dφ2
+ ū

(
1− 2(2− β + 2γ)m2

L2

)
=

m

L2
(1 + 2(1 + γ)En) . (11.28)

The solution of (11.28) satisfying (11.27) is an ellipse which precesses without deformation:

r̄ =
a(1− e2)

1 + e cos ν
with ν = (φ− ω)

(
1− (2− β + 2γ)m2

L2

)
, (11.29)

where the longitude of the periastron ω is an integration constant and the semi-major axis
a and eccentricity e are related to En and L as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a = − m

2En

(
1 +

(3 + 4γ)En

2

)

e2 = 1 +
2EnL

2

m2
− (7 + 8γ)L2E2

n

m2
− 4(2− β + 2γ)En .

(11.30)

The relativistic correction to the true anomaly ν in (11.29) is a secular term which makes
the orbit non-periodic: the trajectory is an ellipse, which is not deformed when the isotropic
coordinate r̄ is used, the major axis of which turns slowly in the plane θ = π/2 by an angle

Δω =
2π

1− (2− β + 2γ)m2/L2
− 2π

� 6πm2

L2

(2− β + 2γ)

3
� 6πm

a(1− e2)

(2− β + 2γ)

3

(11.31)

per period; see Fig. 11.3.

4The similarity of this equation to those governing the trajectory of a planet in the Nordström theory (see
Book 2, Section 10.3), as well as to those for a charge in a Coulomb field in the Maxwell theory (see Book 2,
Section 13.3), should be noted.
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X

Y Δω

Fig. 11.3 Advance of the perihelion of Mercury.

The angle Δω is a coordinate angle. It is effectively the angle measured on the Earth
(which is far from the Sun) if the light coming from the planet travels in a straight line. This
is not the case. Now, since the precession is a cumulative effect, after N � 1 revolutions
NΔω will be large enough that the distortion in the propagation of the light rays can be
neglected, and Δω can be compared directly to the observations. For Mercury, the orbital
period is 88 days, a = 5.8× 107 km and e = 0.2. In addition, m� = 1.5× 103 km and so

Δω = 42.98 arcsec/century (11.32)

in general relativity, where β = γ = 1.

The advance of the perihelion of Mercury

The result (11.32), obtained by Einstein in 1915, coincides with the precession, unexplained
in Newtonian theory, discovered 70 years earlier by Le Verrier.5 The astronomical observations
of the last three centuries give the excess (11.32) with an accuracy of 10−2. (We recall that
the total observed precession is more than a hundred times larger; see, for example, Book 1,
Section 13.3.) Radar measurements of the positions of the planets carried out since 1975 have
led to large increases in the accuracy of the measurements, and the advance of the perihelion of
Mercury is now known with an accuracy of 10−3. Moreover, since the parameter γ is known to
within 10−5 thanks to the Shapiro effect (see Section 11.4), the parameter β is also constrained
to a value of 1 with an accuracy of 3 × 10−3. In spite of this remarkable agreement between
observation and the prediction of general relativity, the objection has been raised that part of
the excess (11.32) may be due to the quadrupole moment of the Sun (Dicke, 1974; see Book 1,
Section 14.1). However, the internal motion of the Sun is now well understood from study of the
solar vibrational modes, and this objection has lost its plausibility; see Will (1993).

11.6 Post-Keplerian geodesics

To find the time dependence of the planet trajectories in the solar system when they are
approximated by geodesics in the field of a central body, the simplest method is to start from

5This discovery seems to have caused Einstein’s greatest emotion of his scientific life. See Pais (1982).
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the parametrized post-Newtonian metric (11.24) and make a ‘conchoidal’ transformation of
the radial coordinate r̄ → rδ with, to the required order, r̄ = rδ + δ m, where for now δ is a
free parameter. Then for θ = π/2 we have

ds2 = −
(
1− 2m

rδ
+

2(β + δ)m2

r2δ
+ · · ·

)
dt2 +

(
1 +

2mγ

rδ
+ · · ·

)
dr2δ

+r2δ

(
1 +

2m(γ + δ)

rδ
+ · · ·

)
dφ2 ,

(11.33)

where the Eddington parameters β and γ are 1 in general relativity.
Using the first integrals −gtt(dt/dτ) = 1 +En and gφφ(dφ/dτ) = L as well as ds2/dτ2 =

−1, we obtain (
drδ
dt

)2

� A+
2B

rδ
+

Cδ

r2δ
+

Dδ

c2r3δ
,

dφ

dt
� H

r2δ
+

Iδ
r3δ

, (11.34)

where the coefficients A,B,Cδ... are given by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A = 2En

(
1− 3En

2

)
, B = m (1− 2(2 + γ)En) ,

Cδ = −L2

(
1− 2En +

2(2 + β + 2γ + δ)m2

L2

)
, Dδ = 2(2 + 2γ + δ)mL2 ,

H = L (1− En) , Iδ = −2(1 + γ + δ)mL .

(11.35)

First choosing δ = −2(1+γ), we have Dδ = 0 so that the equation for rδ(t) takes a Newtonian
form. Then if we choose δ = −(1 + γ), we find Iδ = 0 and it is the equation for φ(t) which
takes a Newtonian form.

The integrations (see details below) then give, after reverting to the isotropic coordinate r̄,

n(t− T ) = η − et sin η , r̄ = a(1− e cos η) ,

tan

[(
1− (2− β + 2γ)m2

L2

)
(φ− ω)

2

]
=

√
1 + e

1− e
tan

η

2
,

(11.36)

where T and ω are two constants of integration, the semi-major axis a and the eccentricity
e are given in (11.30), and the mean motion n and eccentricity et are related to En and L
(or a and e) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n =
(−2En)

3/2

m

(
1 +

(7 + 8γ)En

4

)
=

√
m

a3

[
1− (4 + 5γ)m

2a

]
,

e2t = 1 +
2EnL

2

m2
+

(9 + 8γ)L2E2
n

m2
+ 4βEn

= e2 (1 + 8(1 + γ)En) = e2
[
1− 4(1 + γ)

a

]
.

(11.37)

The post-Newtonian trajectory of a planet can therefore be written in a form similar to its
Newtonian limit where the two eccentricities e and et become equal to each other.6

6We shall see in Section 12.1 that the relative trajectory of two bodies with comparable masses can also
be cast into a quasi-Keplerian form, bringing into play three rather than two eccentricities.
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Integration of the post-Keplerian equations

Let us first consider (11.34) for rδ(t) with δ ≡ δ1 = −2(1+ γ) so that dr1/dt = A+2B/r1 +
C1/r

2
1. This equation, of Newtonian form, can be integrated parametrically into n(t − T ) =

η − et sin η, r1 = a1(1 − et cos η) with n = (−A)3/2/B, a1 = −B/A, and et =
√

1−AC1/B2

[which are given explicitly in (11.37) with the use of (11.35)].
Since the coordinates r̄ and rδ are related as r̄ = rδ +mδ, we find r̄ = a1(1− et cos η)+mδ1,

which can be written to the required order as r̄ = ar(1 − er cos η) with ar = a1 + mδ1 and
er = et(1−mδ1/a1). Expanding these expressions using (11.35), we find that ar = a and er = e,
where a and e are given in (11.30). We thus find the first equation in (11.36).

Now let us turn to (11.34) for dφ/dt, this time setting δ ≡ δ2 = −(1 + γ), so that it also
reduces to Newtonian form: dφ2/dt = H/r22. An efficient way to integrate this equation is to
start from the quasi-Newtonian ansatz

tan

[(

1− m2(2− β + 2γ)

L2

)
φ

2

]

=

√
1 + ē

1− ē
tan

η

2

with n(t− T ) = η − et sin η and r1 = a1(1− et cos η).

Differentiating the first equation and using the others to express dφ/dη as a function of r1, which
is then replaced by its value r1 = r2 + (1 + γ)m, we see that to the required order in 1/c2 the
term proportional to 1/r32 appearing in the expression for dφ/dt is eliminated if we choose ē = e.
Finally, we check that the coefficient of the remaining term proportional to 1/r22 is indeed equal
to H. Q.E.D. (The trajectory of a charge in a Coulomb field is obtained in the same way; see
Book 2, Section 13.3.)

11.7 Spin in a gravitational field

We saw in Book 2, Chapter 7 that in the theory of relativity we are led to introduce the
concept of a particle carrying, in addition to its inertial mass, an intrinsic angular momentum
or (classical) spin j, a vector orthogonal to the particle 4-velocity u. In the absence of an
external torque the equations of motion of the center of mass and the spin of an object in
free fall in a gravitational field are

Duμ

dτ
= 0 ,

Djμ

dτ
= 0 with jμu

μ = 0 , (11.38)

where the covariant derivative D describes the gravitational field in which the spin moves.7

• Geodetic precession

Let us consider a spin in the Schwarzschild field, in a circular orbit in the θ = π/2 ‘plane’.
Then as we saw in Section 11.2, its 4-velocity has the components

7These are the Mathisson equations seen in Book 2, Section 7.3. Since an object carrying a (classical)
spin cannot be considered as a point object, we are led to add to (11.38) a coupling to gravitational ‘tidal
forces’, that is, to the Riemann tensor, which in addition causes the center of mass to deviate from the
geodesic trajectory (Papapetrou, 1951 and Pirani, 1956). These corrections are negligible in the applications
we consider in the present section, namely, the motion of a gyroscope in the field of the Earth.

A detailed description of the Gravity Probe B experiment can be found at http://einstein.stanford.edu/.
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ut ≡ dt

dτ
=

e−ν

√
1− rν′

=
1

√
1− 3m/r

,

uφ ≡ dφ

dτ
=

√
ν′/r√

1− rν′
=

√
m

r3

√
1

1− 3m/r
,

(11.39)

and so dφ/dt = eν
√

ν′/r =
√
m/r3 (as in Newtonian gravity).

It is then straightforward to write the spin equation of motion (11.38) using the Christoffel
symbols given in Section 7.2 (modulo the change ν → 2ν and λ → 2λ). The component jθ

remains constant and

djφ

dt
+

eν

r2

√
rν′jr = 0 ,

djr

dt
− e−2λ+ν

√
rν′(1− rν′)jφ = 0 (11.40)

with j0 = re−ν
√
rν′jφ, the solution of which, choosing jφ(0) = 0 and jr(0) = r2, is

jφ = − reλ√
1− rν′

sinΩt , jr = r2 cosΩt

with Ω =
dφ

dt
e−λ

√
1− rν′ =

√
m

r3

√

1− 3m

r
.

(11.41)

We then find that the angular velocity of the spin precession, called the geodetic precession,
is (this was calculated by de Sitter in 1916)

ωgeod =

√
m

r3

(

1−
√

1− 3m

r

)

≈ 3

2

√
m3

r5
. (11.42)

(Therefore, ωgeod = −3ωThomas; see Book 2, Section 7.4.) For a gyroscope in a circular orbit
about the Earth at an altitude of 642 km we have ωgeod ≈ 6.6 arcsec/yr, which is effectively
the value measured in the Gravity Probe B experiment in 2011 with an accuracy of 1%, in
excellent agreement with the prediction of general relativity.

The calculation of ωgeod in first order in m/r when the gravitational field is described by
the parametrized post-Newtonian metric (11.24) is easily done by passing to the coordinate
r and using eqns (11.39) and (11.40). We find

Ω ≈
√

m

r3

[
1− m(1 + 2β)

2r

]
,

dφ

dt
≈
√

m

r3

[
1 +

m(γ − β)

r

]

=⇒ ωgeod =

(
1

2
+ γ

)√
m3

r5
.

(11.43)

• Lense–Thirring precession

Now let us assume that the object creating the field also has a ‘spin’. Its gravitational
field now is no longer static, but only stationary, and the metric describing it must contain
cross terms g0i (the Kerr metric studied in Chapter 8 is an example). In lowest order, the
correction to the precession of a gyroscope due to the presence of these terms (corresponding
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to ‘spin–spin coupling’) is added linearly to the geodetic precession and can therefore be
calculated keeping only the corrections proportional to g0i ≡ 4gi in the Minkowski metric:

ds2 = −dt2 + dx2 + dy2 + dz2 + 8 gi dx
i dt . (11.44)

Here, as we shall see below, g is a vector with components gi given by 4g = (1+γ+α1/4)R∧
JN/r

3 (with r2 = R.R = δijx
ixj), JN is the Newtonian angular momentum of the object

creating the field, γ is the Eddington parameter, and α1 is a new PPN parameter.
The calculation of the Christoffel symbols is straightforward: Γx

ty = −Γy
tx = −2(∇ ∧ g)z,

Γx
tz = −Γz

tx = 2(∇∧ g)y, and Γy
tz = −Γz

tx = −2(∇∧ g)x.
In addition, in the lowest order which we are concerned with here, we can assume that

the gyroscope is at rest. Its equation of motion then reduces to djμ/dt + Γμ
tij

i = 0 and is
easily written as (see the discussion of vector calculus in Book 2, Section 11.1)

dj

dt
= ωLT ∧ j with ωLT = −2∇∧ g =

1

2
(1 + γ + α1/4)

(
3R(R.JN)

r5
− JN

r3

)
. (11.45)

This effect was calculated by Lense and Thirring in 1918. It will decouple from the geode-
tic precession if the gyroscope has a polar orbit. Then on the average ω̄LT = (1 + γ +
α1/4)JN/(4r

3).
If the vector JN is the angular momentum of the Earth, we will have JN = Iω, where

I = 0.33M⊕ r2⊕ is the Earth’s moment of inertia (see Book 1, Section 6.1) and ω is its diurnal
speed. Then

ω̄LT � 2(1 + γ + α1/4)× 10−2 arcsec/yr . (11.46)

This effect was measured in the Gravity Probe B experiment in 2011, and is consistent with
the value predicted by general relativity (γ + α1/4 = 1; see below) to within 20%.

Therefore, the measurements of the geodetic and Lense–Thirring precessions test the
equation of motion (11.38) of a spin in a gravitational field and constrain the PPN parameter
γ (which, we recall, is known with an accuracy of 10−5 from measurement of the Shapiro
effect; see Section 11.4) and α1.

The gravitomagnetic field

It is easily seen that the linearized Einstein tensor of the (stationary) metric (11.44) reduces
to G0i = −2∂2

ijg
j − 2
gi.

It can also be seen that in the coordinate transformation t = t̃ + ξ we have g̃i = gi − ∂iξ.
We can therefore have ∂ig̃

i = 0 if ξ is chosen such that 
ξ = ∂ig
i. In this ‘Coulomb gauge’ (see

Book 2, Section 12.3) the Einstein equations are the same as those of magnetostatics, that is
(suppressing the tildes),


gi = −4πT0i , the solution of which is gi =

∫
T0i(R

′)

|R−R′|dV
′.

The role of the ‘charge current’ is played by the energy–momentum tensor ji = 4T0i, and so it
is sufficient to ‘copy and paste’ the calculation of Book 2, Section 13.5 to obtain

g =
1

2r3
R ∧ JN , where JNi ≡ eijk

∫

xj(T k0)

is the angular momentum of the source; see Book 2, Section 7.2.
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In lowest order we have T 0i = ρvi, where ρ is the mass density of the source and vi is the
velocity of its elements. If we imagine this as a symmetric top with angular velocity ω, we find
JN = Iω, where I is the moment of inertia.

In spherical coordinates the metric (11.44) becomes (for JN‖OZ)

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 dφ2)− 4JN sin2 θ

r
dt dφ . (11.47)

(We have already used this in Section 8.2 [eqn (8.18)] to identify the parameter ma of the Kerr
metric as the angular momentum of the black hole it describes.)

In the PPN formalism the coefficient of the vector g becomes arbitrary and so we can take
it to be

4g = (1 + γ + α1/4)(R ∧ JN)/r
3.

In several of the theories competing with general relativity, in particular, those based on a
Lorentz-invariant PPN Lagrangian, α1 = 0 [see Will (1993) and references in footnote 2 above].
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The post-Newtonian approximation

In the preceding chapter we studied the two-body problem in general relativity assuming that one
of the bodies (the ‘Sun’) is much more massive than the other (a ‘planet’). We could thus describe
the gravitational field of the Sun by the Schwarzschild metric and the motion of the planet by the
geodesic equation.

When the two bodies have comparable masses this ‘Schwarzschild approximation’ is obviously
no longer valid. As we shall see in the present chapter as well as the four following ones, finding
the gravitational field created by these bodies and their motion in this field is much more difficult
than in Newtonian physics, where the two-body problem reduces to uniform rectilinear motion of
the center of mass of the system combined with the Keplerian motion of an ‘effective’ particle (see
Book 1, Chapter 12).

We shall begin our study of this two-body problem in general relativity by limiting ourselves to
corrections proportional to v2 ∼ m/R, the so-called post-Newtonian or 1PN corrections to Newton’s
universal law of attraction.

First we will find the gravitational field, that is, the metric, created by the two bodies [eqns
(12.1), (12.7), and (12.17) below, which generalize the Schwarzschild solution expanded through
post-Newtonian order]. Then we will derive the equations of motion (12.25), and finally the actual
motion, that is, the post-Keplerian trajectories (12.34), which generalize the post-Keplerian geodesics
obtained in Section 11.6. Along the way we will have to make some simplifying hypotheses, which
will be lifted in later chapters.

12.1 The metric at post-Newtonian order

Since our goal1 is to describe the motion of two compact, self-gravitating bodies which are
far-separated and moving slowly, we seek the metric in the region of spacetime where they
are moving (this is called the near zone). The gravitational field is weak, and so the idea
is to expand the metric about the Minkowski metric in powers of the small parameter v,
the orbital velocity of the objects (c = 1). According to Newton’s law, m/R is numerically
comparable to v2 (m is the mass of an object, R is the distance to its companion, and G = 1).
The structure of the metric g through order v2 ∼ m/R (called 1PN) therefore will be

g ≈ 1 + (m/r) + (m/r)(v2 +m/R) +O(v6) ,

where r is the distance to the system. The first term m/r is the Newtonian potential. The
second can be interpreted as arising from both the finiteness of the speed of propagation of
the gravitational interaction and the nonlinearity of the Einstein equations.

1See also the now-classic discussion of Landau and Lifshitz (1972), as well as Weinberg (1972) or Straumann
(2013). The method described here was initiated by Blanchet and Damour (1989), developed by Damour,
Soffel, and Xu (1991), and then generalized to parametrized post-Newtonian metrics (using two Eddington
parameters β and γ) by Damour and Esposito-Farese (1992).
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It is convenient and sufficient to seek the metric describing the gravitational field of two
compact objects in post-Newtonian order in the form

gtt = −e2U +O(v6) , gti = 4gi +O(v5) , gij = δije
−2U +O(v4) , (12.1)

where it is understood that U is the sum of a term of order v2 (the Newtonian potential)
and a term of order v4, and that gi is a quantity of order v3. The fact that gij is determined
as a function of gtt to order v2 is a result of the Newtonian approximation; see below.

The metric at Newtonian order

We make the expansion (for the time being in an arbitrary coordinate system) gtt = −1 +

g
(2)
tt + · · ·, gij = δij + g

(2)
ij + · · · (git is of third order). The derivative with respect to the time t

increases the order because ∂/∂xi ≈ 1/r � ∂/∂t ≈ v/r. The Christoffel symbols then are (Latin
indices are moved using δij)

Γ
(2)i
tt = Γ

(2)t
it = −1

2
∂ig

(2)
tt , Γ

(2)i
jk =

1

2
(∂jg

(2)
ki + ∂kg

(2)
ij − ∂ig

(2)
jk ) .

The components of the Ricci tensor are easily calculated and we find

R
(2)
tt = −1

2

g

(2)
tt , R

(2)
ij =

1

2

(
∂iξj + ∂jξi −
g

(2)
ij

)
with ξi ≡

1

2

(
∂ig

(2)
tt − ∂ig

(2)
kk

)
+ ∂kg

(2)
ik .

We see that a good choice of gauge is ξi = 0. Since at lowest order only the component Ttt of the
energy–momentum tensor is nonzero, the Einstein equations Rμν = 8π(Tμν − 1

2
gμνT ) reduce to

R
(2)
tt = 4π T

(0)
tt , R

(2)
ij = 4π T

(0)
tt δij ,

that is, 
g
(2)
tt = −8πT

(0)
tt and 
g

(2)
ij = −8πδijT

(0)
tt , the solution of which is

g
(2)
tt = −2U, g

(2)
ij = −2δijU with 
U = 4πT

(0)
tt or U(t, xi) = −

∫

d3x′ T
(0)
tt (t, x′i)

r′
+O(v4) ,

where r′ ≡
√

(xi − x′i)(xi − x′
i) is the distance from the field point xi to a source point x′i

evaluated at time t, and U is just the Newtonian potential. Finally, we can check that the gauge

condition ξi = 0 is satisfied identically by the solution. We see that g
(2)
ij is determined as a

function of g
(2)
tt , which justifies the ansatz (12.1) at post-Newtonian order.

The useful Christoffel symbols of the metric (12.1) are (the calculations of this section
are elementary)

Γt
tt = U̇ +O(v4) , Γi

tt = ∂iUe4U + 4ġi +O(v6) , Γt
ti = ∂iU +O(v4) ,

Γi
tj = −δijU̇ + 2(∂jg

i − ∂igj) +O(v5) , Γk
ik = −3∂iU +O(v4) .

(12.2)

Here and below, ḟ ≡ ∂tf .
The components of the Ricci tensor then are

Rtt = �U + ∂t(3U̇ + 4∂jg
j) +O(v6) , Rti = 2�gi − 2∂i(U̇ + ∂jg

j) +O(v5) . (12.3)
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The components of the same order of the source Sμν ≡ Tμν − 1
2g

μνT are particularly simple:

Stt =
1

2

(
T tt + T ii

)
+O(v4) , Sti = T ti +O(v3) . (12.4)

Therefore, the Einstein equations written in the form Rμν = 8π Sμν reduce to two equations
for the potentials U and gi:

�U + ∂t(3U̇ + 4∂jg
j) = 4π

(
T tt + T ii

)
+O(v6) ,

�gi − ∂i(U̇ + ∂jg
j) = 4π T ti +O(v5) .

(12.5)

We still need to choose a gauge. The harmonic gauge, with ∂ν(
√−ggμν) = 0, requires at this

order that U̇ +∂jg
j = 0, so that the equations (12.5) become (using the fact that �gi = �gi

in the order in which we are working)

�U = 4π
(
T tt + T ii

)
+O(v6) , �gi = 4π T ti +O(v5) , (12.6)

the relevant solutions of which are, as in electromagnetism, the retarded Liénard–Wiechert
potentials:

U(t, xi) = −
∫
d3x′ T

tt + T ii

r′
+O(v6) , gi = −

∫
d3x′ T

ti

r′
+O(v5) , (12.7)

where r′ ≡
√

(xi − x′i)(xi − x′
i) is the distance from the field point xi to a source point x′i

evaluated at the retarded time t − r′. In the order in which we are working we can neglect
all retardation effects in gi, but not in U . We then again see that the metric (12.1) includes
effects due to the finiteness of the speed of propagation of gravitation and effects due to
the nonlinearity of the Einstein equations [because it is necessary to make the expansion
e2U = 1 + 2U − 2U2 +O(v6)].

The asymptotic metric of a stationary system

Let us situate ourselves far from the system creating the gravitational field described by the
metric (12.1) where the potentials are given in (12.7), and in addition assume that it can be
considered stationary. Using r to denote the distance from the field point to an origin located
inside the system, from (12.7) we can extract the asymptotic behavior of the potentials for
r → ∞:

gi ≈ −1

r

∫

d3xT ti, U ≈ −1

r

∫

d3x (T tt + T ii) ≡ −M

r
,

where M is the Tolman mass defined in Section 5.4 (and, as we saw in Section 6.3, equal to the
inertial mass of the system). The diagonal terms of the metric (12.1) then are

gtt = −1 + 2M/r − 2(M/r)2 +O(v6), gij = δij(1 + 2M/r) +O(v4) .

The cross term of the metric (12.1) is gti = (4/r)
∫
d3xTti, and we thereby recover the grav-

itomagnetic term obtained in Section 11.7, which is also written as gti = 2εijkx
jJk/r3, where

JNi =
∫
d3x εijkx

jT kt is the angular momentum of the source.
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If we choose the z axis to be parallel to the vector JN, in the end the desired metric is found
to be

ds2 = −
(

1− 2M

c2r
+

2M2

c4r2

)

c2dt2 +

(

1 +
2M

c2r

)

d�x2 − 4JN

c3r3
(xdy − ydx)dt . (12.8)

We note that if JN = 0, this expression is just the expansion of the Schwarzschild metric in
harmonic (or isotropic) coordinates. However, whereas the latter was obtained assuming that
the field is static and spherically symmetric, the metric (12.8) describes the field far from a
system of arbitrary masses if the time scale associated with their motion is greater than r/v.
For JN 	= 0, (12.8) similarly generalizes the metric obtained in Section 11.7 which we used to
calculate the Lense–Thirring effect.

12.2 The post-Newtonian field of compact bodies

To complete our study of the metric at post-Newtonian order, we must specify the nature of
the sources, that is, their energy–momentum tensor.

We assume that the objects are compact enough that they can be treated as points and
described by a distributional energy–momentum tensor (cf. Section 3.2)

Tμν(xρ) =
∑

m

∫
δ4(x

ρ − zρ(τ))
uμuν

√−g
dτ , (12.9)

where m is their mass, uμ = dzμ/dτ is their 4-velocity normalized using the metric gμν , and
δ(x−z) is the Dirac distribution. Integrating on the world lines, (12.9) can also be written as

Tμν(t, xi) =
∑

m
uμuν

√−g

dτ

dt
δ3(x

i − zi(t))

=
∑

m
dzμ

dt

dzν

dt

1
√

ggρσ
dzρ

dt
dzσ

dt

δ3(x
i − zi(t)) .

(12.10)

Since the metric is given by (12.1), we have ggρσ(dz
ρ/dt)(dzσ/dt)=1−2U−v2+O(v4), where

vi ≡ dzi/dt is the 3-velocity of the mass m. Therefore,

T ti = −
∑

mvi δ3(x
j − zj(t)) +O(v3) ,

T tt + T ii =
∑

m

(
1 +

3

2
v2 + U

)
δ3(x

i − zi(t)) +O(v4) .
(12.11)

Here to solve the equations (12.5) we use the ‘Coulomb’ gauge2

3U̇ + 4∂jg
j = 0 , (12.12)

which reduces the equations to

2We shall follow Straumann (2013) in showing how the choice of gauge affects the convergence properties
of the solutions.
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�U = 4π(T tt + T ii) ,

and, if we set gi ≡ ζi +
1

4
∂iχ̇ , then �χ = U , �ζi = 4π T ti .

(12.13)

Now we proceed by iteration. At lowest order we find �U = 4π
∑

mδ3(x
i − zi(t)), the

solution of which is the Newtonian potential U(t, xi) = −
∑

m/|�x− �z(t)|. The solution for
ζi then follows immediately:

ζi(t, xi) = −
∑ mvi

|�x− �z(t)| , (12.14)

and we verify that the gauge condition, which is now written as U̇ + ∂iζ
i = 0, is satisfied,

and is equivalent to the conservation of the energy–momentum tensor ∂tT
(0)tt+∂iT

(1)ti = 0.
Now we find that χ satisfying �χ = U is given by

χ = −1

2

∑
m|�x− �z(t)| . (12.15)

We note that χ diverges at infinity, but only its derivatives appear in the metric. Then,
using (12.13)–(12.15) and setting ni ≡ (xi − zi(t))/|�x− �z(t)|, we have

gi = −1

8

∑ m

|�x− �z(t)| [7vi + ni(n .v)] +O(v5) . (12.16)

Lastly, we need to find U to the next order. To do this we substitute into the source
T tt + T ii given in (12.11) the solution for U at Newtonian order and evaluate it on the
trajectories. Then divergent terms ∝

∑
m2δ3(x

i − zi(t))/|�x − �z(t)| appear; these must be
regularized to zero, as will be described in Chapter 15 in a more detailed analysis of the
approximation schemes.3 It is then possible to perform the integration and we find

U(t, xi) = −
∑ m

|�x− �z(t)| −
∑

a

m

|�x− �za(t)|

⎛

⎝3

2
v2a −

∑

a′ �=a

m′

|�za − �za′ |

⎞

⎠+O(v6) . (12.17)

Therefore, in the post-Newtonian approximation of general relativity the gravitational
field created by celestial bodies which are compact enough to be considered as point objects
is described by the metric (12.1) with gti ≡ 4gi given by (12.16), gtt = −1− 2U − 2U2, and
gij = δij(1− 2U) with U given by (12.17).

12.3 The EIH equations of motion

We know that the motion of a test particle in a gravitational field is governed by its action
S = −m

∫
dτ , where τ is the curvilinear abscissa of its world line, that is, its proper time,

and the extremization of this action leads to the geodesic equation; see Section 3.1.

3We note that this problem, which arises owing to the modeling of the bodies by a distributional energy–
momentum tensor, is absent in the Maxwell theory, which is linear. However, we have already encountered
this problem and solved it in the same way in our study of the gravitational field in the nonlinear Nordström
theory; see Book 2, Section 10.4.
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To obtain the equations of motion of bodies which are compact enough to be considered
point objects, we assume that, just like test particles, they follow the geodesics of the metric
describing the field that they create.4 Therefore, the action of a body of mass m at xμ = zμ(t)
is postulated to be

S ≡
∫
Lm dt = −m

∫ √

−gμν
dzμ

dt

dzν

dt
dt . (12.18)

Instead of expanding the geodesic equation found by extremization to post-Newtonian order,
we shall first expand the integrand, that is, the Lagrangian Lm. Since the length element is
ds2 = −e2Udt2 + 4gidt dx

i + e−2Ud�x2 [cf. (12.1)], we have

Lm = −meU
(
1− v2e−4U − 8giv

ie−2U
) 1

2

= −m

(
1− v2

2
+ U − 1

8
v4 +

3

2
v2U +

U2

2
− 4giv

i

)
+O(v6) ,

(12.19)

where the potentials U and gi obtained in (12.16) and (12.17) must be evaluated on the
trajectory, that is, on �x = �z(t), where their self part ∝ m or m2 diverges. In order to solve
the Einstein equations and obtain the metric, we have ignored the self, divergent, parts; cf.
Section 12.2. We shall do the same thing here, ignoring all the contributions to the field
from the body m, a procedure which will be analyzed in Chapter 15. Then the potentials
regularized at �x = �z(t) are (in the case of two bodies, to which we restrict ourselves)

U(t, zi(t)) = −m′

R

(
1 +

3v′2

2

)
+O(v6) , gi = −m′

8R
[7v′i +Ni(N.v′)] +O(v5) , (12.20)

where zi − z′i ≡ RN i and N i is the unit vector, and so the regularized Lagrangian of the
body m becomes

Lm

m
= −1 +

1

2
v2 +

m′

R
+

1

8
v4 +

m′

2R
[3(v2 + v′2)− 7(v.v′)− (N.v)(N.v′)]

−1

2

m′2

R2
+O(v6) .

(12.21)

The Lagrangian of the two-body system is constructed so as to give the same equations of
motion as (12.21) when m → 0. This is the Fichtenholz Lagrangian5 governing the motion
of two compact, self-gravitating bodies:

4This hypothesis is ‘natural’ by ‘continuity’, but it must and can be proved. It is the effacement property
which we will use below in Chapter 15.

5Here LF is the gravitational analog of the Darwin Lagrangian of a system of two slowly moving charges in
the Maxwell theory; see Book 2, Section 21.1. The most important difference between these two Lagrangians
is that the Fichtenholz Lagrangian contains a term (the last term) which originates from the second iteration
of the Einstein equations.
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LF = −(m+m′) +
1

2
mv2 +

1

2
m′v′2 +

mm′

R

+
1

8
(mv4 +m′v′4) +

mm′

2R
[3(v2 + v′2)− 7(v.v′)− (N.v)(N.v′)]

−mm′(m+m′)

2R2
+O(v6) .

(12.22)

The Euler–Lagrange equation of motion of the body m is obtained from (12.22) or (12.21):
ṗi ≡ dpi/dt = ∂LF /∂z

i, where pi ≡ ∂LF /∂v
i. In lowest order this is just Newton’s law:

v̇i = −m′

R2
N i + · · · . (12.23)

In the next order we have

pi = mvi +
m

2
v2vi +

mm′

2R

[
6vi − 7v′i − (N.v′)N i

]
+ · · · . (12.24)

When we calculate ṗ, terms proportional to v̇ appear, and we replace them by their expression
(12.23) in a consistent manner at the order under consideration. Therefore, the equations of
motion of the body m in the gravitational field of its companion are finally given by

v̇i = −m′

R2
N i +Ai

2 +O(v6) with

Ai
2 =

m′

R2

{
N i

[
−v2 − 2v′2 + 4(v.v′) +

3

2
(N.v′)2 +

5m

R
+

4m′

R

]

+(vi − v′i) [4(N.v)− 3(N.v′)]

}
,

(12.25)

which can be compared with the analogous equations governing the motion of two charges
in the Maxwell theory; see Book 2, Section 20.3.

The equations (12.25) were obtained by Einstein, Infeld, and Hoffmann in 1938, hence
the name EIH equations.6

6Einstein, Infeld, and Hoffmann (1938). See also Eddington and Clark (1938).
However, it turns out that the EIH equations (12.25) as well as the Lagrangian (12.22) attributed to

Fichtenholz [Fichtenholz (1950)] were actually discovered by Lorentz and Droste in 1917; see Damour (1982).
The methods used in the EIH article involve very lengthy calculations. The authors themselves say, “Un-

fortunately, as the work proceeds, the calculations become more and more extensive involving a great amount
of technical detail which can have no intrinsic interest. To give all these calculations explicitly here would
be quite impracticable and we are obliged to confine ourselves to stressing the general ideas of the work and
merely announcing the actual results. For the convenience of anyone who may be interested in the details
of the calculation, however, the entire computation of this part of our paper has been deposited with the
Institute for Advanced Study so as to be available for reference.”

The fact that Sections 12.1–12.3 involve almost no calculation attests to the technical progress which has
been made, perhaps to the detriment of rigor, because, as we have emphasized, here we have justified neither
the method of regularizing the field equations and equations of motion, nor the validity of the geodesic
equation; in this regard, see Chapter 15.
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12.4 Conservation laws

As we have seen in Book 1, Section 8.3, study of the symmetries of a Lagrangian allows one
to find, using the Noether theorem, the conservation laws for energy and angular momentum,
as well as the motion of the center of mass. We recall that under an infinitesimal variation
of the trajectories δz(t) ≡ z̃(t) − z(t), δz′(t) ≡ z̃′(t) − z′(t) the Lagrangian, a functional of
the positions and velocities of the two bodies, varies as (this is the Noether identity)

δLF =
d

dt

∑
piδz

i −
∑

Fiδz
i , where pi ≡

∂LF

∂vi
and Fi ≡ ṗi −

∂LF

∂zi
. (12.26)

The Fichtenholz Lagrangian (12.22) is manifestly invariant under spatial translations (δxi =
ξi, which induces δzi = ξi) because it depends only on the relative separation zi−z′i ≡ RN i

of the bodies. It is also invariant under spatial rotations (δxi = εijkξjxk) and changes of the
time origin (δt = ξ), from which we find

dPi

dt
=
∑

Fi, where Pi =
∑

pi;
dJi
dt

=
∑

εijkz
jF k, where Ji = εijk

∑
zjpk;

dE

dt
=
∑

Fiv
i, where E =

∑
piv

i − LF .

(12.27)
When the EIH equations of motion (12.25) are satisfied, F i = 0 and we see that the mo-
mentum Pi, the angular momentum Ji, and the energy E of the system are constants of the
motion (as can also be verified by direct calculation).

Using the momenta pi given in (12.24), we can check by identification (and using the
equations of motion in Newtonian order) that

Pi =
dGi

dt
with Gi =

∑
m

(
1 +

v2

2
− Gm′

2R

)
zi . (12.28)

Since Pi is constant, Gi represents the position of the center of mass. It is zero by definition
in the center-of-mass system, and so by iteration we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zi =
m′

mT
RN i +

1

2
RN i

(
m−m′

m2
T

)(
μV 2 − Gmm′

R

)
,

z′i = − m

mT
RN i − 1

2
RN i

(
m′ −m

m2
T

)(
μV 2 − Gmm′

R

)
,

(12.29)

where mT = m + m′ and μ = mm′/mT are the total mass and the reduced mass, and
V i = vi − v′i. These expressions can be compared with those giving the motion of the center
of mass of two charges in the Maxwell theory; see Book 2, Section 21.1.

Lorentz invariance of the Lagrangian

The Fichtenholz Lagrangian must also be invariant under Lorentz transformations δβx
i =

βit, δβt = (β.x). As we saw in Book 2, Section 21.1, such a transformation induces δβz
i =

βit− (β.z)vi and δβv
i = (δβz

i). = βi − (β.v)vi. Explicit calculation then shows that
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δβLF =
d

dt

[
(β.G)−

∑
(p.v)(β.z)

]
,

where Gi is given by (12.28). Therefore, δβLF is a total derivative which does not contribute to
the equations of motion, and the Lagrangian is indeed Lorentz-invariant. Now by substituting
δβLF into the general expression (12.26), we obtain

d

dt
(Gi − tPi) =

∑
(F.v)zi − t

∑
Fi,

which again gives uniform rectilinear motion of the center of mass when the equations of motion
are satisfied.

Therefore, as in Newtonian gravity, the problem of the motion of two bodies in the post-
Newtonian approximation of general relativity can be studied in the center-of-mass system
undergoing uniform rectilinear motion. It is only necessary now to find the equations of
motion in this system using the EIH equations of motion (12.25). We shall see that, just as
in Newtonian gravity, they reduce to the equation describing the relative motion.

12.5 Post-Keplerian trajectories

The relative acceleration of two compact bodies is obtained by calculating v̇i − v̇′i using the
EIH equations of motion (12.25). In the center-of-mass system defined in (12.29) we find (the
post-Newtonian correction in fact does not play any role)

V̇ i = −mT

R2
N i

+
mT

R2

{
N i

[
mT

R
(4 + 2ν)− V 2(1+3ν)+

3

2
ν(N.V )2

]
+V i(N.V )(4− 2ν)

}
+O(v6) ,

(12.30)

where V i = vi − v′i and ν = μ/mT = mm′/m2
T. This equation of motion can be compared

to that of two charges in the Maxwell theory; see Book 2, Section 21.1, eqn (21.10).
Now to integrate (12.30) we can treat the second term of the acceleration as a perturbing

force on the Newtonian motion and use the tools of perturbation theory developed by Gauss
and others and discussed in, for example, Book 1, Section 13.3 to determine the motion of
the osculating ellipse. However, this method amounts to a sort of ‘epicycle multiplier’, and
it is more efficient to just perform the integration directly.

To do this we use the constants of the motion, namely, the energy and angular momentum
defined in (12.27). In the center-of-mass system and setting E −mT ≡ μEn and Ji = μLi,
we find (again in the present section the calculations are elementary)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

En=
1

2
V 2−mT

R
+
3

8
(1−3ν)V 4+

mT

2R

[
(3+ν)V 2+ν(N.V )2+

mT

R

]
+O(v6) ,

L = R(N ∧ V )

[
1 +

V 2

2
(1− 3ν) +

mT

R
(3 + ν)

]
+O(v5) .

(12.31)

Given the dependence of V̇ i on N i and V i, we see that the motion is planar and we choose
θ = π/2. Then in polar coordinates (R,φ)
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V 2 = Ṙ2 +R2φ̇2 , |N ∧ V | = R φ̇ , Ṙ = (N.V ) . (12.32)

Substituting these results into (12.31) and introducing a new ‘conchoidal’ radial coordinate
rδ ≡ R−mTδ, by iteration we find

(
drδ
dt

)2

� A+
2B

rδ
+

Cδ

r2δ
+

Dδ

r3δ
,

dφ

dt
=

H

r2δ
+

Iδ
r3δ

with
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A = 2En

(
1− 3En

2
(1− 3ν)

)
, B = mT (1− (6− 7ν)En) ,

Cδ=−L2

(
1−2En(1−3ν)+

2m2
T(5−5ν/2+δ)

L2

)
, Dδ=mTL

2(8−3ν+2δ) ,

H = L (1− En(1− 3ν)) , Iδ = −2mT(2− ν + δ)L

(12.33)

(these expressions indeed reduce to those obtained in Section 11.6 for ν = 0, γ = β = 1, and
mT = m). Next we proceed as in Section 11.6: first choosing δ = −4 + 3ν/2, we find Dδ = 0
and the equation for rδ(t) takes a Newtonian form. Then choosing δ = −2 + ν, we have
Iδ = 0 and the equation for φ(t) also takes Newtonian form. Returning to the coordinate R,
the integrations then give7

n(t− T ) = η − et sin η , R = a(1− e cos η) ,

tan
f

2
=

√
1 + eφ
1− eφ

tan
η

2
with f ≡ (φ− ω)

(
1− 3m2

T

L2

)
.

(12.34)

The mean motion n, the semi-major axis a, and the three eccentricities et, e, and eφ are
expressed parametrically as a function of the constants of the motion En and L as (we recall
that mT = m+m′ and ν = mm′/m2

T)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a = − mT

2En

(
1 +

(7− ν)En

2

)
, e2 = 1 +

2EnL
2

m2
T

− 5(3− ν)L2E2
n

m2
T

− 2(6− ν)En ,

n =

√
mT

a3

[
1− mT(9− 2ν)

2a

]
, e2t = e2

[
1− (8− 3ν)mT

a

]
, e2φ = e2

(
1 +

νmT

a

)
.

(12.35)
We recover the expressions obtained in Section 11.6 for the case ν = 0 (where there are now
only two eccentricities because eφ = e). The dominant relativistic effect, since it is secular,
is the advance of the periastron [we recall that L2 = mTa(1− e2)]

Δω � 6πmT

a(1− e2)
(12.36)

per period, where mT = m+m′ is the total mass of the system (Robertson, 1933).

7See the details in Section 11.6 or in Damour and Deruelle (1985) and (1986). We have also used this
method to obtain the motion of a charge in a Coulomb field; see Book 2, Section 13.3.
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Finally, to obtain the relative orbit we eliminate η between the equations (12.34) for R
and φ. A new conchoidal transformation in which R is written as R = (ea/eφ)(1−eφ cos η)+
a(1 − e/eφ) gives R = (a − μ/2)(1 − e2φ)/(1 + eφ cos f) + μ/2, which can also be put into

quasi-Newtonian form7:

R =
a(1− e)

1 + e cos f ′ with f ′ = f − νe
m2

T

2L2
sin f , (12.37)

where f is given in (12.34). We find f = f ′ in the limit ν = 0, in agreement with the results
of Section 11.5.

For completeness, we still need to obtain the trajectories of the bodies themselves. These
are derived from the relative orbit using (12.29). The polar angle of the body m is φ and
that of m′ is φ + π. The radial motion can also be cast in quasi-Newtonian form (z is the
modulus of the radius vector zi of the body):

z = ar(1− er cos η) with ar =
m′

mT
a and er = e

[
1− m(m−m′)

2mTa

]
, (12.38)

and a similar expression describes the trajectory of the body7 m′.
Let us summarize what we have learned. In Newtonian gravity the two-body problem can

be solved exactly, by separating the center-of-mass motion and the relative motion, so that
the problem is reduced to that of a test object in the field of a body effectively at rest. The
relative trajectory is then given by Kepler’s laws, from which the individual trajectories are
derived. In general relativity the problem can only be dealt with using an iteration scheme.
Here we have studied it in the post-Newtonian approximation, and have found that in the
end the center-of-mass motion and the relative motion can again be separated, and that the
laws of motion can be written in quasi-Keplerian form (12.34), (12.37), and (12.38).

12.6 The timing formula of a binary system

Let us consider a system of two compact stars, one of which emits electromagnetic signals at regular

intervals. To predict the time of arrival of these signals at Earth, it is necessary to describe the

motion of the emitter in the field of its companion using a theory of gravitation, and to calculate the

trajectory of the signals using a theory of light. In this way we obtain a timing formula for predicting

the time tN of arrival of a signal N as a function of its time of emission TN and the parameters

describing the motion of the object, the motion of the Earth, the period of the signals, and so on:

tN = F (TN , parameters). By fitting these predicted times to the observed times, we can in principle

determine the parameters and test the theory of gravity underpinning the model. Here we shall

present a brief derivation of the timing formula of a binary system based on general relativity.

To begin with, let us work within the framework of Newtonian theory, where the time
is universal and geometry is Euclidean, where light propagates at speed c in a straight line,
and where the trajectory of the emitter is a Keplerian ellipse. If rb �n is the radius vector of
a focal point of the ellipse to the center of mass of the solar system and �r is the position
vector of the emitter, the light travel time is |rb �n− �r(te)|/c, and so the arrival time ta and
emission time te of the signal N are related as (see the expressions and figures in Book 1,
Section 12.2)
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ta ≈ te +ΔR(te) + const with te=NPe and ΔR=−�n .�r(te)

c
=

r sinφ sin i

c
, (12.39)

where Pe is the signal period, i is the inclination of the plane of the ellipse on the celestial
sphere, and φ is the angle between �r(te) and the line of nodes. Kepler’s laws then give
(starting from tan[(φ − ω0)/2] =

√
(1 + e)/(1− e) tan η/2 and then expanding in sinφ =

sin[(φ− ω0) + ω0]; see the expressions and figures in Book 1, Section 12.2)

ΔR = x
[
sinω0(cos η − e) +

√
1− e2 cosω0 sin η

]
with

2π

Pb
(te − T ) = η − e sin η . (12.40)

This is the Römer delay (cf. Book 1, Section 17.1), and it depends on the following five
parameters which can be determined by a fit to the observed arrival times: x ≡ ae sin i/c
(where ae is the semi-major axis of the ellipse traced by the emitter), the longitude of the
periastron ω0, the eccentricity of the orbit e, the orbital period Pb, and the moment of
passage through the periastron T . In this Newtonian model the masses of the emitter and
its companion therefore remain undetermined.

Now let us include (without going into the details of the calculations) the two dominant
relativistic effects, namely, the precession of the periastron [given by the Robertson formula
(12.36)] and the time dilation due to the fact that the proper time τe of the emitter differs
from that of the solar system because the emitter moves in the gravitational field of its
companion [dτe/dte = 1 + U(�re) − v2e/2; see the GPS example discussed in Section 11.2].
Owing to (12.36), the inclusion of the first effect amounts to replacing ω0 in the Römer delay
by the following function of the time:

ω ≡ ω0 +
Δω

2π
(φ(η)− ω0) with

Δω

2π
=

(
Pb

2π

)− 2
3 3m

2/3
T

(1− e2)
, (12.41)

where the anomaly η is related to the time t by (12.34) and mT = me+mc, where me and mc

are the masses of the emitter and its companion. The inclusion of the second effect amounts
to adding to the Römer delay an ‘Einstein delay’ given by (Blandford and Teukolsky, 1976)

te = τe +ΔE with ΔE = γ sin η , where γ =

(
Pb

2π

) 1
3 mc(me + 2mc)

m
4/3
T

e . (12.42)

The Römer delay is of order 1/c and ΔE is of order 1/c2, and so we have ΔE/ΔR ≈ v,
where v is the orbital speed of the objects. Since the mass dependences of Δω and ΔE differ
from each other, a careful fit to the observed arrival times thus permits me and mc to be
determined with an accuracy which increases with time (of course, if the underlying model is
correct), because the advance of the periastron is a cumulative effect. Therefore, here general
relativity is not a theory to be tested, but a tool for measuring masses.

In the following order 1/c3 it is necessary first to include the Shapiro effect [see Sec-
tion 11.4], which introduces an additional delay given by

⎧
⎪⎪⎨

⎪⎪⎩

ΔS = −2r ln
[
1− e cos η +

√
1− e2 cosω sin η − sin i[sinω(cos η − e)]

]
,

where r = mc and sin i =
x

(Pb/2π)2/3
m

2/3
T

mc
.

(12.43)



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 539 — #551

Chapter 12: The post-Newtonian approximation 539

Secondly, we must include all the post-Keplerian corrections studied in Section 12.5 and
rewrite the Römer delay (12.40) as

ΔR=x
[
sinω(cos η−er)+

√
1−e2φ cosω sin η

]
with

2π

Pb
(τe−T )=η−eT sin η . (12.44)

Here we recognize the eccentricities er and eφ obtained in (12.38) and (12.35). The eccentricity
eT differs from et appearing in (12.34) because the time equation here is a function of the
proper time τe of the emitter and not of te. An easy calculation gives eT = et(1+δ)+eφ−er,
where δ = mc(me + 2mc)/(mTa), so that finally we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

eφ = eT (1 + δφ) with δφ =

(
Pb

2π

)− 2
3 1

m
4/3
T

(
7

2
m2

e + 6memc + 2m2
c

)
,

er = eT (1 + δr) with δr =

(
Pb

2π

)− 2
3 1

m
4/3
T

(
3m2

e + 6memc + 2m2
c

)
.

(12.45)

We see that the post-Keplerian parameters r, sin i, eφ, and er given in (12.43) and (12.45) are
completely fixed by the theory. Their measurement by very precise fitting to the observed
arrival times, and the agreement of these results with the predictions, constitute further
verification of the theory of general relativity. In Fig. 12.1 the intersection of the straight line
Δω = Δω(mc,me) [(12.41)] and the curve γ = γ(mc,me) [(12.42)] giving the masses of the
two bodies, and the intersections at the same point of the straight line r = mc and the curve
sin i = sin i(mc,me) (dotted line), provide two tests of general relativity (the parameters are
those of the double pulsar PSR J0937).8

mc

me2.52.01.51.00.5

0.5

1.0

1.5

2.0

2.5

Fig. 12.1 Binary systems and post-Newtonian tests.

8The studies cited in footnote 7 as well as Straumann (2013) give a more detailed discussion of the timing
formula including the motion of the Earth and aberration effects.

Last but not least, in our analysis we have neglected an effect which is numerically as important as the
post-Newtonian corrections: the radiation reaction on the motion of the emitter due to the gravitational
waves emitted by the system. This will be discussed in the following chapters [see (14.33), which completes
(12.44)].
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Gravitational waves and the
radiative field

Now we shall begin our study of the gravitational radiation produced by a system of massive objects.
In this chapter we shall restrict ourselves to the linear approximation of general relativity, and
compare it with the Maxwell theory of electromagnetism.

In Sections 13.1–13.3 we will study the properties of gravitational waves, which are the general
solution of the linearized vacuum Einstein equations. In Section 13.4 we relate these waves to the
energy–momentum tensor of the sources creating them. This will lead us to the ‘first quadrupole
formula’, eqn (13.27), giving the gravitational radiation field of the sources when their motion is due
to forces other than the gravitational force.

13.1 Linearization of the Einstein equations

We consider the metric

gμν(x
ρ) = ημν + hμν(x

ρ) , (13.1)

where ημν is the Minkowski metric and hμν are ten perturbations, |hμν | � 1. These per-
turbations can simultaneously describe the presence of a weak gravitational field and an in-
finitesimal change of the coordinate system. Since the coordinates xμ are quasi-Minkowskian,
the reference frame is quasi-inertial.

It is easy to calculate the Einstein tensor in linear order. The Christoffel symbols, the
Ricci tensor, and the scalar curvature are respectively given by (all indices are moved using
ημν , h ≡ hμ

μ, and � ≡ ημν∂2
μν)

Γμ
νρ =

1

2
(∂νh

μ
ρ + ∂ρh

μ
ν − ∂μhνρ) +O(h2

μν) ,

Rμν=∂ρΓ
ρ
μν−∂νΓ

ρ
ρμ+O(h2

μν)=−1

2

[
�hμν+∂2

μνh−∂ρ(∂νh
ρ
μ+∂μh

ρ
ν)
]
+O(h2

μν) ,

R = ∂2
λρh

λρ −�h+O(h2
μν) .

(13.2)

The Einstein tensor Gμν = Rμν − 1
2gμνR then is

Gμν = −1

2

[
�γμν + ∂ρ(ημν∂λγ

ρλ − ∂μγ
ρ
ν − ∂νγ

ρ
μ)
]
+O(h2

μν) , (13.3)

where we have set hμν = γμν − 1
2ημνγ in equation (13.3).

In Section 5.1 we saw how a metric transforms under an infinitesimal change of coordinates
xμ → xμ = x̃μ − ξμ, where ξμ(xρ) is infinitesimally small: g̃μν(x

ρ) = gμν(x
ρ)− (∂μξν + ∂νξμ)

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.
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[here we have g̃μν(x̃
ρ) = g̃μν(x

ρ), because at the order in which we are working g̃μν = ημν ].

Therefore, hμν = h̃μν + (∂μξν + ∂νξμ), γμν = γ̃μν + ∂μξν + ∂νξμ − ημν∂ρξ
ρ, and

∂ργ
ρ
μ = ∂ργ̃

ρ
μ +�ξμ . (13.4)

Let us choose a function ξμ which is a solution of �ξμ = ∂ργ
ρ
μ (it is defined up to a harmonic

function ξμ = ξμpart + ζμ with �ζμ = 0). In such coordinate systems1 the linearized Einstein
equations Gμν = κTμν , where Tμν is the matter energy–momentum tensor, are written as
(suppressing the tildes)

�γμν = −2κTμν +O(γ2
μν), where gμν = ημν + γμν −

1

2
ημνγ with ∂ργ

ρ
μ = O(γ2

μν) . (13.5)

They are the gravitational analog of the Maxwell equations for the electromagnetic potential
in Lorenz gauges (see, for example, Book 2, Section 17.2), with the important difference that
they are valid only at linear order.

13.2 Gravitational waves

The linearized vacuum Einstein equations are [cf. (13.3)]

�γμν + ∂ρ(ημν∂λγ
ρλ − ∂μγ

ρ
ν − ∂νγ

ρ
μ) = 0 , where γμν = hμν − 1

2
ημνh

ρ
ρ .

Here hμν are the perturbations of a quasi-Minkowskian metric, and in this section it is
understood that all equations are valid at order O(γ2

μν). As we saw above, the invariance of
the equations under coordinate transformations allows us to impose the harmonic condition
on the metric: ∂νγ

ν
μ = 0. Moreover, since �γμ

μ = 0, we can also require that2 γμ
μ = 0.

Therefore, the linearized vacuum Einstein equations can be reduced to

�hμν = 0 with ∂νh
ν
μ = 0 and hμ

μ = 0 . (13.6)

Then, just like the Lorenz gauges in electromagnetism, the harmonic gauges, including (13.6),
do not completely fix the coordinate system. For this it is necessary, just like in electromag-
netism, to break the manifest Lorentz invariance of the field equations.

• Six gauge-invariant perturbations

We follow the procedure of Book 2, Chapter 14 and write the length element ds2 =
(ημν + hμν)dx

μdxν in the form

1In linear order, coordinate systems for which ∂ργ
ρ
μ = 0 are referred to as Hilbert, de Donder, or Fock

harmonic gauges.
If the metric is stationary, ∂thμν = 0, in (13.5) we recover the gravitomagnetic field equation in the

Lorentz–Coulomb gauge seen in Section 11.7.
2Under the change of coordinates xμ → xμ = x̃μ − ξμ we have (see Section 13.1) γμν = γ̃μν + ∂μξν +

∂νξμ−ημν∂ρξρ. Let us choose ξμ = ∂μΛ−∂νσμν , where Λ is a particular solution of �Λ = γ/2 with γ = γμ
μ .

The quantity σμν is an antisymmetric tensor which is a particular solution of �σμν = fμν , where fμν is also
antisymmetric and ∂νfμν = ∂μγ/2 (fμν exists because �γ = 0). We indeed have ∂μξμ = �Λ = γ/2 and
�ξν = ∂μ�Λ− ∂νfμν = 0; see Straumann (2013).
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ds2 = −(1 + 2A)dt2 + 2Bidx
idt+ (δij + hij) dx

idxj (13.7)

and then decompose Bi and hij as

Bi = ∂iB + B̄i , hij = 2Cδij + 2∂2
ijE + ∂iĒj + ∂jĒi + 2Ēij , (13.8)

where B̄i and Ēi are two divergence-free (Euclidean) vectors: ∂iB̄
i = 0 (the indices are moved

using the Euclidean metric δij). Here Ēij is a traceless transverse Euclidean tensor Ēi
i = 0 and

∂jĒ
ij = 0. In the Bardeen terminology,3 we have thereby decomposed the ten components

of the perturbation hμν into four scalar perturbations (A,B,C,E), four vector perturbations
(the two independent components of the two divergence-free vectors B̄i and Ēi), and two
tensor perturbations (the two independent components of the traceless transverse tensor Ēij).

Fourier decomposition of SVT perturbations

The above SVT decomposition of the metric is unique in the sense that, if Bi is a given
function of the coordinates, B is the (regular, therefore unique) solution of 
B = ∂iB

i, and so
B̄i follows: B̄i = Bi − ∂iB. Likewise, we can obtain C and E from ∂ijh

ij = 2
C + 2

E and

hi
i = 6C + 2
E. Then Ēi is the solution of ∂jh

j
i = 2∂iC + 2
∂iE +
Ēi, and Ēij follows.

We can arrive at the same result by decomposing any (square-integrable) perturbation
X(t, xi) in Fourier modes as (see, for example, Book 2, Section 9.2)

X(t, xi) =

∫
d3k

(2π)3/2
X(t, kj)eikix

i

with X∗(t,−kj) = X(t, kj) .

(The traditional ‘hats’ on Fourier transforms are omitted.) Therefore, the Fourier components
Xi(t, k

j) of a 3-vector can be decomposed as Xi = kiX + X̄i with kiX̄i = 0. Just as for
electromagnetic waves, see Book 2, Section 15.1, we define (up to a rotation) a basis {e1, e2} in
the plane perpendicular to the vector ki by eai k

i = 0 and eai e
b
jδ

ij = δab with a, b ∈ {1, 2}. We

can then write the vector mode as X̄i(t, k
j) =

∑
a Xa(t, k̂

i) eai (k̂
j). This defines the two vector

degrees of freedom Xa, which depend on k̂i = ki/k (because they are transverse). Next we

define the projection operator Pij ≡ e1i e
1
j + e2i e

2
j = δij − k̂ik̂j (it can be checked that P i

jP
j
k = P i

k,

P i
jk

j = 0, and P ijδij = 2), which allows us to extract the S and V components of a 3-vector as

Xi = (k̂jXj)k̂i + P j
i Xj .

Similarly, any symmetric tensor Xij breaks up into SVT modes as Xij = Tδij +∂2
ijS+2∂(iX̄j)+

2X̄ij with ∂iX̄
i = 0, X̄i

i = 0, and ∂iX̄
ij = 0. The tensor part X̄ij has two independent compo-

nents which we decompose as

X̄ij(t, k
i) =

∑

λ=+,×
Xλ(t, k

l) ελij(k̂
l) with ελij =

e1i e
1
j − e2i e

2
j√

2
δλ+ +

e1i e
2
j + e2i e

1
j√

2
δλ×. (13.9)

The polarization tensor ελij is traceless (ελijδ
ij = 0) and transverse (ελijk

i = 0), and the two

polarizations are perpendicular (ελijε
ij
μ = δλμ). Introducing the projector P ab

ij = P a
i P

b
j − 1

2
PijP

ab

and the trace extraction operator Θj
i = k̂ik̂

j − 1
3
δji , we obtain the explicit SVT decomposition:

Xij =

(
1

3
Xabδ

ab

)

δij +

(
3

2
XabΘ

ab

)

Θij + 2k̂(i

[
P a
j)k̂

bXab

]
+ P ab

ij Xab. (13.10)

3Bardeen (1980), in the broader context of cosmology; see Chapters 19 and 20.
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Under an infinitesimal change xμ = x̃μ − ξμ we have hμν = h̃μν + (∂μξν + ∂νξμ). Decom-
posing ξμ into two scalars T, L and a divergence-free vector L̄i, ξμ = (T, ∂iL + L̄i), we see
that the perturbations transform as

A → A− Ṫ , B → B − L̇+ T , C → C , E → E − L ,

B̄i → B̄i − ˙̄Li , Ēi → Ēi − L̄i ,

where the dot denotes the derivative with respect to t. Therefore, the linear combinations

Φ = A+ Ḃ − Ë , Ψ = −C , Φ̄i = −B̄i + ˙̄Ei, Ēij (13.11)

are six gauge-invariant quantities corresponding to two scalars (Φ and Ψ), the two compo-
nents of the vector Φ̄i, and the two components of the tensor Ēij .

• Two dynamical degrees of freedom

First we note that the three groups of Bardeen perturbations, scalar (A,B,C,E), vec-
tor (B̄i, Ēi), and tensor (Ēij), can be considered separately, that is, the linearized Einstein
equations for one of the three groups can be obtained by setting the two others to zero. This
is because writing down the Einstein equations consists of taking derivatives with respect to
xμ, operations which do not change the type of perturbation (for example, the derivative of

a vector B̄i is ∂μB̄i = ( ˙̄Bi, ∂jB̄i), all the components of which are of the vector type).
Next, we note that since the Einstein equations are invariant under coordinate changes,

it must be possible to write their linearization about the Minkowski metric, just as for the
Maxwell equations, as a function of only the six gauge-invariant quantities (Φ,Ψ), Φ̄i, and
Ēij defined above. (This fact is sometimes referred to as the Stewart–Walker lemma.)

Let us first consider scalar perturbations, where we notice that if, starting from a reference
frame where they are (A,B,C,E) and making the coordinate change xμ = x̃μ− ξμ such that
L = E and T = Ė − B, then we have E → 0 and B → 0, so that in this new so-called
longitudinal or Newtonian gauge Φ = A and Ψ = −C. Therefore, an economical way of
obtaining the equations of motion for Φ and Ψ is to work in the longitudinal gauge, where
the length element reduces to

ds2 = −(1 + 2Φ)dt2 + (1− 2Ψ)δijdx
idxj . (13.12)

To obtain the equations of motion for the two gauge-invariant vector perturbations Φ̄i,
we proceed in a similar manner. We work in a vector gauge where Ēi = 0, and the length
element reduces to

ds2 = −dt2 − 2Φ̄idx
idt+ δijdx

idxj . (13.13)

Finally, to find the equations of motion for the tensor perturbations Ēij , there is no point
in choosing a gauge, because these perturbations are identical to the traceless, transverse
spatial perturbations of the metric:

ds2 = −dt2 +
(
δij + 2Ēij

)
dxidxj . (13.14)

The Einstein tensorGμν in first order in the perturbations is then the sum of the three Ein-
stein tensors calculated separately for the metrics (13.12)–(13.14). An easy calculation gives
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Gtt = 2�Ψ , Gti = 2∂iΨ̇ +
1

2
�Φ̄i ,

Gij=
[
2Ψ̈+�(Φ−Ψ)

]
δij−∂2

ij(Φ−Ψ)+
1

2
(∂i

˙̄Φj+∂j
˙̄Φi)+

¨̄Eij−�Ēij .

(13.15)

[Of course, the result coincides with the SVT decomposition of (13.3). We also recover the
general result of Section 4.2, namely, that the components G0

μ do not contain second deriva-
tives with respect to the time.]

The vacuum equations are Gμν = 0. The only solution of the scalar part which is regular
everywhere and bounded then is Ψ = Φ = 0. Similarly, the vector part gives Φ̄i = 0. The
equations then become

Φ ≡ A+ Ḃ − Ë = 0 , Ψ ≡ −C = 0 , Φ̄i ≡ −B̄i + ˙̄E
i
= 0 , �Ēij = 0 . (13.16)

The first three represent, as in the general case, four constraint equations. Then, as in elec-
tromagnetism (see Book 2, Section 14.1), we find that the gauge ‘hits twice’: the first time
in allowing the construction of 10 − 4 = 6 perturbations which are invariant under changes
of gauge (that is, changes of coordinates), and the second time via the field equations which
contain four constraints (one per gauge invariance). We are thus left with the last equation,
the propagation equation, for the two degrees of freedom of gravitational waves.

The solutions of (13.16) define an equivalence class. Fixing the gauge amounts to choosing
an element of this class. The so-called TT (transverse traceless) gauge corresponds to the
choice B = E = Ēi = 0, and we then see that 2Ēij = hTT

ij ; it belongs to the class defined
in (13.8) and is the analog of the Hamiltonian gauge in electromagnetism; see Book 2, Sec-
tion 14.1. The metric coefficients are thereby completely determined and the length element
is written as

ds2 = −dt2 + hTT
ij dxidxj . (13.17)

Any function h(t− z) satisfies �h = 0 and describes a plane wave propagating at the speed
of light along the z axis. In this particular case the length element (13.17) becomes, taking
into account the two possible polarizations,

ds2 = −dt2 + (1 + h+)dx
2 + (1− h+)dy

2 + 2h×dxdy + dz2 . (13.18)

If in addition this wave is monochromatic, the length element can be written as follows using
the general expression (13.9):

ds2 = −dt2 + (1 + E+ε+)dx
2 + (1− E+ε+)dy

2 + 2E×ε×dxdy + dz2 ,

with E(+,×) = A(+,×) cos[k(t− z) + φ(+,×)] ,
(13.19)

where ki = (0, 0, k) is the wave vector and we have set ε+xx = −ε+yy ≡ ε+ and ε×xy = ε×yx ≡ ε+×.

The Hamiltonian of gravitational waves

To obtain the equations of motion of the perturbations by extremizing the Einstein–Hilbert
action, it is necessary to expand

√−gR through second order in the perturbations hμν . The
calculation is greatly simplified by using the SVT decomposition described above. It is done in
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three steps, one for each metric (13.12)–(13.14), and after integrating by parts and ignoring the
total derivatives which do not contribute to the field equations we obtain 2κS ≡

∫
d4x

√−gR =
2κ(ST + SV + SS) with

κSS =
1

2

∫

d4x[2∂iΨ(∂iΨ− 2∂iΦ)− 6Ψ̇2] , κSV =
1

4

∫

d4x(∂iΦ̄j ∂
iΦ̄j) ,

κST =
1

2

∫

d4x( ˙̄Eij
˙̄E
ij
− ∂kĒij ∂

kĒij) .

Varying this action with respect to Φ, Ψ, Φ̄i, and Ēij (and requiring that the solutions are
bounded), we recover (13.16). Therefore, just as in electromagnetism (see Book 2, Section 14.2),
the Einstein action is written in lowest order in terms of gauge-invariant quantities. We can
then impose the constraints Φ = Ψ = Φ̄i = 0 and obtain the reduced Hamiltonian completely
describing the two degrees of freedom of the field, which is the gravitational analog of the
Hamiltonian of electromagnetism obtained in Book 2, Section 14.3. If we set Ēij =

√
κ qij so

that the conjugate momentum is πij = q̇ij , it can be written in the canonical form

Hreduced =

∫

d3xHreduced with Hreduced =
1

2
(πijπ

ij + ∂kqij ∂
kqij) .

We know that in electromagnetism the on-shell Hamiltonian, that is, the Hamiltonian when a
solution of the field equations is used, is equal to the field energy; see Book 2, Section 14.3.
Let us take the case of a plane wave propagating along the z axis [cf. (13.18)]. The reduced
Hamiltonian density then is (the dot denotes the derivative with respect to the argument t− z)

Hon-shell =
1

4κ
ḣTT
ij ḣij

TT =
1

2κ
(ḣ2

+ + ḣ2
×) . (13.20)

However, before claiming that this gives the energy density transported by the wave, it is nec-
essary, as in electromagnetism, to include the total derivatives that we have so far ignored (see
also Section 14.2 in the next chapter).

As the final step, in the reduced Hamiltonian we can make a Fourier expansion of qij using
(13.10), which shows that gravitational waves can be viewed as two independent massless scalar
fields. The quantization of these fields leads to the idea of the graviton. However, in contrast to
the photon, the graviton will probably never be observed directly as a quantum object owing to
the weakness of the coupling of gravitation to matter. But these fields may have played a crucial
role at the very early universe; see Chapter 22.

13.3 The motion of a particle in a wave

Let us work in the TT gauge where the length element describing a gravitational wave is given
by (13.17). A test particle follows a geodesic in this spacetime with the equation d2xμ/dτ2+
Γμ
νρ(dx

ν/dτ)(dxρ/dτ) = 0. Since at first order in h we have 2Γμ
tt = ημν(2ḣTT

tν − ∂νh
TT
tt ) = 0

(because htν = 0), we see that a test particle initially at rest will remain at rest. However,
this does not mean that a wave has no effect, but only that the grid of TT coordinates, said
to be co-moving or synchronous, ‘follows’ the test particles.

The equivalence principle states that a freely falling observer whose trajectory in the
TT gauge is xi = const (we shall take these constants to be zero) is locally inertial,
and therefore can construct in his neighborhood a quasi-Minkowskian reference frame, the
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Fermi coordinates (these were discussed in the context of special relativity in Book 2, Sec-
tion 5.1). To find them we make an infinitesimal change of spatial coordinates xi → x̃i =
xi + 1

2h
TT ij |0xj +O(x2). The metric then takes a Minkowskian form at first order in xi [the

calculation of the transformation of the metric tensor is particularly simple in the special
case of a plane wave (13.18)]: ds2 � −dt2 + δijdx̃

idx̃j . In this Fermi system the geodesic
equation of a particle initially at rest becomes

d2x̃i

dτ2
� d2x̃i

dt2
� −Γ̃i

tt(x̃
i) � −Γ̃i

tt|0 − ∂jΓ̃
i
tt|0 x̃j � −∂jΓ̃

i
t|0x̃j . (13.21)

(Here Γ̃i
tt|0 is zero because the Fermi system is locally inertial.) The Riemann tensor is of

course nonzero and in first order is R̃i
tjt = ∂jΓ̃

i
tt; moreover, always in first order, R̃i

tjt =

∂x̃i

∂xρ

∂xμ

∂t̃

∂xν

∂x̃j

∂xσ

∂t̃
Rρ

μνσ � Ri
tjt. Finally, in the traceless transverse gauge 2Ri

tjt � −ḧTTi
j |0,

so that the geodesic equation (13.21) can also be written as

d2x̃i

dt2
� −R̃i

tjt|0 x̃j � 1

2
ḧTTi

j |0 x̃j . (13.22)

In this coordinate system a test particle initially at rest at x̃i = 0 is accelerated relative
to another test particle located at the coordinate origin. We recognize (13.22) as the geodesic
deviation equation of Section 2.3: D2nμ/dτ2 = −Rμ

νρσu
νnρuσ, where nμ measures the

spacing, for constant τ , of the geodesics. Indeed, with x̃i ≡ ni, at lowest order and for
particles at rest [uμ = (1, 0, 0, 0)], eqn (2.13) does reduce to (13.22).

Equation (13.22) can be integrated: x̃i = 1
2h

TTi
j |0 x̃j , and this allows, for example, the

evolution of a circle of test particles in the field of the wave (13.19) to be described. (It is
rather academic but instructive to compare the result to the motion of electric charges in
the field of an electromagnetic wave as in Book 2, Section 15.4.)

Detection of a gravitational wave

The behavior of test particles in the field of a gravitational wave provides the basis for their
detection using interferometry. Let us consider a Michelson interferometer in free fall (in practice
this is achieved by hanging the mirrors as pendulums). The time taken by light signals to travel
the length of the apparatus will be changed by the passage of a gravitational wave, resulting in
a modification of the interference pattern, by which the wave can be detected.

More precisely, the trajectories of two mirrors in the TT gauge are x = 0 and x = l0. Let us
assume that a wave is incident on the system. The coordinate time taken by the light to make a
round trip between the mirrors is such that ds2 = g00dt

2 + 2g0xdxdt+ g2xxdx
2 = 0 and we have

δt � (2l0/g00)
√

(g0x)2 − g00gxx, if l0 is much smaller than the scale on which the metric varies.
The proper time taken is δτ =

√
g00δt, and so it is modulated by the passage of the wave. If it

is represented by (13.18) with h× = 0, we obtain, for example,

δτ � 2l0 (1 + 1
2
h+) .

The difference of the optical paths of the two arms and the maximum sensitivity (limited by
photon noise) turn out to be ∝ h sin(πl/λ) and ∝ �λemν3/(cπεP ), where h is the amplitude,
λ is the wavelength, and ν is the frequency of the wave; l = nl0 is the effective length of the
arms of the interferometer, n being the number of reflections on the mirrors; λem and P are
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the wavelength and the power of the laser, and ε is the efficiency of the detector. Since the
expected frequencies are ν ≈ 1 kHz, the path difference will be a maximum for l � 150 km
or l0 ≈ 1 km for n = 150. The maximum detectable amplitude (it is limited by the current
level of laser technology) is h ≈ 10−21, and in principle this can be measured by the LIGO and
VIRGO detectors.4 In February 2016 the LIGO collaboration announced its first detection of a
gravitational wave event, called GW150914, produced by the merging of two black holes.

The forced motion of a spring subject to the action of a gravitational wave provides the basis
for a second type of detector. Adapting the geodesic deviation equation (13.22), we have

ẍ+
ω

Q
ẋ+ ω2x =

1

2
l ḧTT

xx ,

where x is the extension of the spring, l is the spring length, Q is its quality factor, and ω is
its frequency. The energy stored in the spring when it is in resonance with the wave is E ∝
ml2Ω2h2Q2, where Ω is the wave frequency and m is the spring mass.

In practice, the spring is an aluminum bar whose sensitivity is mainly limited by thermal
noise. Using the numerical values m = 1.5 metric ton, l = 1.5 m, Ω = 1 kHz, Q = 105, and
h ≈ 10−20, we have E ≈ 10−20 J, or a lengthening of the bar of about 10−15 m, which is on the
order of the size of an atomic nucleus.5

13.4 The first quadrupole formula

In the preceding sections we studied the propagation of gravitational waves and their interaction

with test particles. Here we shall relate them, always in linear order, to the energy–momentum tensor

of the source creating them.

The post-Minkowski approach developed here is different from the post-Newtonian approach of

the previous chapter in that, while limiting ourselves to the linear approximation of general relativity,

we do not assume a priori that the source velocities are small. Moreover, we will be interested in the

gravitational field far from the sources, in the wave zone, where it is radiative.

In the linear approximation gμν = ημν + hμν the Einstein equations are written in har-
monic coordinates as (see Section 13.1)

�γμν = −2κTμν +O(γ2
μν) , where hμν = γμν − 1

2
ημνγ with ∂ργ

ρ
μ = O(γ2

μν) . (13.23)

As in electromagnetism, the relevant solutions are the retarded Liénard–Wiechert potentials

γμν(t, x
i) = 4G

∫
d3x′ Tμν(t− r′, x′i)

r′
+O(γ2

μν) , (13.24)

where r′ ≡
√

(xi − x′i)(xi − x′
i) is the distance from the field point xi to a source point x′i

evaluated at the retarded time t− r′ (recall that κ = 8πG).

4Justification for these estimates can be found in, for example, Kenyon (1990). For a detailed presentation
of interferometry-based gravitational wave detectors, see the sites http://www.ligo.org/ and http://www.ego-
gw.it/, as well as, for example, Pitkin et al. (2011).

5Schutz (2009), for example, gives more details about these Weber bars, named in homage to J. Weber,
a pioneer in the construction of gravitational wave detectors in the 1960s.
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Sufficiently far from the source the potential (13.24) can be approximated by a plane
wave:

γμν(t, x
i) =

4G

r

∫
d3x′ Tμν(t− r, x′i) +O(1/r2) +O(γ2

μν) , (13.25)

where r is the distance from the field point to an origin located near the source. Using the
conservation of the energy–momentum tensor ∂νT

ν
μ = 0 (which follows from the harmonic

condition), we can express all the γij as functions of Ttt (see the following box). Moreover, as
we saw, for example, in Section 4.1, in Newtonian order we have Ttt ≈ , where  is the mass
density of the source. In addition, Tti ≈ vi, where vi is the 3-velocity of the fluid. In the
end we can rewrite (13.25) at order O(γ2

μν), O(1/r2), and lowest order in the velocities as

γtt(t, x
i) =

4G

r

∫
d3x′ , γti(t, x

j) =
4G

r

∫
d3x′ v′i ,

γij(t, x
k) =

2G

r

d2

dt2

∫
d3x′ x′

ix
′
j ,

(13.26)

where all quantities in the integrals are evaluated at the retarded time t− r.

The harmonic condition and conservation law

At the linear order in which we are working, the harmonic condition implies the conservation
of the source energy–momentum tensor ∂νT

ν
μ = 0, or

∂tTtt = ∂kT
k
t , ∂tTti = ∂kT

k
i .

We multiply the second equation by xj , integrate it over all space, and symmetrize it:

1

2

d

dt

∫

d3x (xjTti + xiTtj) =
1

2

∫

d3x (xj∂kT
k
i + xi∂kT

k
j ) = −

∫

d3xTij .

[We have integrated by parts and used the divergence theorem and the fact that (xjT
k
i + xjT

k
i )

vanishes at infinity, because Tij has compact support since the source is localized.] Next we
multiply the first equation by xixj and again integrate over all space to obtain

d

dt

∫

d3xTttxixj = −
∫

d3x(xjTti + xiTtj) .

Therefore, ∫

d3xTij =
1

2

d2

dt2

∫

d3xTtt xixj .

Since Ttt ≈ , we indeed see that (13.25) gives (13.26).

Now let us work in a given inertial frame, for example, a frame in which the source is
at rest on the average. As we saw in Section 13.3, the gravitational waves that it emits are
the transverse traceless part of the spatial part of the metric. In addition, they are gauge-
invariant. We can therefore extract them directly from (13.26) using (13.10) and thereby
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obtain the first quadrupole formula (Einstein, 1918), that is, the asymptotic, radiative part
of the linearized metric in the TT gauge at lowest order in the velocities:

ds2rad = −dt2 + hTT
ij dxidxj

with hTT
ij =

2G

3c4r
P kl
ij Q̈kl , where Qij =

∫
d3x 

(
3xixj − δijr

2
) (13.27)

is the quadrupole moment of the source (see Book 1, Section 14.1) evaluated at the retarded
time t− r (we have also reintroduced c).6 The projection operator was given in (13.10):

P kl
ij = P k

i P
l
j −

1

2
PijP

kl , where Pij = δij − ninj with ni = xi/r . (13.28)

The potentials hTT
ij are the gravitational analog of the electromagnetic radiative potential

in the Lorenz gauge, which, as we saw in Book 2, Sections 20.1 and 20.2, is expressed as a
function of the second derivative of the dipole moment of the charges q creating the field, or
of their quadrupole moment if the ratio q/m is the same for all the charges. It is therefore
the equality of gravitational and inertial mass which explains why the radiative part of the
metric is quadrupolar.

Let us conclude by specifying the domain of validity of the quadrupole formula (13.27).
For the perturbations (13.26) of the metric to indeed solve the linearized Einstein equa-

tions, they must satisfy the harmonic condition. Let us consider the case where the sources
are point masses m ≡ GM . Then at orders O(m2), O(1/r2), and lowest order in the velocities
the retarded potential (13.26) becomes

γtt =
∑ 4m

r
, γti =

∑ 4mvi
r

, γij =
∑ 2m

r
(2vivj +O(v̇)) . (13.29)

Written in this form, we clearly see that the harmonic condition, which reduces to γ̇ti =
O(m2), requires that v̇i = O(m). The radiation field is therefore given by (13.26) or (13.29)
only in the ‘adiabatic’ approximation, that is, when it is possible to neglect the accelerations
of the source. This is not possible for bodies interacting gravitationally: their accelerations
are given in lowest order by Newton’s law v̇ ∝ m/R2, and so v̇ = O(m) but also v2 ∝ m/R,
so that the two terms in eqn (13.29) for γij are of the same order, which invalidates the
approximation. Therefore, the first quadrupole formula (13.27) derived here in the linear
approximation of general relativity does not a priori give the gravitational waves emitted by
a system of moving bodies, except when the bodies are moving under the action of forces
other than gravity.

6Equation (13.27) can also be derived from (13.26) by a change of coordinates; see, for example, Stephani
(1990).
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Orders of magnitude

The order of magnitude of the metric components (13.27) is hTT
ij = O

(
mv2/r

)
, where m and

v are the characteristic mass and velocity of the source and r is the distance from the source to
the observation point. We see that the amplitude of the waves produced by any terrestrial object
is extremely weak: indeed, 1 metric ton = 7 × 10−24 m. However, if the source is a binary star
system, for example, the binary pulsar PSR 1913+16 (see footnote 7), we have mv2/r ≈ 10−22,
which is now in the domain of the measurable; see Section 13.3. However, as mentioned above,
the formula then must be justified; we shall do this in Section 14.3.

7The characteristics of PSR 1913+16, composed of two neutron stars, are the following: mtotal ≈ 2 ×
1.4M� ≈ 4.2 × 103 m; v2 ≈ m/R (by the Newton–Kepler law) with a separation R ≈ R� ≈ 7 × 108 m, or
v ≈ 0.25× 10−2; and r ≈ 5 kpc ≈ 2× 1020 m. In Section 12.6 we saw how to determine these parameters by
a timing analysis of signals emitted by the pulsar.
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Gravitational radiation

Now that we have found the radiative potential of a source in the linear approximation of general
relativity, we can calculate the energy radiated to infinity in lowest order. For this we will need to
expand the Einstein equations to quadratic order in the metric perturbations, which is the subject of
Section 14.1. We shall see that the radiated energy is then given by the (second) quadrupole formula
(14.11), which is the gravitational analog of the dipole formula in the Maxwell theory. This formula
is a priori valid only if the motion of the source is due to forces other than gravity.

In Section 14.3 we shall see that to prove this formula for the case of self-gravitating systems
we need to solve the Einstein equations to quadratic order and obtain the radiative field in the
post-linear approximation of general relativity.

14.1 The Einstein equations at post-linear order

When iterating the Einstein equations, it is often useful to write the Einstein tensor as
(Fock, 1959)

2|g|Gμν = Gρσ∂2
ρσGμν +Dμν

ρ (∂σGρσ)−Qμν , where Gμν ≡
√
−ggμν ≡ ημν − γμν , (14.1)

g is the determinant of the metric gμν , Dμν
ρ is a first-order differential operator acting on the

divergence of Gρσ (so that the second term is zero in harmonic gauges with ∂ρGρσ = 0), and
Qμν is quadratic in the first derivatives of gμν . [Its complete expression can be found in, for
example, Bel et al. (1981).]

At post-linear order in γμν the expansion of gμν = ημν +hμν is, indices being moved with
ημν

hμν = γμν − 1

2
ημνγ + ημν

(
1

8
γ2 − 1

4
γαβγ

αβ

)
− 1

2
γγμν + γαμγ

α
ν +O(γ3

μν) . (14.2)

The expansion of the Einstein tensor in harmonic coordinates for which ∂σGρσ = 0 then is

2|g|Gμν = −�γμν + (γαβ∂2
αβγ

μν − ∂αγ
μβ∂βγ

αν)− 16πG|g|tμνLL +O(γ3
μν) (14.3)

with ∂νγ
νμ = 0, where � ≡ ημν∂2

μν is the flat-space d’Alembertian and tμνLL is the Landau–
Lifshitz pseudo-tensor1 (1941):

1Here we are keeping only its quadratic part; see Landau and Lifshitz (1971) and also, for example, Poisson
(2007).

Note that Equations (14.2) and (14.3) can also be used to calculate the action 2κS =
∫
d4x

√−gR of
perturbations; we have seen its expression in terms of gauge-invariant quantities in Section 13.2.
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2κ |g|tμνLL =
1

2
∂μγαβ ∂νγαβ − 1

4
∂μγ ∂νγ

+∂αγ
μβ ∂αγν

β +
1

8
ημν ∂αγ ∂

αγ − 1

4
ημν ∂αγβδ ∂

αγβδ

+
1

2
ημν ∂αγβδ ∂

βγαδ − ∂μγαβ ∂αγ
ν
β − ∂νγαβ ∂αγ

μ
β .

(14.4)

The factor 2κ has been introduced for dimensional reasons, and indices are lowered using
ημν .

Therefore, the Einstein equations in post-linear order are written as

�γμν = −2κ |g|(Tμν + τμν) +O(γ3
μν) with ∂νγ

νμ = 0

and 2κ |g|τμν = 2κ |g|tμνLL + ∂αγ
μβ ∂βγ

αν − γαβ ∂2
αβγ

μν ,
(14.5)

where Tμν is the source energy–momentum tensor and |g| = 1− γ +O(γ2
μν).

14.2 The second quadrupole formula

The harmonic condition ∂νγ
ν
μ = 0 forces the second term of the Einstein equations (14.5) to

have zero divergence.
Then, since ∂ν

(
∂αγ

μβ∂βγ
αν − γρσ∂2

ρσγ
μν
)
= 0, we have

∂ν (|g|(Tμν + tμνLL)) = 0 . (14.6)

After integrating over the 3-volume bounded by the 2-sphere at infinity and using the Gauss
theorem and the fact that Tμν is zero at infinity, we arrive at

d

dt
E = − lim

r→∞

∫
|g|ttiLLnir

2dΩ with E ≡
∫
d3x |g|(T tt + tttLL) , (14.7)

where ni = xi/r and dΩ = sin θ dθdφ is the element of solid angle. (In the order in which we
are working we can set |g| = 1 in the surface integral.)

The calculation of nit
ti
LL at infinity is easy when the radiative part, that is, the part pro-

portional to 1/r, of the metric is given by the first quadrupole formula given in Section 13.4.
Then it is purely spatial, transverse, and traceless, and depends only on the retarded time
t− r. Therefore, its derivatives ∂ργ

TT
μν are

∂ργ
TT
μν ≡ (γ̇μν , ∂iγμν)

TT = −nργ̇
TT
μν with nμ = (1, ni)

and
(
γTT
tt = 0 , γTT

it = 0 , γTT
ij = hTT

ij

)
.

(14.8)

Since nνn
ν = 0, γTT

tμ = 0, and nνγTT
μν = 0, the radiative part of the Landau–Lifshitz pseudo-

tensor given in (14.4) reduces to the first term:

2κ |g| tμνLL � 1

2
nμnν γ̇αβ γ̇

αβ |TT =⇒ 2κ |g|nit
ti
LL � 1

2
ḣij
TTḣ

TT
ij . (14.9)

Then, substituting the expression for hTT
ij as a function of the second derivatives of the source

quadrupole obtained in (13.27), eqn (14.7) becomes
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dE

dt
= − G

72π

∫
P ij
kl

d3Qkl

dt3
Pmn
ij

d3Qmn

dt3
dΩ , (14.10)

where the projector P ij
kl is given in (13.28). The integrand contains terms proportional to

ninj and ninjnknl, and the integral over the angles is done using the standard expressions
for spatial averages (see, for example, Book 2, Section 18.1). We thus obtain (with c restored)

dE

dt
= − G

45c5
d3Qij

dt3
d3Qij

dt3
, where Qij =

∫
d3x 

(
3xixj − δijr

2
)
. (14.11)

This is the second quadrupole formula (Einstein, 1918). As we shall argue, E can be identified
as the system energy. Therefore, (14.11) gives the energy lost by the source in the form of
gravitational waves. We recall that to obtain this expression we had to write out the Einstein
equations at post-linear order (Section 14.1) in order to obtain the conservation law (14.6),
and then use the first quadrupole formula (13.27) giving the radiative field of a system of
masses in motion due to non-gravitational forces at lowest order in the velocities.

The pseudo-tensor and energy of the system

In the expression for E in (14.7), the first term can represent the energy of the matter
creating the field because Tμν is its energy–momentum tensor and at lowest order |g| ≈ 1. The
radiative part of the integrand in the second term is given by [cf. (14.9)]

tttLL ≈ 1

4κ
ḣij
TTḣ

TT
ij . (14.12)

It coincides with the energy density of the gravitational waves obtained in (13.20) from their
Hamiltonian, which suggests that the second term in E can be identified as the field energy.
However, the field energy is actually not the integral of (14.12) (where we can set |g| = 1) over
all space, because close to and inside the sources the metric is not that of the radiative field,
which is only asymptotic.

Now, according to the analysis of the conservation laws carried out in Chapter 5, E can in fact
be written as a surface integral. Indeed, the pseudo-tensor (14.4) is derived from a superpotential
because, as Landau and Lifshitz have shown,

κ ∂αH
μνα = |g|Gμν + κ |g|tμνLL , where 2κHμνα = ∂β

(
|g|(GμνGαβ − GμαGνβ)

)
.

[Using (14.3) and (14.4), this can be verified in post-linear order, to which we confine ourselves
here.] Therefore, we have

E =

∫

Httinir
2dΩ .

Finally, to relate E to the gravitational mass of the source, we must calculate Htti using the
complete asymptotic metric and not only its radiative part.2

To specify the domain of validity of the quadrupole formula (14.11), let us consider
the case where the source is an ensemble of point-like objects.

2The superpotential Hμνα gives the same result as the Freud–Katz potential defined in Section 5.4. To
learn more, see Katz (1996).
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We then have Qij =
∑

m(3zizj − δijz
2), where zi is the location of the body m. The

radiative field, proportional to Q̈, then is ∼ mvv+O(mv̇z), where, as we saw in Section 13.4,
the accelerations of the source must be negligible in order to use a linear approximation.
However, d3Q/dt3 is ∼ mv.v̇+O(mv̈z). The second quadrupole formula therefore is a priori
applicable only if the terms proportional to mv.v̇ numerically dominate those of order mv̈z.
This will be the case for sources bound by non-gravitational forces, for which v2 � v̇z.
However, it will not be true if the sources are gravitationally coupled, because then according
to Newton’s law we will have v̇ ∼ v2/R ∼ m/R2, where R is their separation, so that not
only are the two terms of comparable magnitude, but in addition they are of the same order
as the contributions ∼ m2 arising from the post-linear approximation to the radiative field.3

To describe in lowest order the radiation of gravitational waves by a system of gravitation-
ally interacting bodies, it is therefore necessary to use, in the Landau–Lifshitz pseudo-tensor
appearing in (14.7), an approximation of the radiative field which is better than the first
quadrupole formula. As we shall see below, study of the radiative field at post-linear order
will in fact allow us to extend the validity of the quadrupole formula (14.11) to self-gravitating
systems, in particular, to binary systems of compact stars.

14.3 Radiation of a self-gravitating system

Here we shall show explicitly, following step-by-step the analysis of quadrupole radiation in electro-
magnetism carried out in Book 2, that the linear approximation only is not sufficient for finding the
radiation of a self-gravitating system.

The steps in the analysis are the following:

• The linear expansion of the radiative field obtained in Section 13.4 is extended to the required
order in the source velocities (rather than just the lowest order).

• The results of Chapter 15 are used to add the contribution from the second iteration of the
Einstein equations.

• The asymptotic expression for the Landau–Lifshitz pseudo-tensor is derived, and it is noticed
that (14.7) again gives the second quadrupole formula (14.11). We have thereby shown that it
is valid also when the sources are self-gravitating.

• Linear expansion of the radiative field

Let us consider a gravitationally interacting system. As an example and to facilitate com-
parison with systems of slowly moving charges studied in Book 2, Section 6.1, we assume
that the system consists of two point objects of masses m and m′. In the linear approxima-
tion, which we label by the subscript 1 for clarity,4 their energy–momentum tensor is [see
Section 4.1 and Book 2, Section 8.4]

3Of course, one could argue that by ‘continuity’ the quadrupole formula (14.11) must also hold for gravi-
tationally coupled systems, which is the art of obtaining correct results using shaky arguments.

One could also formally integrate (14.5) as γμν = 4G
∫
d3x′ (Tμν+τμν)

r′ , and then repeat the arguments

of Section 13.4 to write
∫
d3x (Tij + τij) =

1
2

d2

dt2

∫
d3x (Ttt + τtt)xixj . Then one could argue that at lowest

order Ttt + τtt � Ttt � 	, and conclude that the linear potential is valid beyond the adiabatic, linear
approximation. However, the arguments of Section 13.4 are based on Tij being bounded, which is not the
case for τij . Moreover, as we shall see in Chapter 15, the retarded integrals of τμν are a priori poorly defined.

4We also set G = 1 to simplify the notation.
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Tμν
1 =

∑
m

∫
δ4(x

ρ − zρ(τ))uμuνdτ , (14.13)

where δ4 is the Dirac delta distribution.
The solution of the linearized Einstein equations in harmonic gauge ∂νγ

μν = 0 is the
Liénard–Wiechert potential obtained in (13.24) or

γ1
μν(t, x

i) =
∑

4m
uμuν



∣∣∣
R
, where R = −uμl

μ|R with lμ|R = xμ − xμ
R

and ημν l
μ
RlνR = 0 .

(14.14)

Here the subscript R indicates that the quantity is evaluated at the intersection of the past
cone originating at the field point xμ and the world line of the body in question; see Fig. 14.1.
(This expression should be compared with the retarded potential created by charges in the
Maxwell theory; see Book 2, Sections 17.1 and 17.2.)

xμ

u′μ

z′μ

Ru

t

x y

μ
l
μ

Rx
μ

uμ

zμ

ρ

R,�R

ˆ

ˆ

Fig. 14.1 Retarded quantities.

Retarded quantities and their derivatives

Here we recall some useful definitions and formulas obtained in Book 2 in the similar frame-
work of the Maxwell theory.

We define xμ
R as the intersection of the retarded cone originating at the field point xμ and

the world line of the mass m, and we set lμR = xμ − xμ
R (so that ημν l

μ
RlνR = 0). The proper time

of the mass m at the retarded point xμ
R is denoted τR and its 4-velocity is uμ

R. Then, setting
R = −uμl

μ|R [see Book 2, Section 17.1], we have

∂μτR = − lμ



∣
∣
∣
∣
∣
R

,
∂xν

R
∂xμ

= −uν lμ


∣
∣
∣
∣
∣
R

,

∂μu
ν
R = −lμu̇

ν |R , ∂μR = [nμ + (lμ/)(l .u̇)]R with nR
μ ≡ −uR

μ + (lμ/)|R .

(14.15)

Since gravitation is a long-range interaction, the field and equations of motion of the bodies
will be characterized by the ‘Jacob’s ladder’ described in Book 2, Section 6.2 and will be given
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in terms of retarded quantities, doubly retarded quantities, and so on. In the post-linear order
which we will discuss later on, we will find it necessary to introduce

ρ ≡ −(zμ − ẑ′μ)û′
μ , νμ = −û′μ + (zμ − ẑ′μ)/ρ , w = (u.û′) ,

ρR ≡ −(xμ
R − ẑ′μR )û′R

μ , νμ
R = −û′μ

R + (xμ
R − ẑ′μR )/ρR , wR = (u .û′)R ,

(14.16)

where ẑ′μ is the intersection of the cone, originating at a point zμ on the world line of the body
m, and the world line of the body m′, with û′μ the velocity of m′.

Using (14.15), from the expression for the metric (14.14) we find

∂νγ
μν
1 =

∑
4m

(
u̇μ



)

R
. (14.17)

We therefore again reach the conclusion of Section 13.4: the harmonic condition is satisfied
in linear order because u̇ is of order m owing to Newton’s equations of motion. We can also
interpret (14.17) in a different way, namely, that the harmonic condition, which at this order
is equivalent to the conservation of the energy–momentum tensor, requires that the equations
of motion be of order m.

Expansion of retarded quantities

To change over to three-dimensional notation we set l0 = t − tR ≡ rR and li = xi − xi
R ≡

rRni
R, where ni

R is a unit 3-vector. We then have (see Book 2, Section 17.1)

u0
R =

1
√

1− v2R
, ui

R =
viR√
1− v2R

, R = rR
1− (n .v)R
√

1− v2R
. (14.18)

Next, to find the asymptotic behavior of the field we introduce an origin located inside the
system and write rRnR = rn− zR, where rn is the position vector of the field point xi of length
r and zR is the position vector of the mass m at the retarded time tR. We then evaluate the
retarded quantities at the time tR0 such that t− tR0 = r is the time taken for the gravitational
interaction (as well as light) to travel from the origin of the frame to the field point. Then we
have (see Book 2, Section 20.2)

viR = viR0
+ v̇iR0

(n .zR0) +
[

1
2
v̈i(n .z)2 + v̇i(n .v)(n .z)

]

R0

+ · · · , (14.19)

where the dots denote terms of order v4 and v2z/r.
Now the derivatives are easy to find. Quantities depend on the time through the positions

ziR0
of the bodies evaluated at tR0 = t− r with r a constant. Moreover, shifting the field point

by an amount δxi with r a constant implies shifting the origin by the same amount. Therefore,

∂tz
i
R0

= viR0
, ∂iz

j
R0

= −δji . (14.20)

Now, to find the linearized metric generated by an ensemble of slowly moving masses, it
is sufficient to use the method described in Book 2, Sections 17.1 and 17.2 for the case of
electromagnetism (and already used to study the gravitational field in the Nordström theory;
see Book 2, Section 10.4). First we write (14.14) in three-dimensional notation using (14.18):
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y

x

O
rn

i

rR ni
R

zi
R

zi
R0

z

xR
i  at tR

xi at t

Fig. 14.2 Retarded quantities, three-dimensional notation.

γ1
μν =

∑ 4m

rR
√

1− v2R (1− nRvR)
(1 ,−vRi , vRi vRj ) , (14.21)

where the position xi
R = xi(tR) and the 3-velocity viR = vi(tR) of the mass m are evaluated

at the retarded time tR given implicitly by tR = t− rR with xi − xi(tR) ≡ rRni
R, where nR

is a unit 3-vector: nR.nR = 1; see Book 2, Section 17.2 and Fig. 14.2.
Next, we situate ourselves far from the system, introduce a fixed point inside the dis-

tribution, and write rRnR = r n − zR, where rn is the radius vector of the field point of
components xi and length r, and zR is the radius vector of the mass m at tR. In addition,
we assume that the speeds of the bodies remain small. Then, since rRnR = r n to lowest
order in z/r, we have (see Book 2, Section 20.2 for the analogous calculation in the Maxwell
theory)5

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1
tt =
∑ 4m

r

[
1 + (n .vR) + 1

2v
2
R + (n .v2R) + (n .vR)3

+ 1
2 (n .vR)v2R +O(v4) +O(z/r)

]
,

γ1
ti = −

∑ 4mvRi
r

[
1 + (n .vR) + 1

2v
2
R + (n .v2R) +O(v3) +O(z/r)

]
,

γ1
ij =

∑ 4mvRi vRj
r

[
1 + (n .vR) +O(v2) +O(z/r)

]
.

(14.22)

Finally, we evaluate all quantities at the time tR0
such that t − tR0

= r is the time for the
gravitational interaction to propagate from the origin of the frame to the field point. Then

5We shall not study the radiation of angular momentum, which requires expanding through order 1/r2.
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using (14.19) we easily find (see the analogous calculation in Maxwell’s theory in Book 2,
Section 20.2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1
tt =
∑ 4m

r
+
∑ 4m

r
(n .vR0

) +
∑ 4m

r

[
(n .v)2 + (n .z)(n .v̇) + 1

2v
2
]
R0

+
∑ 4m

r

[
(n .v)3+3(n .z)(n .v)(n .v̇)+ 1

2 (n .z)2(n .v̈)+(v .v̇)(n .z)+ 1
2v

2(n .v)
]

R0

+ · · · ,

γ1
tj = −

∑ 4mvj |R0

r
−
∑ 4m

r
[vj(n .v) + v̇j(n .z)]R0

−
∑ 4m

r

[
1
2 v̈j(n.z)

2+2v̇j(n.z)(n.v)+vj
(
(n.v)2+(n.z)(n.v̇)

)
+ 1

2v
2vj

]

R0

+ · · · ,

γ1
ij =

∑ 4mvivj |R0

r
+
∑ 4m

r
[(viv̇j + vj v̇i)(n .z) + vivj(n .v)]R0

+ · · · ,

(14.23)

where zR0
and vR0

are the radius vector and velocity of the mass m at the time tR0
, a

dot denotes the derivative with respect to t, and the dots stand for terms proportional to
(m/r) v2(v2 + z/r) and terms O(m2), because we are working in the linear approximation.
Since v̇ appearing in (14.23) at O(v3) is of order m owing to Newton’s equations, we see
explicitly that to obtain the radiative field of a self-gravitating system we must solve the
Einstein equations at post-linear order, which we shall do in the following chapter.

The derivatives of the potential, which alone are involved in the calculation of the Landau–
Lifshitz pseudo-tensor, are found using (14.20):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ̇1
tt=
∑ 4m

r
(n .v̇)|R0

+
∑ 4m

r
[3(n .v)(n .v̇)+(n .z)(n .v̈)+(v .v̇)]R0

+· · · ,

γ̇1
tj = −

∑ 4m

r
v̇j |R0

−
∑ 4m

r
[2(n .v)v̇j + vj(n .v̇) + v̈j(n .z)]R0

+ · · · ,

γ̇1
ij =

∑ 4m

r
(v̇ivj + viv̇j)|R0

+ · · · ,

∂iγ
1
tt = −niγ̇tt , ∂iγ

1
tj = −niγ̇tj , ∂kγ

1
ij = −nkγ̇ij

(14.24)

[which coincides with the expansion of (14.17), as it must; in addition, we note that the
calculation of the spatial derivatives requires knowledge of (14.23) at O(v4)]. Since v̇ = O(m),
they are all O(m2). More precisely, if we work in the center-of-mass system and use Newton’s
law of motion (at the required order), we have
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi =
m′

mT
RN i , vi =

m′

mT
V i , v̇i = −m′N

i

R2
,

v̈i = −m′ V
i

R3
+ 3m′ (N.V )N i

R3
,

z′i = − m

mT
RN i , v′i = − m

mT
V i , v̇′i = m

N i

R2
,

v̈′i = m
V i

R3
− 3m

(N.V )N i

R3
,

(14.25)

where mT = m + m′, Ri ≡ zi − z′i, Ri ≡ RN i, V i ≡ vi − v′i = Ṙi, and (N.V ) ≡ N iVi.
Therefore, (14.24) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

γ̇1
tt = −4mm′

rR2

[
(N.V ) + 4(n.V )(n.N)− 3(n.N)2(N.V )

]
R0

+ · · · ,

γ̇1
ti =

4mm′

rR2
[2(n.V )Ni + 2(n.N)Vi − 3(n.N)(N.V )Ni]R0

+ · · · ,

γ̇1
ij = −4mm′

rR2
[NiVj +NjVi]R0

+ · · · .

(14.26)

• Contribution of the post-linear order

If, without further ado, we use (14.26) to calculate the flux at infinity nit
ti
LL with tμνLL

given in (14.4), we will not obtain the quadrupole formula (14.11) because, as we have
stressed repeatedly, the potentials (14.26) must be completed by the O(m2) contributions
from the second iteration of the Einstein equations. We shall calculate these contributions in
Chapter 15 [see (15.11)], where we will find that we must add to (14.26) the following:

⎧
⎪⎪⎨

⎪⎪⎩

γ̇
(2)
tt =

4mm′

rR2
(N.V )R0

, γ̇
(2)
ti = 0 ,

γ̇
(2)
ij = −4mm′

rR2
[NiVj +NjVi − 3NiNj(N.V )]R0

.

(14.27)

Therefore, the derivatives of the asymptotic metric are not (14.26), but rather the sum of
(14.26) and (14.27), that is

⎧
⎨

⎩

γ̇tt = (ninj γ̇ij) , γ̇ti = −(nj γ̇ij) ,

γ̇ij=−4mm′

rR2

[
2(NiVj+NjVi)−3NiNj(N.V )+O(1/r)+O(v2)+O(m)

]
R0

.
(14.28)

Using the spatial derivatives in (14.24), we then have ∂αγμν ≡ (γ̇μν , ∂iγμν) = −nαγ̇μν with
nμ = (1, ni).
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• The second quadrupole formula revisited

Although the metric we have obtained is not in the TT gauge, it is easy to calculate the
flux at infinity nit

ti
LL using (14.4):

d

dt
E = − lim

r→∞

∫
|g|ttiLLnir

2dΩ = − r2

8κ

∫
(2γ̇μν γ̇

μν − γ̇2)dΩ

= − r2

8κ

∫
[ninjnknlγ̇

ij γ̇kl−2ninj(2γ̇
ikγ̇j

k−γ̇ij γ̇k
k )+2γ̇ij γ̇

ij−(γ̇i
i)

2]dΩ

= − r2

60

[
3γ̇ij γ̇

ij − (γ̇i
i)

2
]
= −8m2m′2

15R4
[12V 2 − 11(N.V )2]R0

= − G

45c5
d3Qij

dt3
d3Qij

dt3
.

(14.29)

Here we have restored G and c, and Qij is the quadrupole moment (evaluated at the retarded
time t− r) of a system of two point masses interacting gravitationally.6

Therefore, as announced, the quadrupole formula is valid even for bodies which interact
gravitationally. [However, (14.27) still needs to be proved.]

Let us finish calculating Ė. Since in the order considered the trajectories are Keplerian
(cf. Book 1, Section 12.2), we have

R = a(1− cos η) =
a(1− e2)

1 + e cosφ
, n t = η − e sin η with n2 =

mT

a3
,

where a and e are the semi-major axis and the eccentricity of the relative orbit in the center-
of-mass frame of the bodies of masses m ≡ GM and m′ ≡ GM ′. We easily find

⎧
⎪⎪⎨

⎪⎪⎩

(N.V ) =
na√
1− e2

e sinφ , V 2 =
n2a2

1− e2
(1 + e2 + 2e cosφ) ,

φ̇ =
n

(1− e2)3/2
(1 + e cosφ)2 .

(14.30)

Inserting (14.30) into (14.29), we obtain the average of Ė over a period P = 2π/n: 〈Ė〉 ≡
P−1

∫ P
0

Ė dt = P−1
∫ 2π
0

Ė dφ/φ̇, or

〈Ė〉 = − n

2π

∫ 2π

0

8G4M2M ′2

15a2c5(1−e2)7/2
(1+e cosφ)2[12(1+e2+2e cosφ)−11e2 sin2 φ] dφ

= −32G4

5c5
M2M ′2(M +M ′)

a5
f(e)

with f(e) =

(
1 +

73

24
e2 +

37

96
e4
)
(1− e2)−7/2

(14.31)

(Peters and Mathews, 1963).

6Indeed, we have Qij =
∑

m(3zizj − δijz
2) or, in the center-of-mass frame, Qij = (mm′/M)[3RiRj −

δij(R.R)], which, using Newton’s equations of motion (14.25), gives d3Qij/dt
3 = (2mm′/R2)[δij(N.V ) +

9(N.V )NiNj − 6(NiVj + NjVi)]. The square of this is 24(m2m′2/R4)[12V 2 − 11(N.V )2] (we have already
used this expression in Book 2, Section 21.2 to study the electromagnetic radiation of two charges).
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Orders of magnitude

The energy (14.29) lost by a massive system in the form of gravitational waves is small.
Let us consider the example of a rod of mass m and length l, rotating about its center

with frequency ω. We have Q ∼ Ml2, from which we find d3Q/dt3 ∼ Ml2ω3, and so Ė ∼
−(G/c5)M2l4ω6. For M = 1 kg, l = 1 m, and ω = 1 rad/s we obtain Ė ≈ 10−54 W, which can
be compared to, for example, thermal noise at 1 K: 10−23 W.

If the source is a stellar binary, we will have Ė ∼ m2R4ω6 with, according to Newton’s law,
ω2 ∼ m/R3 or Ė ∼ (mω)10/3. Using the data on PSR 1913+16 (see footnote 7 of the preceding

chapter), we obtain Ė ∼ 1027 W. We can compare this, for example, to the (electromagnetic!)
luminosity of the Sun: L� ∼ 4× 1026 W (see, for example, Book 1, Section 15.2).

Back reaction of the radiation on the motion

The Newtonian energy of a binary system of two stars of equal masses in a circular orbit
is En = −m2/(2R) ∼ −(m5ω2)1/3 (because ω2 ∼ m/R3 by Newton’s law). We can therefore

estimate the lifetime of the system by writing Ėn = Ė, where Ė is given by the quadrupole
formula (14.29). Then since Ė ∼ −(mω)10/3 (see above), we have Ṙ ∼ R2Ė/m2 ∼ −(mω)2, or

also ω̇ ∼ (m5ω11)1/3. For the data on PSR 1913+16 (see footnote 7 of Section 13.4) we find
ω̇ ∼ 10−20 s−2. More precisely, we have Pb = 2π/n and a = GMM ′/(−2En), and using (14.31)
we obtain

〈
Ṗb

Pb

〉

= −96G5/3

5c5
MM ′

(M +M ′)1/3
f(e)

(Pb/2π)8/3
≈ −2.4× 10−12

Pb
s−1 . (14.32)

As stated above in Section 12.6, this effect must be included in the timing formula of a binary
system in which one of the masses emits electromagnetic signals at regular intervals. The relation
(12.35) between the proper time of the emitter and the anomaly η then becomes

η − eT sin η = 2π

(
τe − T

Pb
− 1

2
Ṗb

(
τe − T

Pb

)2
)

. (14.33)

However, it should be borne in mind that this expression still needs to be justified, because,
first of all, it is based on the equations (14.28) for the radiative field including the contribution
(14.27) of the second iteration of the Einstein equations which still needs to be found, and,
secondly, it assumes that a balance has been established between the radiated power and the
loss of mechanical energy of the system, the validity of which also needs confirmation; see the
following chapter.
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15

The two-body problem and radiative
losses

In the preceding chapter we showed that it is necessary to solve the Einstein equations in (at
least) the post-linear approximation in order to be able to rigorously deal with the problem of the
gravitational radiation of a system of self-gravitating bodies.

In this chapter we shall begin by finding the field created by compact objects in the post-linear
approximation of general relativity. This will allow us, first of all, to obtain the radiative field of
a self-gravitating system [eqn (15.11)], and thus to complete the analysis of the preceding chapter,
where the contribution of the second iteration was left hanging. The second quadrupole formula
(14.29) will then be completely proven.

Next, we shall find the equations of motion of the bodies in the field which they create to second
order in the perturbations assuming that their velocities are small. We shall thereby see that to
correctly describe the radiation reaction—the effect of the emitted gravitational radiation on their
motion—at 2.5 PN order it will prove necessary to iterate the Einstein equations a third time. This
will lead us to the equations of motion (15.17) and (15.18), which generalize to order 1/c5 the EIH
equations of order 1/c2 already found in (12.25).

Finally, we shall study the effect of the radiation reaction force on the sources, and will show,
within the framework of a Lagrangian formalism, that there is an energy balance at 2.5 PN order
between the energy radiated to infinity and the mechanical energy lost by the system. This will
justify the heuristic calculation of the radiation reaction effect on the source motion carried out at
the end of the preceding chapter, eqns (14.32) and (14.33).

15.1 The gravitational field in the post-Minkowski approximation

To simplify our discussion,1 we shall restrict ourselves to the case of two bodies which are
sufficiently compact and far enough apart that their internal structure can be ignored. It is
therefore heuristically convenient (as long as we limit ourselves to the post-linear approxi-
mation) to represent them by the distributional energy–momentum tensor

Tμν(xρ)=
∑

m

∫
δ4(x

ρ−zρ(τ))
ũμũν

√−g
dτ̃=

∑
m

∫
δ4(x

ρ−zρ(τ))
uμuν

√
g gρσuρuσ

dτ . (15.1)

1Here we shall limit ourselves to only a discussion of the method. The method we choose is termed
post-Minkowskian because it consists of iterating the Einstein equations in powers of G (or in the masses
m = GM/c2). It is only after this is done that a second expansion is made in the source velocities v, which
are assumed to be small. And only at the end of the calculation do we use the equations of motion, which in
the order considered here will be Newtonian: v̇ ∼ m/R2 and v2 ∼ m/R. This approximation scheme therefore
differs from the post-Newtonian approximation schemes that we have described in Chapter 12 (at the lowest
order), where we assumed ab initio that the velocities are small.

A complete discussion of the results can be found in Bel et al. (1981), as well as Damour (1982). See also
Damour (1987).
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In the first expression ũμ = dzμ/dτ̃ is their 4-velocity normalized using the metric gμν (see
Section 3.2), and in the second, which is more useful for a post-Minkowski expansion, the 4-
velocity uμ = dzμ/dτ is normalized using ημν . The quantity δ4 is the Dirac delta distribution.
Finally, m and m′ are their masses (we set G = 1).

We have solved this problem in linear order in Section 14.3, where the required definitions
can be found. Let us assemble the results we have obtained. In first order in the perturbations
where gμν = ημν + γμν − 1

2γημν , we have

Tμν
1 =

∑
m

∫
δ4(x

ρ − zρ(τ))uμuνdτ , γμν
1 (xρ) =

∑
4m

uμuν



∣∣
∣
R
,

∂νγ
μν
1 =

∑
4m

(
u̇μ



)

R
.

(15.2)

Now let us analyze the basic structure of the approximation scheme.
To linearize (in Section 13.1) and then iterate (in Section 14.1) the Einstein equations

we have set g = η + γ (here = signs have only symbolic meaning). The Christoffel symbols
therefore have the form Γ = g ∂γ = (η + γ)∂γ = ∂γ + γ∂γ, and the Einstein tensor is
G = ∂Γ + ΓΓ = �γ + (∂γ)2 + γ∂2γ + O(γ3). [Its exact expression is given in (14.2).] The
energy–momentum tensor is written as T =

∑
m
∫
dτ δ4uu

(
1 + γ +O(γ2)

)
.

In first order in γ the Einstein equations G = T reduce to �γ = −
∑

m
∫
dτδ4uu,

the solution of which is γ1 = (m/r)uu, where uu is of order 1, v, or v2 depending on the
components [their exact expression is given in (15.2) or (14.21)].

At second order in γ the Einstein equations have the structure

�γ = (∂γ1)
2
+ γ1�γ1 − 4π

∑
m

∫
dτ δ4(x− z) (1 + t1) . (15.3)

[Their exact expression is given in (14.3) and (14.4), and t1 = 1
2γμνu

μuν− 1
4γ.] As the example

below shows, when the linear solution γ1 = (m/r)uu has been substituted into them, these
equations are neither defined nor integrable.2

Regularization of the field equations

Let us study the paradigmatic example (15.3) more closely. At linear order γ1 =
∑

m/R,
where R was defined in (14.14) (see also Fig. 14.1). The quadratic part splits up as γ2 = γ×

2 +γs
2,

where the cross terms and self terms must satisfy

2Taking into account the form of γ1, we however see immediately (by integrating, for example, the regular
term of order mγ1 in the first term) that the metric at second order has the form γ = γ1 + γ2, where γ2
contains terms of the type (m/r)(m/R) with R the separation of the two masses. Therefore, the metric can
contain terms of the type (m/r)v2 originating from the spatial components of γ1, as well as terms of the
type (m/r)(m/R) coming from γ2. Since v2 ∼ m/R, we again find that we need to go to second order in the
perturbations to describe the gravitational radiation of a self-gravitating body.
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�γ×
2 =

∑
mm′

(

∂μ
1

R
∂μ 1

′R
+

1

′R
�

1

R
− 4π

∫

dτδ4(x
ρ − zρ(τ))

1

′R

)

,

�γs
2 =

∑
m2

(

∂μ
1

R
∂μ 1

R
+

1

R
�

1

R
− 4π

∫

dτδ4(x
ρ − zρ(τ))

1

R

)

.

(15.4)

These equations are neither defined nor integrable without the use of a regularization procedure.
The last source term for γs

2, which comes from
∑

m
∫
dτδ4γ1, was dealt with in Book 2,

Section 10.4 when we studied the Nordström theory: we regularized the quantity δ4(x− z)/R,
which is undefined because R vanishes at x = z, by setting it equal to zero. To be consistent,
we must do the same with the penultimate term (1/R)�(1/R) because �(1/R) ∝ δ4(x− z).
The antepenultimate term, which can also be written as 1/4R in the order in which we are
working, is not integrable, but we see that if we require that the Leibniz rule hold, we will have
�(1/22R) = (1/R)�(1/R) + 1/4R = 1/4R by consistency with the previous regularizations.

The last two source terms for γ×
2 are equal and integrable. For the integration we use

(see the example of the Nordström theory in Book 2, Section 10.4 and Fig. 14.1) �(1/ρR) =
−4π

∫
dτδ4(x − z)/′R, where ρ ≡ −(zμ − ẑ′μ)û′

μ. Here ẑ′μ is the intersection of the cone with
apex at a point zμ of the world line of the body m and the world line of m′, and û′μ is
the velocity (see the compendium of definitions of retarded quantities in Section 14.3). Fi-
nally, to integrate the first source term of γ×

2 we again impose the Leibniz rule, writing it as
2∂μ(1/R)∂μ(1/′R) = �(1/(′RR))− (1/′R)�(1/R)− (1/R)�(1/′R).

In the end we find

γ2 =
∑

m2

(
1

2

)

R
+
∑

mm′
(

1

2′
+

1

ρ

)

R
. (15.5)

The lesson to be learned from this example is that an iteration scheme for the Einstein
equations must be supplemented by coherent, unambiguous rules for the regularization and
integration. At the order to which we limit ourselves here, the rather offhand Hadamard
regularization illustrated by the above example (15.4) and (15.5) is sufficient.3

Having specified the regularization rules, after integration we find in the end that the
metric describing the gravitational field of two gravitationally interacting compact bodies is,
at second order in the post-Minkowski iteration scheme, gμν = ημν + hμν , where the hμν are
related to γμν by the expansion (14.2) with γμν = γ1

μν + γ2
μν . The linear term γμν

1 was given
in (15.2), and the quadratic term is γμν

2 = γμν
2T + γμν

2s + γμν
2× with [the main definitions are

given in (14.15) and (14.16)]
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

γμν
2T = 4mm′

∑
(1 + 2w2

R)

(
uμuν

ρ

)

R
,

γμν
2s =

∑
m2

(
7uμuν + nμnν

2

)

R
,

γμν
2× = 16mm′

∑
DμνP .

(15.6)

3This is not the case at higher orders. To extract from the third iteration (of order m3) the information
needed to find the equations of motion at order mv5 ∼ m2v3/R ∼ m3v/R2 (see below), an analytic contin-
uation procedure based on the Riesz potentials must be used; see Damour (1982) and (1987). Beyond this,
dimensional regularization procedures have been shown to be the most effective; see Damour (2006), and also
Blanchet (2006).
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The first term γμν
2T is easily found: it is the retarded integral of the energy–momentum tensor

ignoring the self term proportional to δ4(x − z)/R. At the order (m2) to which we limit
ourselves here, the velocities uμ and u′μ, as well as w = (u .u′), can be assumed constant.

The second term γμν
2s is obtained just as easily when the velocities can be assumed con-

stant, because, no matter which regularization procedure is used, near each body it must
be identical to the expansion of the Schwarzschild metric (in harmonic coordinates, given in
Section 11.1) owing to the effacement principle; see the following box.

In the final term γμν
2× the quantity Dμν is a second-order differential operator whose

structure follows directly from that of τμν given in (14.4) and (14.5). It acts on the Fock
function P satisfying �P = 1/(R′R) (P itself diverges, but only its derivatives are relevant
here and they are finite); see the details in the following.

The effacement principle

General relativity shares a property with the Newton and Nordström theories: the effacement
principle, according to which the gravitational field outside a spherical body as well as the motion
of the body are independent of the internal structure of the body, and corrections due to the
presence of a distant body arise only at higher orders.

In Newtonian gravity, where the correction to the 1/r2 law is δF/F ∼ (b/R)5, with b the
radius of the bodies and R their separation (see, for example, Book 1, Section 14.3), the efface-
ment follows from Newton’s theorem stating that the field outside a spherical body is the same
as if all the mass were concentrated at the center of the body (see Book 1, Section 11.4). As we
have seen in Book 1, Sections 12.4 and 13.1, this theorem is valid only when the 1/r2 law holds
and is related to the strong equivalence principle, that is, the equality of the gravitational and
inertial masses for all bodies. This principle is itself related to the linearity of the theory; see
the example of the Nordström theory in Book 2, Section 10.4.

To paraphrase an observation made by Brillouin in 1922, in Newtonian gravitation we can
efface the contribution of the moving body to determine the force which moves it. It does not
appear evident that we can do the same in the Einstein theory when the body is an object
or point particle of finite mass.4 The validity of the effacement principle in general relativity
was proved in 1981 by Damour, who showed that corrections to the metric due to the internal
structure of compact bodies arise only at order (GM)6 (see the references cited in footnote 1).
This result therefore justifies the description of sources by ‘skeletonized’, i.e., distributional,
energy–momentum tensors.

The relativistic Fock function

Let us specify the form of the cross term γμν
2× of the metric (15.6) in the post-linear, adiabatic

approximation [that is, neglecting terms proportional to mm′u̇ of order O(m3)].
Using γμν

1 from (15.2), the source of γμν
2× is a sum of various contractions of

mm′∂ρ(u
′αu′β/′)∂σ(u

γuδ/)|R, the exact expression for which can be derived from (14.4) and
(14.5). We introduce the Fock function P formally defined as �P = 1/(R′R). P diverges, but
its derivatives DαP and D′

αP (where DαP is the variation of P when the worldline is displaced),
defined as

�DαP =

(
1

′R

)

∂α

(
1

R

)

, �D′
αP =

(
1

R

)

∂α

(
1

′R

)

, (15.7)

4Cited in Levi-Civita (1935).
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are finite (we thus have −∂α+Dα+D′
α = 0). Thus, the differential operator Dμν , whose structure

follows directly from the form of τμν given in (14.4) and (14.5), is

Dμν ≡ w2

2
D′μDν− 1

4
D′μDν+wu′μuνD′

αD
α+

1

8
ημνD′

αD
α−w2

4
ημνD′

αD
α+

w

2
ημνu′

βu
αD′

αD
β

−wu′αuνD′μDα − wu′αuμD′νDα + u′μuνu′βuαD′
αDβ − u′αu′βuμuνDαDβ .

(15.8)
The explicit expression for the function DαP is known;5 see the references cited in footnote 1.
It possesses the following properties [which can be derived from the example (15.4)]:

DαD
αP =

(
1

ρ

)

R
, D′

αD
αP =

1

2

(
1

′
− 1

ρ
− 1

′ρ′

)

R
, uαDαP = 0 .

We still must impose on the solution (15.6) the harmonic condition ∂ν(
√−ggμν) = 0 or

∂νγ
μν = 0, which, we recall, allows the Einstein equations to be written in the form (15.3)

and thus be integrated. We therefore must have ∂ν(γ
1
μν + γ2

μν) = O(m3). The derivatives of
retarded quantities are calculated using (14.15) and (14.16) and the properties (15.7) and
(15.8) of the Fock function. At the order we are working in, we can neglect the curvature
of the world lines of the bodies, that is, the terms proportional to u̇, and so on, in ∂ν(γ

2
μν).

We finally obtain the following [where we recognize the first term as ∂ν(γ
1
μν) given above

in (15.2)]:

∑ 4m

R
(u̇μ − Γμ

1 )
∣
∣
R = O(m3)

with Γμ
1 =

m′

ρ2
[
(1− 2w2)(νμ + (ν.u)uμ) + 4w(ν.u)(û′μ + wûμ)

]
.

(15.9)

We recall that u̇μ is the 4-acceleration of the body m at the point zμ of its world line, and
û′μ is the 4-velocity of the body m′ (normalized to −1 using ημν) at the retarded point ẑ′μ,
the intersection of the cone with apex at zμ and its world line L′ (however, since at the order
we are working in we can ignore terms proportional to u̇′μ, ẑ′μ can be located anywhere on
L′). Finally, w = (u.û′), ρ = −(zμ − ẑ′μ).û′

μ, and νμ = −û′μ + (zμ − ẑ′μ)/ρ.
The harmonic condition therefore imposes the equation of motion of the bodies: u̇μ =

Γμ
1 +O(m2).
Now, because of the effacement principle, this equation of motion must also follow from

the geodesic equation u̇μ = −uαuβ(Γμ
αβ+uμuρΓ

ρ
αβ), where the Γ

μ
νρ are the Christoffel symbols

or, at the order in which we are working,

5DαP is a function of the field point xμ and the associated retarded points on the world lines of the
two bodies xμ

R and x′μ
R (see Fig. 14.1). It is an integral on the world line of m′ taken from the doubly

retarded point ẑ′R associated with xμ
R to the retarded point x′μ

R . At the adiabatic order we are considering,

we can take the world line of m′ to be a straight line, that is, set u′μ
R = û′μ

R ≡ u′μ. The (somewhat

experienced) reader will find that DαP =
∫ x′

R
ẑ′R

βα

�Rβ2 with βα ≡ R′α − 	Rnα
R − nα

R
√

(R′ − nR	R)2 and

R′α ≡ (xα − z′α(τ ′) + uα
R{[xμ − z′μ(τ ′)] .uR

μ }.
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u̇μ = Γμ
1 +O(m2) with

Γμ
1 = −uαuβ

(
∂βγ

μ
α − 1

2
∂μγαβ

)
+

1

4
∂μγ + uμuα

(
1

4
∂αγ − 1

2
uβuδ∂αγβδ

)
,

(15.10)

where Γμ
1 , which diverges when evaluated on the world line of m using the metric γ1

μν , must
be regularized in accordance with the previously established rules, which amounts to ignoring
the entire contribution of the bodym to the gravitational field it creates. Then the calculation
is easy and shows that Γμ

1 derived from (15.10) is indeed the same as that given in (15.9)
originating from the harmonic condition.

Finally, it can be shown, always using the same regularization rules, that eqns (15.9) and
(15.10) are also equivalent to the conservation of the energy–momentum tensor Dν(|g|Tμν) =
0, where Tμν was given in (15.1).

In fact it is this consistency of the approximation scheme which justifies the regularization
procedures we have used.

We shall conclude this section by giving the asymptotic expression for the metric (15.6)
which we have used in Section 14.3. The self part γμν

2s , proportional to 1/r2, does not con-
tribute to the radiative field; this is not surprising since it represents the static, Schwarzschild
part of the field. Finding the radiative part of γμν

2T at lowest order in the velocities does not
pose any difficulty and is done using (14.18) and (14.19) giving the velocity expansions of
the retarded quantities. Finding the radiative part of γμν

2× requires expansion of the function
DαP , defined in (15.7) and footnote 5, in 1/r and in the velocities. At lowest order the cal-
culation gives DiP = (N i − ni)/(2r), DtP = niD

iP . Therefore, the contribution, at lowest
order in the velocities, of the second iteration to the radiative field finally turns out to be

γtt
2T =

24mm′

rR
, γtt

2× = −28mm′

rR
, γij

2× = −4mm′N iN j

rR
, (15.11)

with all the other components equal to zero. The time derivatives of these expressions were
used in the preceding chapter [see (14.27)] to show that the second quadrupole formula is
valid also for self-gravitating systems.

Finally, we note that if we assume that the velocities of the bodies are small, the expansion
of Γμ

1 in the equation of motion (15.10) (which is easily done because at the order in which
we are working the four velocities can be assumed constant) again gives the EIH equations
of motion obtained in Section 12.3 except for the terms of order (m2).

15.2 Equations of motion at 2.5 PN order

Here we shall limit ourselves to summarizing the results and indicating the steps needed to find them.

The need for a third iteration

In Section 12.3 we obtained the equations of motion of two bodies in the 1 PN approximation,
that is, in order (v2) ∼ (m) beyond Newtonian order. We recall that this required taking into
account the nonlinearity of the Einstein equations at lowest order in the velocities.

In Section 14.3 we also saw that the loss of gravitational energy of a self-gravitating system
is given by the second quadrupole formula. Finally, in Sections 12.6 and 14.3 we saw that it is
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necessary to include the radiation reaction in the equations of motion of the bodies and their
timing formulas.

As we learned from study of the motion of interacting charges using the Maxwell theory (see
Book 2, Section 20.3), the fact that this radiation is quadrupolar rather than dipolar means that
the radiation reaction will affect the motion at order (v5) beyond Newtonian order, that is, it is
a 2.5 PN-order effect:

v̇ = (m/R)(1 + v2 + v4 + v5) + (m/R)2(1 + v2 + v3) + (m/R)3(1 + v) +O(v8) .

Since terms of order m3 appear, to obtain them it is necessary to iterate the Einstein equations
to post-post-linear order, as Eddington realized in 1924.

• Step 1: Expansion of the Einstein equations: Gμν = 8πTμν

We shall choose the small parameter to be γμν = ημν −√−ggμν , and we shall work in a
system of harmonic coordinates such that ∂νγ

μν = 0. The Einstein tensor reduced using the
harmonic condition then is [see (14.1)]

2|g|Gμν = −�γμν + γαβ∂2
αβh

μν −
∑

n

Qμν
(n) if ∂νγ

μν = 0 , (15.12)

where � is the d’Alembertian in flat spacetime and Q(n) is a product of order n of the γμν

and their first derivatives; Q(2) was given in Section 14.1. The calculation of Q(3) poses no
difficulty.

The source, namely the two compact bodies whose motion we want to describe, is de-
scribed by the distributional energy–momentum tensor (15.1) which we also expand in powers
of γμν :

|g|Tμν =
∑

m

∫
dτ δ4(x− z)uμuν(1 + t(1) + t(2) + ...) . (15.13)

Here ημνu
μuν = −1, t1 was given in (15.3), and t2 is easy to calculate.

• Step 2: Integration of the Einstein equations order by order

We write γμν = γ1
μν + γ2

μν + γ3
μν and solve the Einstein equations order by order. The

linear approximation was dealt with in Section 14.1, and the post-linear approximation in
Section 15.1.

The third iteration is a very tedious calculation in the post-Minkowski scheme we are
using here, and its explicit form has not been obtained; γ3

μν depends a priori on the motion
of the sources at xR, ẑ′R, and zRR, a triply retarded point.

However, since in the end only a velocity expansion will be necessary, it is possible to
extract from it the required information,6 namely, that the corresponding harmonic condition,
of third order, equivalent to the conservation of Tμν given in (15.2), leads to the equations
of motion at order (m2), which are just the geodesic equation in the metric at second order.

6Damour (1982), and the references cited in footnote 1 of the present chapter; see also the metric (115)
at 2.5 PN order in Blanchet (2006).
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This equation of motion at post-linear order is written as

∑ 4m

R
(u̇μ − (Γμ

1 + Γμ
2 ))
∣∣
R = O(m4) , (15.14)

where Γμ
1 was given in (15.9). The expression for Γμ

2 is obtained from the metric (15.6).
It contains terms proportional to u̇′μ and a term of the form − 11

3 müi coming from the
regularization of the metric on the world line, the analog of the Abraham radiation reaction
force in electromagnetism (see Book 2, Section 19.1). Then, after these accelerations and
derivatives of acceleration are reduced using the equation of motion at linear order (15.9),
we obtain

Γμ
2 =

m′

ρ3
[(m′αs +mα×)(ν

μ + (ν.u)uμ) + (m′βs +mβ×)(û
′μ + wuμ)] (15.15)

with αs = 2(2w2 + (ν.u)2) , βs = −2w(ν.u) , and

α× = −2A−5−5wA−4+5(1−2w2)A−3+2w(3−4w2)A−2+8(w4+2w2−1)A−1

+28w(2w2 − 1) + 16(2w2 − 1)A− 12(ν.u)(2w2 − 1) lnA ,

β× = −2A−5−5wA−4−2(w2+16/3)A−3−2w(13+4w2)A−2+(4w4+40w2−1)A−1

+56w(2w2 + 1) + 176w2A+ 64wA2 + 4w[3− 2w2 + (ν.u)2] lnA ,

where the various quantities introduced were defined in Section 14.3 and A ≡ −(w + (ν.u)).
This expression7 gives an idea of the growing complexity of the calculations, and should be
compared with the exact equation of motion of two charges in the Maxwell theory obtained
in Book 2, Section 21.3. We note that at lowest order in the velocities (where A = 1 and
w = −1), the terms involving β do not contribute and αs = α× = 4.

The equation of motion (15.14) for the mass m at z (just like the equation of motion
of a charge in the Maxwell theory; see Book 2, Section 21.3) is not an ordinary differential
equation but rather a hereditary equation, because it depends on the location of the mass
m′ at the retarded time ẑ′, the intersection of the cone originating at z and the world line of
m′ (we can no longer assume that the velocities are constant in Γμ

1 ).
There exist known techniques for transforming such equations into ordinary equations

which are functions only of z′, where z′ is any point on the trajectory of m′ and is ordinarily
chosen to be simultaneous with z [zμ − z′μ = (0, RN)]. These techniques—the Lagrange
expansion of Book 2, Section 20.3 and the predictive mechanics of Book 2, Section 21.3—
were developed for dealing with retardation effects due to the finiteness of the speed of light
in electromagnetism. Bringing Γμ

1 ‘back’ to the simultaneous point z′ amounts, at lowest
order, to replacing αs = 4 by αs = 5 [as is easily seen using (21.22) of Book 2], so that Γμ

2

then reduces to

Γi
2 =

m′N i

R3
(5m′ + 4m+O(v2)) , (15.16)

which is just the order-(m2) terms of the EIH equations of motion obtained in Section 12.3.
(This result in itself is actually much ado about nothing, but it should be remembered that
we will soon need expansions in higher orders in the velocities.)

7The equations (15.14) and (15.15) were obtained by Westpfahl and Göller (1979).
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• Step 3: Expansion in the velocities and inclusion of (m3) order

Only a bit of care is needed to change over to three-dimensional notation (see Section 14.3)
and then expand the ‘predictivized’ (that is, transformed into ordinary differential equations)
equations of motion (15.14) and (15.15) in powers of the 3-velocities v. However, including
in them the contributions of the third iteration of the Einstein equations requires additional
information which can be found in the references cited in the footnotes to this chapter. The
final result is that the acceleration of the body m is given by

dvi

dt
= −Gm′

R2
N i +Ai

2 +Ai
4 +Ai

5 +O(v8) . (15.17)

The post-Newtonian term Ai
2 was obtained by Einstein, Infeld, and Hoffmann, and also by

Eddington and Clark in 1938 (also by Lorentz and Droste in 1917; see footnote 6 of Sec-
tion 12.3). As we have seen in Section 12.3, it contains terms proportional to m′v2 arising
from the linear approximation, and terms proportional to mm′ and m′2 coming from the
second iteration [given in (15.16)]. The terms Ai

4 and Ai
5 are the post-post-Newtonian cor-

rections to the equations of motion and contain terms coming from the third iteration of the
Einstein equations. The term Ai

4 is derived from the Lagrangian given below, and Ai
5 (to be

compared with its Maxwellian homologue studied in Book 2, Section 20.3) is

Ai
5 = −4mm′

5R3
V 2[V i − 3N i(N.V )]

+
mm′

R4

[(
208

15
m′ − 24

5
m

)
(N.V )N i +

(
−32

5
m′ +

8

5
m

)
V i

]
,

(15.18)

where V i = vi − v′i. The 2 PN and 2.5 PN corrections Ai
4 and Ai

5 were obtained8 in 1982.

15.3 Conservation laws and energy balance

• Definition of the mechanical energy of a system

Just as the post-Coulomb equations of motion of two charges are derived from the Darwin
Lagrangian in the Maxwell theory (see Book 2, Section 21.1), and just as the EIH equations
are derived from the Fichtenholz Lagrangian (see Section 12.4), the equations (15.17) at
2 PN order, that is, up to and excluding the term Ai

5, are also derivable from a Lagrangian,
obtained either by expanding the action of a free particle (because the motion of the bodies
is geodesic motion) or, more simply, by identification. It depends not only on the positions
and velocities of the sources, but also on their accelerations ai, a residue of the hereditary
nature of the equations of motion. It is written as

L =
∑(

1

2
mv2 +

mm′

2R

)
+ L2 + L4 +O(v8) , (15.19)

where Ri ≡ RN i = zi(t)− z′i(t), L2 is the Fichtenholz Lagrangian obtained in Section 12.3,
and the explicit expression for L4 is

8Damour and Deruelle (1981); Damour (1982a).
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L4 =
1

16
mv6

+
mm′

R

[
7

8
v4 +

15

16
v2v′2 − 2v2(v.v′) +

1

8
(v.v′)2 − 7

8
(N.v)2v′2

+
3

4
(N.v)(N.v′)(v.v′) +

3

16
(N.v)2(Nv′)2

]

+
m2m′

R2

[
1

4
v2 +

7

4
v′2 − 7

4
(v.v′) +

7

2
(N.v)2 +

1

2
(N.v′)2 − 7

2
(N.v)(N.v′)

]

+mm′
[
(N.a)

{
7

8
v′2 − 1

8
(N.v′)2

}
− 7

4
(v′.a)(N.v′)

]

+
m2m′

R3

[
1

2
m+

19

8
m′
]

+m → m′ .

(15.20)

[It should be noted that only the last term (19m2m′2/(8R3)) requires information about
the third iteration.] This Lagrangian depends on the accelerations of the bodies, and the
Euler–Lagrange equations are (see Book 1, Section 8.1)

Fi ≡ ṗi −
∂L

∂zi
= O(v7) with pi ≡

∂L

∂vi
− dqi

dt
and qi =

∂L

∂ai
, (15.21)

and again give the equations of motion (15.17), including the explicit expression for Ai
4

(excluding the term Ai
5).

Owing to the Noether theorem, we then obtain the following as in Section 12.4, but now
at 2.5 PN order:

dPi

dt
=
∑

Fi , where Pi=
∑

pi ,

dJi
dt

=
∑

εijkz
jF k , where Ji = εijk

∑
(zjpk + vjqk) ,

dE

dt
=
∑

Fiv
i , where E =

∑
(piv

i + qia
i)− L .

(15.22)

When the equations of motion (15.21) are satisfied, that is F i = 0, we find that the mo-
mentum Pi, the angular momentum Ji, and the energy E of the system are constants of the
motion.

• Radiative losses

At 2.5 PN order the force F i is no longer zero, F i = mAi
5, and the system loses energy. If

we work in the center-of-mass system (which is Newtonian at this order), using V i = vi− v′i

and mT = m+m′ we have

dE

dt
= −8(mm′)2

5mT

d

dt

[
V 2(N.V )

R2

]
− 8(mm′)2

15R4

[
12V 2 − 11(N.V )2

]
. (15.23)
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The first term, which comes from the second iteration of the Einstein equations, is a total
derivative. Its integral over the Newtonian motion, which is periodic, does not contribute.
The second term comes entirely from the third iteration. Therefore, the mechanical energy
lost by the system is

E = −
∫ T

0

dt
8(mm′)2

15R4

[
12V 2 − 11(N.V )2

]
= − G

45c5

∫ T

0

dt

(
d3Qij

dt3

)2

, (15.24)

where Qij = Σm
(
3zizj − δijz

2
)
is the quadrupole moment of the system. In this expression

we recognize the second quadrupole formula (14.29) giving the energy radiated to infinity
in the form of gravitational waves. An energy balance is therefore established between the
radiated energy and the mechanical energy which is lost.

Let us summarize what we have found. The study of the gravitational field carried out in
the present chapter at post-linear order has, first of all, allowed us to completely justify the
validity of the second quadrupole formula giving the energy radiated by a self-gravitating
system. In addition, study of the motion of the bodies has allowed us, on the one hand, to
justify the regularization procedures used to obtain the EIH equations and, on the other,
to find the effect of the reaction force on the motion by including the relevant contribu-
tions of the third iteration. This force leads to a loss of mechanical energy which we have
shown to be equal to the radiated energy. It results in a contraction of the relative orbit
of the two bodies and a time delay in the return to the periastron, as we anticipated in
Section 14.3.

The binary pulsar PSR 1913+16

In 1974 Hulse and Taylor discovered the pulsar PSR 1913+16 using the Arecibo radio tele-
scope in Puerto Rico. This pulsar is a rotating neutron star which emits a radio beam with a
period of 59 ms. The pulse arrival times display quasi-periodic fluctuations which suggest that
it is orbiting an invisible companion. Analysis of the data immediately revealed that it is a very
compact system consisting of two objects, each a few kilometers in diameter, taking about 8
hours to complete an orbit which would be entirely contained in the interior of the Sun. It is
therefore an ideal laboratory for testing theories of gravity. As we saw in Section 12.6, measure-
ment of the advance of the periastron (∼ 4 degrees per year, to be compared with the advance
of 43 arcseconds per century of the perihelion of Mercury) combined with measurement of the
‘Einstein effect’ then allows the masses of the objects to be determined: they are of order 1.4M�
each; see Fig. 15.1 below. After making an even more accurate measurement of the arrival times,
Taylor announced in 1979 that he had measured a delay of the return to the periastron, signaling
the loss of energy due to the emission of gravitational waves.

The fit to the measured arrival times is in perfect agreement with the results of the timing
analysis based on general relativity,9 described above in Sections 12.6 and 14.3. In Fig. 15.1 the
intersection of the line Δω = Δω(mc,me) and the curve γ = γ(mc,me) gives the masses of the

two bodies. The intersection, at the same point, of the curve (thick line) Ṗb = Ṗb(mc,me) [the
explicit expression for which is given in (14.32)] is the first confirmation of general relativity
in the strong-field limit, and the first proof of the existence of gravitational waves. This delay
of the return to the periastron is currently measured with an accuracy of ∼10−2, which requires
the orbital elements to be known with an accuracy of 10−6.

9Damour and Taylor (1992).
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Fig. 15.1 PSR1913+16.

Hulse and Taylor were awarded the Nobel Prize in Physics in 1993 for their discovery of
gravitational waves.10

10Since 1974, other systems of binary pulsars where general relativity can be tested have been discovered.
The observational situation is reviewed in, for example, Kramer (2012). A review of the two-body problem
pushed to the accuracy required for experiments to detect gravitational waves (order 1/c7 beyond the 2.5 PN
approximation) can be found in, for example, Blanchet (2006).

See also the ‘effective one-body approach’ of Damour et al. in Buonanno and Damour (1999), and the
discussion of current developments in Bini and Damour (2012), see also Chapter 16.

Finally, the approaches using numerical relativity are discussed in, for example, Grandclément and Novak
(2009) and Baumgarte and Shapiro (2010).

All these developments were required to extract the gravitational wave signals GW150914 and those which
followed from the LIGO/Virgo data and show that they were produced by the coalescence of black holes or
neutron stars.

B
o
o
k
3



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 574 — #586

16

The two-body problem: an
effective-one-body approach
Written in collaboration with Félix-Louis Julié

In this chapter we present the basics of the ‘effective-one-body’ approach to the two-body problem
in general relativity and show that the 2PN equations of motion can be mapped, by means of
an appropriate canonical transformation, to a geodesic motion in a static, spherically symmetric
spacetime, thus considerably simplifying the dynamics. Then, including the 2.5PN radiation reaction
force in the (resummed) equations of motion, we give the waveform (that is, the time dependence
of the radiative field) during the inspiral, merger, and ringdown phases of the coalescence of two
non-spinning black holes into a final Kerr black hole. We also comment on the current developments
of this approach, which is instrumental in building the libraries of waveform templates that are
needed to analyze the data collected by the current gravitational wave detectors.

16.1 The 2PN Hamiltonian

The two-body Lagrangian which describes the conservative part of the dynamics at 2PN
order has been derived in harmonic coordinates in the previous chapter; see (15.20). Here we
shall denote the positions, velocities, and accelerations by capital letters, Zi(t)−Z ′i(t) = RN i

with (N.N) = 1, V i = dZi

dt , A
i = dV i

dt , and we recall the expression for this Lagrangian:

L = −(m+m′) +
1

2
mV 2 +

1

2
m′V ′2 +

mm′

R
+ L2 + L4 +O(V 8) ,

L2 =
1

8
mV 4 +

1

8
m′V ′4 +

mm′

2R

[
3(V 2 + V ′2)− 7(V.V ′)− (N.V )(N.V ′)

]
− mm′(m+m′)

2R2
,

L4 =
1

16
mV 6 +

mm′

R

[
7

8
V 4 +

15

16
V 2V ′2 − 2V 2(V.V ′) +

1

8
(V.V ′)2 (16.1)

−7

8
(N.V )2V ′2 +

3

4
(N.V )(N.V ′)(V.V ′) +

3

16
(N.V )2(N.V ′)2

]

+
m2m′

R2

[
1

4
V 2 +

7

4
V ′2 − 7

4
(V.V ′) +

7

2
(N.V )2 +

1

2
(N.V ′)2 − 7

2
(N.V )(N.V ′)

]

+mm′
[
(N.A)

(
7

8
V 2 − 1

8
(N.V ′)2

)
− 7

4
(V ′.A)(N.V ′)

]

+
m2m′

R3

[
1

2
m+

19

8
m′
]
+ (m ↔ m′) .

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 575 — #587

Chapter 16: The two-body problem: an effective-one-body approach 575

The Fokker Lagrangian

The two-body Lagrangian (16.1) can be derived in various ways. In Section 12.3 we built
it from a symmetrized free-particle action (à la Fichtenholz), and in Section 15.3 we inferred it
from the equations of motion obtained earlier. A third option, initiated by A. Fokker in 1929
and applied to general relativity by L. Infeld and J. Plebanski in 1960 (which we used in Book
2, Section 20.2 to obtain the Darwin Lagrangian for electromagnetism) consists in starting from
the total action describing gravitational and matter fields:

S[gμν ,Ψ] = Sg[gμν ] + Sm[gμν ,Ψ] .

Here the Einstein–Hilbert action for gravity Sg[gμν ] is written ‘à la Einstein’, that is, up to
a boundary term [see (5.20)], and includes a ‘gauge fixing term’ when working in harmonic
coordinates:

Sg[gμν ] =
1

16π

∫ √
−g

[

gμν
(
Γλ
μρΓ

ρ
νλ − Γρ

μνΓ
λ
ρλ

)
− 1

2
gμνΓ

μΓν

]

, where Γμ ≡ gνρΓμ
νρ .

As for the matter action, for point particles it reads as Sm[gμν ,Ψ] = −
∑

m
∫√

−gμνdxμdxν .
The ‘Fokker’ action is

SF[Ψ] ≡ Sg[ḡμν [Ψ]] + Sm[ḡμν [Ψ],Ψ] ,

where ḡμν [Ψ] is a solution of Einstein’s equations δS/δgμν = 0 to the desired post-Newtonian
order. In the case of point particles, the action SF =

∫
LF[Z(t), Z ′(t)] dt, where LF is the Fokker

Lagrangian, depends only on the trajectories of the bodies. The extremization of SF[Ψ] with
respect to the matter fields Ψ yields, at least formally, the matter equations of motion δS/δΨ = 0,
because

δSF[Ψ]

δΨ
=

δḡ[Ψ]

δΨ

(
δS

δg

)

g=ḡ

+

(
δS

δΨ

)

g=ḡ

,

where the first term vanishes when ḡμν [Ψ] is a solution of the field equations δS/δg = 0. After
proper regularization, this method gives back (16.1).1

The Lagrangian (16.1) depends on positions, velocities, and, linearly, on accelerations.
Let us add to it a 2PN total time derivative,

L → Lf = L+
df

dt
, (16.2)

where f is the generic function

f

mm′ = (f1V
2 + f2V.V

′ + f3V
′2)(N.V )− (f4V

2 + f5V.V
′ + f6V

′2)(N.V ′)

+ f7(N.V )3 + f8(N.V )2(N.V ′)− f9(N.V ′)2(N.V )

− f10(N.V ′)3 + f11

(
m

R

)
(N.V ) + f12

(
m′

R

)
(N.V )

− f13

(
m

R

)
(N.V ′)− f14

(
m′

R

)
(N.V ′) , (16.3)

1For a detailed presentation of the Fokker action through 4PN, see Bernard et al. (2016) together with
Damour, Jaranowski, and Schäfer (2016).
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depending on 14 parameters fi. This total derivative generates a 2PN boundary term in the
action that does not affect the equations of motion, which remain unchanged.

In order to reduce Lf to an ‘ordinary’ Lagrangian depending only on positions and
velocities, one may ‘naively’ replace the accelerations by their leading order, that is, their
Newtonian, on-shell expressions2:

Lf → Lred
f = Lf

(
Ai → −m′

R2
N i , A′i → m

R2
N i

)
. (16.4)

The equations of motion derived from Lred
f do differ from the ones derived from Lf (i.e.,

from L) at the 2PN level. However, the dynamics is unchanged. The reason is that the
reduction (16.4) amounts in fact to implicitly switching from the harmonic coordinates to
new ones, defined, as can be checked, by the 2PN-level, f -dependent, contact transformation
Y i = Zi + δZi, Y ′i = Z ′i + δZ ′i:

δZi =
m′

8

[
14V ′i(N.V ′)−N i

(
7V ′2 − (N.V ′)2

)]

−m′[2V i
(
f1(N.V )−f4(N.V ′)

)
+V ′i(f2(N.V )−f5(N.V ′)

)]
−m′N i

R
(mf11+m′f12)

−m′N i
[
f1V

2+f2(V.V
′)+f3V

′2 + 3f7(N.V )2+2f8(N.V )(N.V ′)−f9(N.V ′)2
]
,

δZ ′i =
m

8

[
−14V i(N.V ) +N i

(
7V 2 − (N.V )2

)]

−m
[
V i
(
f2(N.V )−f5(N.V ′)

)
+2V ′i(f3(N.V )−f6(N.V ′)

)]
+
mN i

R
(mf13+m′f14)

+mN i
[
f4V

2+f5(V.V
′)+f6V

′2−f8(N.V )2+2f9(N.V )(N.V ′)+3f10(N.V ′)2
]
.

We thus now have at our disposal an entire class of ordinary Lagrangians Lred
f (depending

on the 14 parameters fi), each one corresponding to a specific choice of coordinate system.
The harmonic-coordinate, acceleration-dependent Lagrangians (16.2) do not belong to this
class. The Arnowitt–Deser–Misner (ADM) coordinates (see Section 4.5) turn out to corre-
spond to the choice (the other fi being zero)

f3 = f4 = −1

4
, f12 = f13 =

1

4
, f11 = f14 =

7

4
. (16.5)

Now that the accelerations (Ai, A′i) have been eliminated, it is a straightforward exercise
to derive the associated class of Hamiltonians (see Book 1, Section 9.1):

P i =
∂Lred

f

∂V i
, P ′i =

∂Lred
f

∂V ′i , H = P.V + P ′.V ′ − Lred
f .

In the center-of-mass frame where P i + P ′i = 0 (see Section 12.4), the conjugate variables
are Ri = Zi −Z ′i and P i. The relative motion lies in the equatorial section and is described
using polar coordinates (R,Φ), with conjugate momenta PR = (N.P ), PΦ = R(N ∧ P )z,

2This reduction was done by Ohta et al. in 1973–74, and shown to be correct when Schäfer (1984)
and Damour and Schäfer (1985) realized that it implies a coordinate change. For details see Damour and
Schäfer (1991).
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and from now on we use the notation (Q,P ) = (R,Φ;PR, PΦ). Introducing the dimensionless
quantities

P̂ 2 = P̂ 2
R +

P̂ 2
Φ

R̂2
, P̂R =

PR

μ
, P̂Φ =

PΦ

μM
, R̂ =

R

M
,

M = m+m′ , μ =
mm′

M
, ν =

μ

M
,

we see that the two-body Hamiltonians H

H −M

μ
=

(
P̂ 2

2
− hN

R̂

)

+ Ĥ1PN + Ĥ2PN + · · · (16.6)

depend, generically, on 17 coefficients:

Ĥ1PN =
(
h1PN
1 P̂ 4 + h1PN

2 P̂ 2P̂ 2
R + h1PN

3 P̂ 4
R

)
+

1

R̂

(
h1PN
4 P̂ 2 + h1PN

5 P̂ 2
R

)
+

h1PN
6

R̂2
,

Ĥ2PN =
(
h2PN
1 P̂ 6 + h2PN

2 P̂ 4P̂ 2
R + h2PN

3 P̂ 2P̂ 4
R + h2PN

4 P̂ 6
R

)
(16.7)

+
1

R̂

(
h2PN
5 P̂ 4 + h2PN

6 P̂ 2
RP̂

2 + h2PN
7 P̂ 4

R

)
+

1

R̂2

(
h2PN
8 P̂ 2 + h2PN

9 P̂ 2
R

)
+

h2PN
10

R̂3
.

In general relativity, the seven coefficients hN and h1PN
i are found to be

hN = 1 ,

h1PN
1 = −1

8
(1− 3ν) , h1PN

2 = h1PN
3 = 0 , (16.8)

h1PN
4 = −1

2
(3 + ν) , h1PN

5 = −1

2
ν , h1PN

6 =
1

2
.

At the 2PN level the coefficients h2PN
i depend on the 14 parameters fi, i.e., on the coordinate

systems introduced in (16.2) and (16.3). In general relativity, and in the ADM coordinates
defined in (16.5), for example, they are

h2PN
1 =

1

16

(
1− 5ν + 5ν2

)
, h2PN

2 = h2PN
3 = h2PN

4 = 0 ,

h2PN
5 =

1

8
(5− 20ν − 3ν2) , h2PN

6 = −ν2

4
, h2PN

7 = −3

8
ν2 , (16.9)

h2PN
8 =

5

2
+ 4ν , h2PN

9 =
3

2
ν , h2PN

10 = −1

4
(1 + 3ν) .

The equations of motion derived from the Hamiltonians (16.6) et seq. through Hamilton’s
equations (dQ/dt = ∂H/∂P , dP/dt = −∂H/∂Q) are strictly equivalent to those which can
be obtained from the 2PN Lagrangian (16.1) after proper change of the coordinates given
in (16.5).3

3This 2PN Hamiltonian was first obtained by Schäfer in 1985 and is currently known to 4PN order; see
Damour, Jaranowski and Schäfer (2014).
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16.2 The equations of motion of a test particle in a SSS metric

In view of the mapping to come of the two-body dynamics to that of a test particle in the
field of an effective single body, let us here consider a static, spherically symmetric (SSS)
metric in the equatorial section, written in Schwarzschild–Droste coordinates (te, r, φ) as

ds2e = −A(r) dt2e +B(r) dr2 + r2dφ2 , (16.10)

where the subscript ‘e’ stands for ‘effective’.
The action of a test particle in the metric (16.10), of mass μ which we shall identify as

the two-body reduced mass, that is, μ = mm′/(m+m′), is (see Section 3.1)

Se =

∫
Le dte = −μ

∫ √

−ds2e
dt2e

dte ,

so that Le = −μ

√
A−B ṙ2e − r2φ̇2

e with ṙe =
dr

dte
, φ̇e =

dφ

dte
.

The conjugate momenta (pr, pφ) of (r, φ) and the Hamiltonian He are defined as (see Book 1,
Chapter 9)

pr =
∂Le

∂ṙe
, pφ =

∂Le

∂φ̇e

, He = pr ṙe + pφφ̇e − Le ,

so that
He

μ
=

√√√√A(r)

(

1 +
p̂2r

B(r)
+

p̂2φ
r̂2

)

, (16.11)

where r̂ =
r

M
, p̂r =

pr
μ

, p̂φ =
pφ
μM

, p̂2 = p̂2r +
p̂2φ
r̂2

,

M being a mass which we will identify as the two-body total mass, that is, M = m+m′.
If we restrict our attention to the dynamics of the particle at 2PN order only, the metric

potentials A(r) and B(r) can be expanded as

A(r) = 1 +
a1
r̂

+
a2
r̂2

+
a3
r̂3

+ · · · , B(r) = 1 +
b1
r̂

+
b2
r̂2

+ · · · , (16.12)

where a1, a2, a3, b1, and b2 are five dimensionless coefficients characterizing the effective SSS
spacetime at that order. The 2PN effective Hamiltonian then becomes

He

μ
− 1 = ĤN

e + Ĥ1PN
e + Ĥ2PN

e + · · · (16.13)

where ĤN
e =

p̂2

2
+

a1
2r̂

, Ĥ1PN
e = − p̂4

8
− b1

p̂2r
2r̂

+ a1
p̂2

4r̂
+

a2 − a21/4

2r̂2
,

Ĥ2PN
e =

p̂6

16
− p̂2(a1p̂

2−4b1p̂
2
r)

16r̂
+

(4a2−a21)p̂
2 + 4(2b21−2b2−a1b1)p̂

2
r

16r̂2
+

a31−4a1a2+8a3
16r̂3

.

The Hamilton equations of motion derived from (16.11), dq/dte = ∂He/∂p and dp/dte =
−∂He/∂q with q = (r, φ) and p = (pr, pφ), give back the geodesic equation and its first
integrals obtained in Section 11.2:
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He = μE , p̂φ = j ,
dφ

dte
=

j

ME
Au2 ,

(
dr

dte

)2

=
A

BE2
F (u) ,

where F (u) = E2 −A(u)
(
ε+ j2u2

)
with u =

M

r
,

and where E and j are the (dimensionless) energy and angular momentum of the particle
(and ε = 1 or ε = 0 for time-like or null geodesics).

Circular time-like orbits are such that the radial velocity vanishes, F = 0, while circularity
also requires F ′ = 0, where F ′ = dF/du. Hence j2 and E are related to u by

j2(u) = − A′

(Au2)′
, E(u) = A

√
2u

(Au2)′
. (16.14)

The innermost stable circular orbit (ISCO) requires the third (inflection point) condition
F ′′ = 0, and its position, uISCO, is the root of the equation

A′′

A′ =
(Au2)′′

(Au2)′
. (16.15)

As for the position uLR of the null circular orbit, or ‘light ring’, it is determined by the
conditions Fε=0 = E2 − j2Au2 = 0 and dF/du|ε=0 = 0, and hence is given by the root of the
equation

(Au2)′ = 0 . (16.16)

This equation also gives the position of a circular time-like geodesic whose angular momen-
tum formally goes to infinity. Note that in the Schwarzschild–Droste coordinates used here,
circular orbits are described by the function A(u) only, given in terms of three coefficients
a1, a2, a3 at 2PN order; see (16.12).

16.3 The EOB mapping

In Section 16.1 we obtained a class of two-body (center-of-mass) Hamiltonians H(Q,P ) depending

on 17 coefficients hNPN
i at 2PN order [see (16.6) et seq.]. We contrasted them with a much simpler

effective Hamiltonian He(q, p) depending on five coefficients ai, bi at 2PN order, which describes the

geodesic motion of a test particle in an effective static and spherically symmetric metric; see (16.13).

The ‘effective-one-body’ (EOB) mapping, proposed by Buonanno and Damour in 1998, consists

in relating the two approaches by means of a canonical transformation together with a functional

relation He = fEOB(H) between their Hamiltonians.4

• The canonical transformation

The first step of the mapping procedure is to relate the phase space coordinates (Q,P )
of the two-body Hamiltonian H(Q,P ) to those, (q, p), of the effective Hamiltonian He(q, p)
by means of a canonical transformation.

4See Buonanno and Damour (1999).
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Recalling that (Q,P ) = (R,Φ;PR, PΦ) and (q, p) = (r, φ; pr, pφ), the canonical trans-
formation is defined by a time-independent function (since the Hamiltonians are conserva-
tive) F (q,Q) which shifts the two-body Lagrangian by the total derivative Lred

f (Q, Q̇) =
L′(q, q̇) + dF/dt and H ′(q, p) = H(Q,P ) (see Book 1, Section 9.2):

L′dt+ dF = (pr dr + pφ dφ−Hdt) + dF = PR dR+ PΦ dΦ−Hdt ,

and so dF = PR dR+ PΦ dΦ− (pr dr + pφ dφ) .

To avoid cumbersome algebra we shall instead consider the generating function G(Q, p) such
that

G = F + (pr r + pφ φ)− (pr R+ pφ Φ) ,

so that dG = dR (PR − pr) + dΦ(PΦ − pφ) + dpr (r −R) + dpφ (φ− Φ) ,

which yields the canonical transformation relating (q, P ) to (Q, p):

r(Q, p) = R+
∂G

∂pr
, φ(Q, p) = Φ +

∂G

∂pφ
, PR(Q, p) = pr +

∂G

∂R
, PΦ(Q, p) = pφ +

∂G

∂Φ
.

(16.17)
The generic ansatz for G, which generates 1PN and 2PN phase coordinate changes, depends
on 9 parameters5:

G(Q, p)

μM
=R̂p̂r

[(
α1P2+β1p̂

2
r+

γ1

R̂

)
+

(
α2P4+β2P2p̂2r+γ2p̂

4
r+δ2

P2

R̂
+ε2

p̂2r

R̂
+

η2

R̂2

)
+· · ·

]
,

(16.18)
where we have (re)introduced the dimensionless quantities

P2 = p̂2r +
p̂2φ

R̂2
, R̂ ≡ R

M
, p̂r ≡ pr

μ
, p̂φ ≡ pφ

μM
, M = m+m′, μ =

mm′

M
, ν =

μ

M
.

This generating function does not depend on Φ (by isotropy), and so PΦ = pφ; see (16.17).
Note also that for circular orbits for which pr = 0 ⇔ PR = 0, we have φ = Φ and hence only
the radial coordinates differ (but are both constant, because pφ is then constant on shell).

The two-body Hamiltonian (16.6) et seq. is thus canonically transformed, H(Q, p) ≡
H(Q,P (Q, p)), using the last two relations in (16.17) (the use of G instead of F avoids
having to perform inversions) and is of the form (its explicit expression is easily worked out)

H(Q, p)−M

μ
=

(
P2

2
− hN

R̂

)
+ Ĥ1PN + Ĥ2PN + · · · , (16.19)

where hN = 1 [see (16.8)], and where the 16 remaining coefficients appearing in Ĥ1PN

and Ĥ2PN depend on the 14 parameters fi introduced in (16.3) and on the 9 param-
eters entering the canonical transformation (16.18). Similarly, the effective Hamiltonian

5We already know from Newton’s theory that when written in the center-of-mass frame, the Newtonian
two-body and effective-one-body Hamiltonians are identical.
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He(Q, p) ≡ He(q(Q, p), p) (16.13) is transformed as follows using the first two relations in
(16.17):

He(Q, p)

μ
− 1 =

(
P2

2
+

a1

2R̂

)
+ Ĥ1PN

e + Ĥ2PN
e + · · · , (16.20)

where Ĥ1PN
e and Ĥ2PN

e depend on the 5 coefficients (a1, a2, a3, b1, b2) entering the effective
metric coefficients at 2PN order [see (16.12)], as well as on the 9 parameters of the canonical
transformation (16.18), and are also easily worked out.

• The functional relation

Now that we have expressed the two-body and effective Hamiltonians H and He in the
same coordinate system (Q, p) [see (16.19)–(16.20)], the EOB mapping requires as a second
step the imposition of a functional relation between them, He = fEOB(H), which at 2PN
order will yield the desired relations between the five coefficients (ai, bi) entering He and
the 17 coefficients hNPN

i entering H.
This functional relation can a priori be expanded as follows, subtracting the rest-mass

constants:

He(Q, p)

μ
− 1=

(
H(Q, p)−M

μ

)[

1+
ν̄1
2

(
H(Q, p)−M

μ

)
+ν̄2

(
H(Q, p)−M

μ

)2

+· · ·
]

,

with the (mass-shifted) Hamiltonians being identical at Newtonian order [which already
yields a1 = −2hN = −2, as can be seen from (16.19) and (16.20)]. Now, as has been proven
up to 4PN in general relativity and even at all orders within a post-Minkowskian scheme,
the relation must be quadratic at all orders with ν̄1 = ν = μ/M and ν̄2 = 0 · · ·. That is, it
must be6:

He(Q, p)

μ
− 1 =

(
H(Q, p)−M

μ

)[
1 +

ν

2

(
H(Q, p)−M

μ

)]
. (16.21)

This functional relation is not guaranteed to hold a priori. Indeed, the generic 2PN Hamil-
tonians written in terms of the 17 coefficients hNPN

i [see (16.6)] may now be considered as
describing the two-body dynamics (in various coordinate systems parametrized by the 14
fi) for an arbitrary theory (e.g., general relativity), which must be related to an effective
Hamiltonian depending on 5 coefficients (ai, bi) [see (16.12)] by means of a canonical trans-
formation depending on 9 parameters (16.18). We therefore expect 17− 5− 9 = 3 conditions
on the hNPN

i coefficients.
No condition arises at Newtonian order. At 1PN order it turns out that an effective

Hamiltonian He can be constructed provided that the coefficients h1PN
i (which do not depend

on the fi) satisfy
2h1PN

2 + 3h1PN
3 = 0 .

6See Damour (2016a). It should be noted that at 1PN order one can choose ν̄1 = 0 (which then yields
a2 = −ν/4 and b1 = (8 − ν)/4 and the effective Eddington parameters γ = 1 − ν/8, β = 1 − ν/4).
This shows that the two-body post-Keplerian orbits, which depend on three eccentricities [see (12.34) and
(12.35)], can be transformed into the post-Keplerian orbits of a test particle in a SSS metric, which depend
only on two eccentricities [see (11.36) and (11.37)], by means of a (1PN) canonical transformation (16.17)
[with α1 = −3ν/8, β1 = 0, and γ1 = (8 + ν)/8], where the (mass-shifted) Hamiltonians are identical at
1PN-Newtonian order inclusive.
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Any theory (such as general relativity) for which the purely kinematical terms in the La-
grangian take the Lorentz-invariant form m

√
1− V 2 +m′√1− V ′2 will have h1PN

2 = 0 and
h1PN
3 = 0. This condition is therefore not restrictive. At 2PN order, the coefficients h2PN

i

depend on the 14 parameters fi, and the identification requires two further conditions. The
first,

h2PN
4 = − 2

45

(
12h2PN

2 + 18h2PN
3 + (h1PN

2 )2
)
,

is no more restrictive than the 1PN condition, for the same reason. However, the second
condition,

h2PN
1 +

7

3
h2PN
2 + h2PN

3 + h2PN
5 + h2PN

6 + h2PN
7 =

hN

128
(5 + 2ν + 5ν2)

−1

8
(1 + ν)

(
(3h1PN

1 + h1PN
2 )hN + h1PN

4 + h1PN
5

)
+

5

2
h1PN
1

(
7h1PN

1 hN + 2(h1PN
4 + h1PN

5 )
)

(16.22)

+
1

6
h1PN
2

(
13h1PN

2 hN + 10(h1PN
4 + h1PN

5 )
)
+

35

3
h1PN
1 h1PN

2 hN ,

is restrictive, and the mapping of the two-body motion to an effective geodesic is possible
for a subclass of theories only.

In general relativity, it can be checked that the coefficients h2PN
i [given, for example, in

(16.8)–(16.9) when using ADM coordinates] do satisfy the condition (16.22) whatever the
values of the 14 parameters fi, that is, independently of the coordinate system in which the
two-body Hamiltonian has been written, as required by the invariance of general relativity
under diffeomorphisms.7

• The effective metric

Now inserting in the left-hand side of the functional relation (16.21) the explicit ex-
pressions for the coefficients hNPN

i of the two-body Hamiltonians H (16.19) obtained in
Section 16.1 [see (16.6) et seq.] and, in the right-hand side, the explicit expression for the
effective Hamiltonian He (16.20) obtained in Section 16.2 [see (16.13)], the term-by-term
identification yields a unique solution for the five coefficients ai and bi entering into He and
therefore the effective SSS metric:

ds2e = −A(r) dt2e +B(r) dr2 + r2dφ2 ,

A(r) = 1 +
a1
r̂

+
a2
r̂2

+
a3
r̂3

, B(r) = 1 +
b1
r̂

+
b2
r̂2

with r̂ =
r

M
, (16.23)

7The relation (16.22) also holds for scalar–tensor theories; see Julié and Deruelle (2017). In contrast, it is
not satisfied by Maxwell’s theory at second post-Coulombian order; see Buonanno (2000).

It is a straightforward exercise to extend the identification between generic two-body and effective Hamil-
tonians at 3PN or higher orders. One then sees that the identification at 3PN order [when imposing the
quadratic relation (16.21) between the 2PN and effective Hamiltonians] requires a further condition which
turns out not to be satisfied by general relativity. Therefore, the mapping of the two-body motion then has
to be extended to a forced motion of a test particle in a SSS metric; see Damour, Jaranowski, and Schäfer
(2000).
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where a1 = −2 , a2 = 0 , a3 = 2ν , b1 = 2 , b2 = 2(2− 3ν) with ν =
mm′

M2
.

The simplicity of (16.23) is striking, since geodesic motion in this metric encompasses all the
dynamics of the two-body problem at 2PN order. In particular, the 14 parameters fi which
parametrize the family of two-body ordinary, reduced Lagrangians at 2PN order [see (16.2)]
are hidden in the canonical transformation (16.18), whose coefficients are found to be

α1 = −ν

2
, β1 = 0 , γ1 = 1 +

ν

2
, α2 =

1

8
(1− ν)ν , β2 = 0 , γ2 =

ν2

2
,

δ2 = f6
m

M
+ f1

m′

M
− ν

(
f1 + f6 + (−f3 + f5 + f6)

m

M
+ (f1 + f2 − f4)

m′

M
− 3

2
+

ν

8

)
,

ε2 = −ν2

8
+ f10

m

M
+ f7

m′

M
− ν

(
f7 + f10 + (f9 + f10)

m

M
+ (f7 + f8)

m′

M

)
,

η2 =
ν

4
(−19 + ν) + f13

m

M
+ f12

m′

M
+ ν(f11 − f12 − f13 + f14) .

16.4 The EOB Hamiltonian and the resummed dynamics

Now that He and the associated effective metric (16.23) have been constructed, we can invert
the quadratic relation (16.21) to define an exact ‘EOB Hamiltonian’, which is a resummed
version of the two-body Hamiltonian H and coincides, at 2PN, with its 2PN expansion given
in (16.6) et seq. It reads [in the (q, p) phase-space coordinates of the effective problem and
returning to dimensional coordinates] as

HEOB = M

√

1 + 2ν

(
He

μ
− 1

)
with

He

μ
=

√√√
√A

(

1 +
p2r
μ2B

+
p2φ
μ2r2

)

, (16.24)

where A(r) and B(r) are given in (16.23) and are now considered to be exact. (We again
recall that M = m+m′, μ = mm′/M , and ν = μ/M .)

As an illustration of the resummed dynamics defined by HEOB, let us focus on the ISCO
and light-ring orbital frequency ΩISCO = (dΦ/dt)|ISCO and ΩLR = (dΦ/dt)|LR of the relative
motion of the two bodies.8

From Hamilton’s equations we have

Ω =
∂HEOB

∂PΦ
with Ω =

dΦ

dt
, that is, Ω =

1
√
1 + 2ν(E − 1)

∂He

∂pφ
,

where E is the energy per unit mass of the effective test particle and PΦ = pφ because the
generating function G does not depend on Φ; moreover, Φ = φ for circular orbits [see the
remark below (16.3)]. Therefore,

8In the standard post-Newtonian approach they are given by ΩPN = ∂H/∂PΦ, where H is the 2PN
Hamiltonian (16.6) et seq. which depends on the 17 coefficients hNPN

i . The analysis was performed in 1993
by Kidder, Will, and Wiseman (within the Lagrangian formalism and in harmonic coordinates) and by Wex
and Schäfer (within the Hamiltonian formalism) and shown to lack robustness.
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Ωcirc=
ωcirc√

1 + 2ν(E − 1)
with ωcirc=

∂He

∂pφ
, that is, Mωcirc=

j

E
Au2,

where u = M
r and the dimensionless angular momentum j and energy E of the effective test

particle are given by E = A
√

2u/(Au2)′ and j2 = −A′/(Au2)′; see (16.14).9 Now, at 2PN
order the metric potential is A = 1− 2u+ 2νu3 [see (16.23)], so that

E =
1− 2u+ 2νu3

√
1− 3u+ 5νu3

, j2 =
1− 3νu2

u(1− 3u+ 5νu3)
, and MΩcirc =

u3/2
√
1− 3νu2

√
1 + 2ν(E − 1)

.

(16.25)
The ISCO and light-ring positions uISCO and uLR satisfy A′′/A′ = (Au2)′′/(Au2)′ and
(Au2)′=0, respectively [see (16.15)–(16.16)], and therefore are the outermost roots of

1− 6u+ 3νu2 + 20νu3 − 30ν2u5 = 0 (ISCO) and 1− 3u+ 5νu3 = 0 (light ring). (16.26)

A remarkable feature of this resummed dynamics is that it is exact for ν = 0 (since the
ISCO and light ring are those of a geodesic in the Schwarzschild metric, rISCO = 6M and
rLR = 3M ; see Section 8.3). We also note that for all ν (∈ [0, 1/4]), rISCO < 6M (which is
at odds with the prediction based on the 2PN Hamiltonian H, but in agreement with the
prediction based on an analysis at 3PN order). Finally, we see that ΩLR = 0 because the light
ring coincides with a circular time-like geodesic with infinite j (and hence pφ), and that the
canonical transformation (16.17)–(16.18) between (r, φ) and (R,Φ) then becomes singular.10

16.5 EOB dynamics including the radiation reaction force

In Sections 16.1–16.4 we developed a resummed EOB dynamics of the two-body problem, focusing

on its conservative part. We now include radiation reaction effects which first circularize the orbit

and then cause its radius to decrease. Our starting point will be the 2.5PN radiation reaction force

obtained in harmonic coordinates in Section 15.2.

• The 2.5PN radiation reaction force

From the 2.5PN equations of motion (15.17)–(15.18) obtained in Section 15.2 we can

derive the center-of-mass, 2.5PN radiation reaction force �F (with �N = �R/R, �V = �̇R, where
the dot denotes the derivative with respect to t):

μ�̇V = −Mμ

R2
�N + · · ·+ �F with M = m+m′ , μ =

mm′

M
,

9The relation between Ω = dΦ/dt and ω means that ω is an angular velocity with respect to the rescaled

‘effective’ time: ω = dφ/dte with te = t/
√

1 + 2ν(E − 1).
10The analysis of circular orbits is just as straightforward at 3PN order; see Damour, Jaranowski, and

Schäfer (2000). At that order the potentials A and B are given by A = 1 − 2u + 2νu3 + νa4u4 with
a4 = 94/3−41π2/32, and AB = 1−6νu2+b3u3 with b3 = 2(3ν−26)ν. The motion of the effective test particle

is no longer geodesic but governed by He =
√

μ2A+Ap2φ/r
2 + (p∗r)2 [1 + z3(p∗r)2] with p∗r =

√
A/B pr and

z3 = 2(4− 3ν). The value of z3 does not affect the dynamics of circular orbits, for which pr = 0.
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and �F =
8(mm′)2

5MR3
V2
[
3 �N(N.V)− �V

]
+

8(mm′)2

5R4

[
17

3
�N(N.V)− 3�V

]
.

For circular motion (N.V) = 0 and (N ∧ V)z = R Φ̇, and so FR|circ = (N.F) vanishes and
FΦ|circ = R(N ∧ F)z is given by

FΦ|circ = −8(mm′)2

5MR
Φ̇

(
V2 +

3M

R

)
with V2 = (RΦ̇)2 .

At the lowest, Newtonian, order to which we limit ourselves here, the contact and canonical
transformations between the two-body and effective coordinates performed in (16.5) et seq.
and (16.17) et seq. are the identity: Φ = φ, R = r. Therefore, for circular orbits for which V2 =
M/R so that R/M = (Mφ̇)−2/3 [see, for example, (14.30)], the leading-order, ‘quadrupolar’
radiation reaction force is11

Fr|circ = 0 , Fφ|quadcirc = −32

5
M ν2(Mφ̇)7/3 with ν =

mm′

M2
. (16.27)

• The EOB equations of motion including the radiation reaction

From the Lagrangian equations of motion including the radiation reaction effects [see, for
example, (15.21)] we obtain the corresponding EOB Hamilton equations of motion (the dot
denotes the derivative with respect to t):

ṙ =
∂HEOB

∂pr
, φ̇ =

∂HEOB

∂pφ
, ṗr = −∂HEOB

∂r
+ Fr , ṗφ = Fφ , (16.28)

where HEOB = M

√

1 + 2ν

(
He

μ
− 1

)
with

He

μ
=

√√√√A

(

1 +
p2r
μ2B

+
p2φ
μ2r2

)

and A(r) = 1− 2u+ 2νu3 , B(r) =
1

A

(
1− 6νu2

)
with u =

M

r
.

Note that B has been factored by 1/A in order to recover the exact Schwarzschild metric
in the test mass limit ν = 0. The functions Fi(q, q̇) = {Fr(q, q̇),Fφ(q, q̇)} are now to be
considered as functions of q = (r, φ) and p = (pr, pφ) through Hamilton’s equations:

Fi(q, q̇(q, p)) = Fi(q, ∂HEOB/∂p) .

Let us consider a motion which initially is nearly circular (this is the case of physical
interest because gravitational radiation tends to circularize orbits). The radial component of
the reaction force is then nearly zero initially and will be assumed to remain negligible for the
rest of the coalescence: Fr = Fr|circ = 0. Similarly, Fφ will be approximated by Fφ = Fφ|circ

11Using the information presented in this book, it is not possible to derive more than the Newtonian
expression (16.27) above for the radiation reaction force, which is a crude approximation. For an improved
resummed expression of the radiative force including extra information from higher-order post-Newtonian
expansion, see the seminal paper Buonanno and Damour (2000). For a review of the present state of the art,
see Damour (2014).
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[given in (16.27) in the Newtonian approximation] for all r. The equations of motion then
become (here a prime denotes the derivative with respect to r)

ṙ =
M

HeHEOB

Apr
B

, ṗr = − M

2HeHEOB

[

A′ + p2r

(
A

B

)′
+ p2φ

(
A

r2

)′]

, ṗφ = Fφ|circ ,

φ̇ =
M

HeHEOB

Apφ
r2

, (16.29)

where He and HEOB are given in (16.28), and Fφ|circ is a function of (Mφ̇), that is, of
(r, pr, pφ) through the last (independent) Hamilton equation (16.29).

• The initial conditions

At t = 0, let us set, for example, rin = 15M and φin = 0.
As for pr|in and pφ|in, they are chosen within the adiabatic, quasi-circular approximation.

We recall that in the absence of radiative effects, He = μE and HEOB = M
√
1 + 2ν(E − 1),

and for circular orbits [see (16.25)] we have (setting u = M/r)

pφ|circ=M2ν

√
1− 3νu2

u(1− 3u+ 5νu3)
, Mφ̇|circ=

u3/2
√
1− 3νu2

√
1 + 2ν(E − 1)

, E=
1− 2u+ 2νu3

√
1− 3u+ 5νu3

.

(16.30)
We therefore choose pφ|in = pφ|incirc with uin = M/rin.
The initial condition pr|in is obtained as follows. From Hamilton’s equations (16.29) we

have ṗφ = Fφ|circ, that is, (dpφ/dr)ṙ = Fφ|circ, where Fφ|circ can be approximated for large

r by Fφ|quadcirc as in (16.27) and is a function of φ̇ = φ̇|circ, that is, a function of r = M/u;
see (16.30). Similarly, pφ = pφ|circ, and from eqn (16.30) we then know (dpφ|circ/dr) in
terms of r. Now ṙ is given by Hamilton’s equation ṙ = MA

BHeHEOB
pr, where He = μE and

HEOB = M
√
1 + 2ν(E − 1) with E in terms of r given by (16.30). Therefore, pr is a known

(but not very illuminating) function of r in the adiabatic, quasi-circular approximation (at
lowest order in uin = M/rin it reads pr|in = − 64

5 Mν2u3
in).

16.6 EOB waveform of two coalescing black holes

• The EOB dynamics of two coalescing black holes

The EOB dynamics derived above encapsulates the inspiraling of two compact bodies,
for example, two black holes (or neutron stars if tidal effects are neglected), starting from an
initially quasi-circular relative orbit.

The numerical integration of their equations of motion (16.29), with He, HEOB, A, and

B given in (16.28) and Fφ|circ = Fφ|quadcirc given in (16.27), where φ̇ is expressed in terms of
(r, pr, pφ), is straightforward once a value of ν has been chosen and for the adiabatic, quasi-
circular initial conditions given above. The result is given in Fig. 16.1, which shows that the
inspiral of the two bodies remains quasi-circular even beyond their effective innermost stable
circular orbit, and that the integration can be pushed all the way to the light ring.
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Fig. 16.1 (a) The (effective) inspiral of two equal-mass (ν = 1/4) black holes due to the (Newtonian)

radiation reaction force (16.27), obtained by integration of the EOB equations of motion (16.29).

The initial conditions at φin = 0, rin = 15M are pφ|in = 1.08M2 and pr|in = −3.61 × 10−4 M .

The innermost stable circular orbit and light ring are located at rISCO = 5.72M and rLR = 2.85M .

(b) The EOB waveform produced during the inspiral phase of the coalescence of two equal-mass

black holes [solid line; see (16.31), setting C = 1] up to merger, taken to occur at the effective light

ring, where it is matched to the dominant quasi-normal mode of the final black hole [dotted line;

see (16.32)]. The mass and angular momentum parameters of the final black hole are MBH = 0.98M

and aBH = 0.79. The quasi-normal mode pulsation and damping time are MωQNM = 0.60 and

M/τ = 0.078.

• The gravitational waveform

In Chapter 13 (and 14) we derived the ‘first quadrupole formula’, that is, the radiative
gravitational field generated by a source at lowest (sometimes called ‘Newtonian’) order in
terms of the second time derivative of its quadrupole moment; see (13.27). In the center-
of-mass frame (at the lowest order, to which we restrict ourselves, the calculations are done
using Newtonian physics) the quadrupole moment of two point-like bodies in circular orbits is
Qij = μ(3zizj−δijz

2) with z1 = r cosφ and z2 = r sinφ, where the angular velocity φ̇ is taken
to be constant. The time dependence of the amplitude of both modes of the gravitational
wave is then given (up to a constant phase) by

h = C(Mφ̇)2/3 cos(2φ) , (16.31)

where C is a dimensionless factor taking into account the position of the observer with respect
to the plane of the orbit; it is proportional to μ/D, whereD is the distance to the source. More
precisely, up to a constant phase, the gravitational form (16.31) in a Cartesian coordinate
system R′ = (O′, z′1, z

′
2, z

′
3) attached to the observer O’ and in the TT gauge introduced in

Section 13.2 is written as
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h′
ij

TT
=

⎛

⎝
h+ h× 0
h× −h+ 0
0 0 0

⎞

⎠ , where h+ =
4μ

D

(
1 + cos2 i

2

)(
Mφ̇
)2/3

cos(2φ)

and h× =
4μ

D
(cos i)

(
Mφ̇
)2/3

sin(2φ) ,

with i the inclination between the normal to the orbital plane and the line-of-sight OO′i,
along which we align the (O′z′3) axis for the sake of simplicity.

The inspiraling motion of the binary system due to the emission of gravitational waves is
given by the EOB dynamics obtained above, which show that the amplitude and frequency
of the waveform increase with time; see Fig. 16.1b.

The merging time is taken to be the moment the effective particle reaches the light ring.12

The mass MBH and angular momentum parameter aBH of the final black hole formed after
coalescence are thus estimated to be HEOB (which is the energy of the binary system) as
given in (16.28) and pφ/M

2
BH, evaluated at the light ring.

From this point on the gravitational waveform is smoothly matched to

h = A e−(t−tLR)/τQNM cos (ωQNM(t− tLR) + B) , (16.32)

where A and B are two dimensionless constants determined by the matching conditions, and
ωQNM and τQNM characterize the dominant quasi-normal mode of the final black hole.13

The entire EOB waveform is plotted in Fig. 16.1b.
It should be recalled that obtaining this EOB waveform relies on a number of approxi-

mations and assumptions. First, the resummed EOB dynamics is built out of the 2PN La-
grangian, and the reaction force as well as the waveform are evaluated at leading, quadrupolar
order. Second, the mass and angular momentum of the final black hole are identified with the
energy and angular momentum of the two-body system, evaluated on the light ring. Third,
the waveform at merger is matched to the dominant quasi-normal mode of the final black
hole.

In order to produce useful waveform templates for analyzing the data collected by the
current gravitational wave detectors, a far more elaborate EOB approach must be, and has
been, developed. It is based on higher-order PN approximations, including the spins of the
initial black holes, and defining merger by a fit to full numerical black hole coalescence
simulations.14

12Identifying the moment of merger with the moment the effective particle reaches the light ring is supported
by the fact that, in the test-particle limit, the light ring acts as a potential barrier below which the radial
gravitational radiation emitted by the particle is strongly filtered, as first studied by Davis, Ruffini, Press,
and Price (1971) and confirmed by present-day numerical relativity simulations.

13As noted in Section 9.2, the study of the quasi-normal (or ‘ringing’) modes which characterize a black hole
was initiated by Vishveshwara in 1970. The values of ωQNM and τQNM used here are those taken by Buonanno

and Damour in their 2000 paper: MBH ωQNM = ff [1−0.63(1−aBH)3/10] and τ ωQNM = 4fQ(1−aBH)−9/20

with ff and fQ given in Echeverria (1989) (for MBH = 0.98M and aBH = 0.98, ff = 0.9587 and fQ = 0.9389).
14The present state of the art is described in, for example, Nagar, Damour, Reisswig, and Pollney (2016)

and Bohé et al. (2017).
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Part IV

Friedmann–Lemâıtre solutions and
cosmology

Cosmology: a space for thought on general relativity.

Jean Eisenstaedt, in Foundations of Big Bang Cosmology,
edited by F. W. Meyerstein, World Scientific, Singapore, 1989
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17

Cosmological spacetimes

Historically, in the first phase of its development the goal of relativistic cosmology was to construct
spacetimes which could provide a good representation of the universe on a large scale, a first step in
constructing a cosmological model. Here we shall present a few examples.

17.1 Maximally symmetric spaces

The Copernican and cosmological principles

In general relativity, geometry and matter determine each other, and any solution of the
Einstein equations represents a possible ‘universe’.

Therefore, a legitimate first approximation from the viewpoint of astronomical observations
is to describe the distribution of matter surrounding us as being and remaining isotropic on
a large scale. If, in addition, we stipulate that we do not occupy a privileged location in the
universe, then the matter distribution must also be spatially homogeneous. However, nothing
prevents it from evolving in time. This approximation/hypothesis about the matter distribution
in the observable universe is called the Copernican principle.

The cosmological principle is a hypothesis about the geometry of the Riemannian spacetime
representing the universe, which is assumed to be foliated by 3-spaces labeled by a cosmic time
t which are homogeneous and isotropic, that is, ‘maximally symmetric’.

The Einstein equations relating the Ricci tensor and the energy–momentum tensor then
guarantee that the matter distribution is spatially homogeneous and isotropic.

In Section 5.1 we saw that isometries, the symmetries of a spacetime of dimension N , are
defined by the existence of Killing vectors ξi, and that a maximally symmetric space,1 de-
scribed as being homogeneous and isotropic, possesses by definition the maximum number of
Killing vectors, that is, N(N + 1)/2 of them. Of these, N are translations and N(N − 1)/2
are rotations. The geometry of such a space is obviously constrained, in particular, by (see
Section 5.1)

(DiR
m
jkl −DjR

m
ikl)ξm + (δni R

m
jkl − δnj R

m
ikl + δnl R

m
kji − δnkR

m
lji)Dnξm = 0 .

The coefficient of ξm and the antisymmetric part of the coefficient of Dnξm must therefore
be zero. We then deduce2 that the Riemann tensor of a maximally symmetric space must
have the form

Rijkl = K(gikgjl − gilgjk) , (17.1)

1An exhaustive presentation of anisotropic or inhomogeneous spaces of cosmological interest, which we do
not discuss here, can be found in, for example, Ellis, Maartens, and MacCallum (2012).

2By (twice) contracting the antisymmetric part (equal to zero) of the coefficient of Dnξm and then using
the fact that the coefficient of ξm is zero; see, for example, Stephani (1990).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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where K is a constant with dimension L−2. The space is said to have constant curvature,
and its Ricci tensor and scalar curvature are

Rij = K(N − 1)gij , R = KN(N − 1) . (17.2)

It can be shown, as we assume, that maximally symmetric spaces which have constant cur-
vature are uniquely determined by the dimension of the space N , the metric signature, and
the value3 of K.

Since spaces of constant curvature are essentially unique, any method of obtaining their
metric gij is good. The case K = 0 is trivial because it corresponds to Euclidean space. To
deal with the case K �= 0, we consider the (pseudo)-Euclidean space of dimension N + 1
whose metric in Cartesian coordinates Xi and w (w is dimensionless) is

ds2 = K−1dw2 + fijdX
idXj , (17.3)

where the metric fij , (i, j = 1, . . . N), has the same signature as gij (for example, fij = δij
if the space is Riemannian, or fij = ηij if it is pseudo-Riemannian). Let us consider in this
space the (N − 1)-surface described by the equation

w2 +KfijX
iXj = 1 . (17.4)

On this surface dw2 = K2(fijX
idXj)2/(1−KfijX

iXj), and the metric induced on it is

dσ2 = gijdX
idXj with gij = fij +K fikfjlX

kX l

1−KfklXkXk
. (17.5)

After an easy calculation (using the fact that Γi
jk = KXigjk), we see that the Riemann tensor

has the form (17.1). Therefore, (17.5) is the desired metric.
In the case whereN = 2, fij = δij , and K > 0, we easily see, settingX1 = K−1/2 sin θ cosφ

andX2 = K−1/2 sin θ sinφ, that the metric (17.5) is then written as dσ2=(dθ2+sin2θ dφ2)/K.
The space is a 2-sphere of radius 1/

√
K.

When N = 3 and fij = δij , we set

(X1, X2, X3) =

{
|K|−1/2 sinχ(sin θ cosφ, sin θ sinφ, cos θ)

|K|−1/2shχ(sin θ cosφ, sin θ sinφ, cos θ)
if

{
K > 0

K < 0
, (17.6)

and we find that if we set K ≡ K/R2
c , the metric (17.5) can be written as

dσ2 = R2
c dΩ

2
3 , where dΩ2

3 = dχ2 + f2
K(χ)(dθ2 + sin2 θdφ2)

with fK(χ) =

⎧
⎪⎪⎨

⎪⎪⎩

sinχ if K = 1 ,

sinhχ if K = −1 ,

χ if K = 0 ,

(17.7)

where it is understood that in the case K = 0, which we have added, the space is Euclidean,
and the radius of curvature Rc becomes an arbitrary constant which gives the dimension of

3More precisely, if there exist two metrics with the same signature and dimension gij(x
k) and g′ij(x

k)

such that Rijkl = K(gikgjl−gilgjk) and R′
ijkl = K(g′ikg

′
jl−g′ilg

′
jk), then there exists a change of coordinates

which transforms g into g′ (Eisenhart, 1949); see, for example, Weinberg (1972).
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a length to the coordinate Rcχ. The space is a 3-sphere S3 (K = 1), a Euclidean 3-plane E3
(K = 0), or a 3-hyperboloid H3 (K = −1). Setting r = fK(χ) (where the ‘radial’ coordinate
r is dimensionless), (17.7) can also be written as

dΩ2
3 =

dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2) . (17.8)

Finally, with r̄ =
2r

1 +
√
1−Kr2

we have

dΩ2
3 =

1

1 +Kr̄2/4
[dr̄2 + r̄2(dθ2 + sin2 θdφ2)] . (17.9)

We note that the volume of S3 is finite:
∫

d3V =

∫ √
g dχdθdφ = R3

c

∫
sin2 χ sin θ dχdθdφ = 2π2R3

c .

The spaces E3 and H3 have infinite volume, unless they are supplied with a non-trivial
topology (for example, a torus for a Euclidean space).

17.2 Spacetimes with homogeneous and isotropic sections

Let V4 be a four-dimensional pseudo-Riemannian space. We assume that there exists a field
of time-like vectors (which can be considered as tangents to the world lines) such that all the
spatial sections of V4 orthogonal to this field are maximally symmetric. A manifold with such
a foliation is a Friedmann (1922)–Lemâıtre (1927)–Robertson–Walker (1935) space (called
FLRW space), and its length element can be written as

ds2 = −dt2 + a2(t) dΩ2
3 with dΩ2

3 = dχ2 + f2
K(χ)(dθ2 + sin2 θdφ2) , (17.10)

where fK = {sin, I, sinh} corresponds to K = {−1, 0, 1}. Here dΩ2
3 is the metric of a 3-sphere,

a 3-plane, or a 3-hyperboloid, and is given in other coordinate systems in eqns (17.7)–(17.9).
(A term proportional to dt dxi will break the isotropy, and the coefficient of dt2 can always
be normalized to c2 = 1.)

The time coordinate t is the cosmic time, and a(t), which has the dimension of a length,
is the scale factor. Finally,

H ≡ ȧ

a
, (17.11)

where the dot denotes the derivative with respect to t, is the Hubble function. It is also
common to use the conformal time η, defined as dη = dt/a(t).

By construction, the coordinate lines (r, θ, φ constant) are geodesics.
This can be seen directly. Since the equation of a geodesic with tangent vector uμ is

duμ/dτ + Γμ
νρu

νuρ = 0, if the initial 3-velocity is zero, ui|(τ=0) = 0, it will remain zero

because (dui/dτ)|(τ=0) = 0 since Γi
00 = 0 for i = (1, 2, 3).

These coordinate lines therefore represent the trajectories of test particles in free fall
whose proper time is the cosmic time t (dt ≡ uμdx

μ), and the coordinate system (t, r, θ, φ)
is said to be comoving.
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The Riemann and Ricci tensors, the scalar curvature, and the Einstein tensor of the metric
(17.10) are calculated using the definitions simplified by the fact that the spatial sections are
maximally symmetric. We find [here i = (1, 2, 3)]

Rijkl =

(
K

a2
+H2

)
(gikgjl − gilgjk) , R0i0j = − ä

a
gij , (17.12)

G0
0=−3

(
K

a2
+H2

)
, Gi

j=−
(
2ä

a
+

K

a2
+H2

)
δij , R=6

(
ä

a
+

K

a2
+H2

)
, (17.13)

where K = (+1, 0,−1) for spherical, Euclidean, or hyperbolic spatial sections.

17.3 Milne spacetime

For an FLRW spacetime to have spatial sections which are not only homogeneous and
isotropic but also to be maximally symmetric, that is, to possess four additional isomet-
ries, it is necessary and sufficient that its Riemann tensor can be written in the form (17.1),
that is, owing to (17.12),

(
ȧ

a

)2

+
K

a2
= K4 . (17.14)

(If ȧ �= 0, this condition also implies that ä/a = K4.)
If K4 = 0, the flat spacetime is just Minkowski spacetime M4.
If in addition we choose a foliation using Euclidean spatial sections K = 0, then the

conditions (17.14) give the length element in a familiar form (after the dimensional constant
a is absorbed in the coordinate r):

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) . (17.15)

II

t

t = const

χ
=

 c
o
n
st

–

r
I

Fig. 17.1 Milne coordinates.
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If we choose4 K = −1, then a = t̄ and the length element takes the Milne form (1935):

ds2 = −dt̄2 + t̄2[dχ2 + sinh2 χ(dθ2 + sin2 θdφ2)] . (17.16)

Minkowski spacetime can therefore be viewed as an FLRW spacetime with hyperbolic spatial
sections and scale factor proportional to t̄ (Fig. 17.1). The change of coordinates (t, r) = t̄
(coshχ, sinhχ) takes (17.16) to the previous form (17.15), which shows explicitly that t̄ = 0
is not a singularity of the spacetime (we mention in passing that the Milne coordinates do
not cover all of M4). An observer comoving at χ = χ0 is just an inertial observer undergoing
displacement from the origin at speed tanhχ0. It is useful to compare the Milne coordinates
and the Rindler coordinates introduced in Section 6.2. The Milne coordinates cover quadrant
II of the Minkowski spacetime, while the Rindler coordinates cover quadrant I.

17.4 de Sitter spacetime

A maximally symmetric FLRW spacetime, whose scale factor therefore satisfies (17.14) and
for which the constant K4 ≡ H2 is positive, is called a de Sitter spacetime (1917). Several
spatial foliations are possible [the first is due to Lemâıtre (1925), and the second to Klein
(1918)]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K = 0 =⇒ ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2) ,

K = +1 =⇒ ds2 = −dt̄2 +
cosh2 Ht̄

H2
[dχ2 + sin2 χ(dθ2 + sin2 θdφ2)] ,

K = −1 =⇒ ds2 = −dt̃2 +
sinh2 Ht̃

H2
[dχ̃2 + sinh2 χ̃(dθ2 + sin2 θdφ2)] .

(17.17)

In these coordinates the spatial sections of spacetime are manifestly maximally symmetric
(they are 3-planes, 3-spheres, or 3-hyperboloids); however, the fact that de Sitter spacetime
is maximally symmetric and therefore also static is not manifest.

Since de Sitter spacetime is maximally symmetric, it has the geometry of a 4-hyperboloid
(it is non-flat and non-compact), and it can be embedded in a five-dimensional (pseudo-
Euclidean) space. We can visualize this by suppressing two spatial dimensions. The inter-
sections of the resulting 2-hyperboloid and the planes (parabolas, circles, or hyperbolas)
represent the spatial sections of the three coordinate systems given above. It is therefore
easy to see that only the foliation K = +1 covers the entire hyperboloid, that is, the entire
de Sitter spacetime; see Fig. 17.2.

Finally, there exists another coordinate system (τ, ρ,Θ,Φ) (historically the first, intro-
duced by de Sitter himself in 1917) in which the length element is written as

ds2 = −(1− ρ2H2)dτ2 +
dρ2

1− ρ2H2
+ ρ2(dΘ2 + sin2 ΘdΦ2) . (17.18)

4We note that M4 cannot be foliated by 3-spheres.
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In this system the spatial sections are manifestly homogeneous and isotropic [they are 3-
spheres; cf. (17.8)]. Since, in addition, the metric components are diagonal and independent
of the time τ , the static nature of the spacetime is also manifest.

Foliations of de Sitter spacetime

We introduce the five-dimensional space with length element ds2 = dw2−dT 2+dX2+dY 2+
dZ2. The de Sitter spacetime is the 4-hyperboloid of equation w2 − T 2 + X2 + Y 2 + Z2 = 1.
Then, using (17.4) and (17.5), we find that the induced metrics on this de Sitter 4-hyperboloid
are written in the form (17.17) if the coordinates (t, x, y, z), (t̄, χ, θ, φ), and (t̃, χ̃, θ, φ) are related
to (T,X, Y, Z) as (setting H = 1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K = 0 , X = etx , Y = ety , Z = etz , T = sinh t+ et(x2 + y2 + z2)/2 ;

K = +1 , X = cosh t̄ sinχ sin θ cosφ , Y = cosh t̄ sinχ sin θ sinφ ,

Z = cosh t̄ sinχ cos θ , T = sinh t̄ ;

K = −1 , X = sinh t̃ sinhχ sin θ̃ cos φ̃ , Y = sinh t̃ sinhχ sin θ sinφ ,

Z = sinh t̃ sinhχ cos θ , T = sinh t̃ coshχ .

Next, we find that the 3-spaces of constant time are given by the following:

• K = 0: the surfaces t = const are 3-paraboloids, intersections of the de Sitter 4-hyperboloid
and the 3-planes w + T = et;

• K = +1: the surfaces t̄ = const are 3-spheres, intersections of the de Sitter 4-hyperboloid and
the 3-planes T = sinh t̄;

• K = −1: the surfaces t̃ = const are 3-hyperboloids, intersections of the 4-hyperboloid and the
3-planes w = cosh t̃.

The coordinates (τ, ρ,Θ,Φ) are related to (T,X, Y, Z) as

X = ρ sinΘ cosΦ , Y = ρ sinΘ sinΦ , Z = ρ cosΘ , T = sinh τ
√

1− ρ2 .

They do not cover the entire de Sitter hyperboloid. The sections τ = const are 3-hemispheres;
see Fig. 17.2.5

5See Moschella (2005), from which we have borrowed these figures.
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t = const

K = +1 K = 0 K = −1

r = const

t = const–
t = const

χ= const χ= const

ρ = const

τ = const
horizon

Fig. 17.2 Foliations of de Sitter spacetime.

De Sitter spacetime is often used as a simplified model of the universe, for example, in
inflationary theories; see Chapter 20. It is also an ideal example for showing that complicated
length elements may hide simple geometries, and that metric coefficients which are singular
at certain points [for example, (17.18) at ρ = 1/H or (17.17) at t̃ = 0] sometimes signal a
simple pathology of the coordinate system rather than a singularity of the curvature tensor
and therefore of the spacetime itself.6

If K4 = −H2, the spacetime is called anti-de Sitter spacetime. Its geometrical structure is
more complicated (it contains closed time-like curves).7 It is useful for studying the AdS/CFT
(anti-de Sitter/conformal field theory) correspondence.8

6The study of the geometry of de Sitter spacetime has historically played an important role in under-
standing the Schwarzschild singularity at r = 2m. See, for example, Eisenstaedt (1989).

7See, for example, Hawking and Ellis (1973).
8Maldacena (1998).
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Friedmann–Lemâıtre spacetimes

The cosmological solutions on which the standard model is based satisfy the Copernican principle.
They possess homogeneous and isotropic spatial sections, and the space is expanding. In this chapter
we present the laws governing the evolution of the scale factor as well as Hubble’s law, which is
historically the first observational signature of cosmic expansion.

18.1 Redshift and luminosity distance

The Weyl postulate

We have seen that the decision to represent the universe by an FLRW spacetime is referred
to as the ‘cosmological principle’: there is no privileged point in space or any privileged direction,
and so the spatial sections must be maximally symmetric.

In the coordinate systems considered in the preceding sections where the metric of FLRW
spacetimes is written, for example, in the form (17.10),

ds2 = −dt2 + a2(t)
[
dχ2 + f2

K(χ)(dθ2 + sin2 θdφ2)
]

(18.1)

with fK = {sin, I, sinh} corresponding to K = {−1, 0, 1}, we have seen that the ‘comoving’
coordinate lines are geodesics.

The Weyl postulate (1923) stipulates that the ‘cosmological fluid’ consisting of galaxies,
quasars, and so on, visible or invisible, follows such geodesics.

Let us consider a ‘galaxy’ which emits light. We shall represent it by a ‘comoving’ geodesic
with χ = χg (and, for example, θ = π/2, φ = 0) of the Friedmann–Lemâıtre metric given
above (see Fig. 18.1).

Let us consider the light arriving at an observer located at χ = 0. Two successive peaks of
the wave arrive at t0 and t0+Δt0, where Δt0, the cosmic time interval, is also the proper time
interval according to the observer’s clock. The light was emitted by the galaxy located at χg

at times te and te+Δte. It has travelled along a radial null geodesic: ds2 = 0 = −dt2+a2dχ2.
We therefore find that dt/a(= −dχ) is independent of the time, and so Δte/ae = Δt0/a0, or
also, introducing the light frequency ν = 1/Δt,

1 + z ≡ νe
ν0

=
a0
ae

. (18.2)

Let us make the meaning of eqn (18.2) more precise. A spectrum of rays of frequencies
ν0 is observed coming from a (comoving) galaxy. This spectrum is recognized as being that
of an atomic transition of frequency ν on the (comoving) Earth which is systematically
(and achromatically) red-shifted. If the Einstein equivalence principle is valid, that is, if the

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.
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η

χg

Δt0
a0

Δte
ae

χ

Fig. 18.1 Redshift.

gravitational field can be locally effaced,1 so that the laws of non-gravitational physics apply
in a freely falling frame, then this frequency ν will be the frequency of the transition which
is measured locally wherever the observer is, and so νe = ν. Therefore, the redshift z of the
galaxy,

1 + z =
νe
ν0

=
ν

ν0
, (18.3)

becomes a measurable quantity which is related by (18.2) to the increase of the scale factor
between a(te) ≡ ae and a(t0) ≡ a0.

The galaxy is referenced by its co-moving coordinates χ = χg (and, for example, θ = π/2,
φ = 0). This co-moving coordinate distance is an intermediary of the calculation (like the
cosmic time t), well adapted to the integration of the geodesic equations, but not measurable.

We can define the proper distance Dp of the galaxy to the origin (the location of the
observer) at the time t using the length element ds|t ≡ dl = a(t)dχ:

Dp = a(t)χ . (18.4)

This distance would be measurable if we had at our disposal a rigid ruler lying between
the Earth and the galaxy, which is not the case in reality. Nevertheless, it can be stated
that if a(t) is an increasing function of the time, which is the case if the galactic spectra
are systematically shifted toward the red, then the proper distance between two objects
will increase with time. The universe (or, more correctly, its spatial sections) is therefore
expanding.

However, a quantity which in principle is measurable is the luminosity distance DL

defined as

l =
L

4πD2
L

, (18.5)

where l is the measured apparent luminosity of the galaxy and L is its absolute luminosity
(which is assumed to be known or measurable by relating it to the physical characteristics

1This does not occur in all theories of gravitation; for example, in the tensor–scalar theory the scalar field
cannot be effaced. See, for example, Damour and Esposito-Farèse (1992).
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of standard candles, for example, the period of the luminosity variation of Cepheid stars, or
the light curve of type-Ia supernovae, and so on). This luminosity distance can be related to
the coordinate distance χg using the following arguments. The absolute luminosity is given
by L = Nhνe/Δte = Nhν2e , where N is the number of photons emitted during a period Δte
and hνe is their energy. The apparent luminosity is given by l = N(hν0/Δt0)(1/S), where
S = 4πa0fK(χg) is the surface of the sphere reached by these photons at t0 [the instant they

are observed; see (18.1)]. Therefore, DL ≡
√

L/4πl = a0fK(χg)νe/ν0, or, using (18.2),

DL = a0(1 + ze)fK(χg) . (18.6)

18.2 Hubble’s law

Hubble’s law relates two measurable quantities, the redshift and the luminosity distance of
a galaxy. Using (18.2) and (18.6) as well as the equation of the trajectory followed by the
radiated photons, we obtain

χg =

∫ t0

te

dt

a(t)
, ze =

a0
ae

− 1 , DL = a0(1 + ze)fK(χg) . (18.7)

If the matter composition of the universe is known, then, as we shall see later on, the Einstein
equations determine the function a(t). Then the first equation above gives a0χg as a function
of t0 and te, the second gives a0χg as a function of ze, and the third predicts the relation
between DL and ze. Comparison of this prediction with observations then tells us whether
or not the description of the matter content of the universe is correct.2

Scale factors and Hubble’s law: examples

We assume that the spatial sections are Euclidean (K = 0) and that the scale factor obeys
a power law: a = αtq, where α and q are two constants. Use (18.7) to show that

H0DL =
q

1− q
(1 + z)

[
1− (1 + z)

q−1
q

]
= z

(

1 +
1− q0

2
z + · · ·

)

, (18.8)

where H0 ≡ ȧ0/a0 = q/t0 and q0 ≡ −ä0a0/ȧ
2
0 = (1− q)/q.

For a = αeH0t we find
H0DL = z(1 + z) . (18.9)

Let us expand the scale factor a(t) in a Taylor series:

a(t)=a0

[
1+H0(t−t0)−

1

2
q0H

2
0 (t−t0)

2+· · ·
]

with H0 ≡ ȧ0
a0

, q0 ≡ − ä0a0
ȧ20

, (18.10)

whereH0 is the Hubble constant and q0 is the deceleration parameter. The first two equations
in (18.7) then become

2We note that the relation between the luminosity distance DL and the redshift z can be obtained directly
by rewriting χg as a0χg(z) =

∫ z
0 dz′/H(z′). It is therefore sufficient to know H(z), which is given by the

Friedmann equations (Section 18.3), and it is useless in practice to calculate a(t) explicitly, as we shall see
in Section 19.3.
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a0χg = (t0 − te)

[
1 +

1

2
H0(t0 − te) + · · ·

]
,

ze
H0

= (t0 − te)

[
1 +

(
1 +

1

2
q0

)
H0(t0 − te) + · · ·

]
,

(18.11)

=⇒ a0χg =
ze
H0

[
1−
(
1 + q0

2

)
ze + · · ·

]
,

and so the third equation in (18.7) is written as

H0DL = ze

[
1− ze

2
(q0 − 1)

]
+ ... (18.12)

At lowest order the redshift and the luminosity distance are proportional. This is Hubble’s
law, established observationally by Hubble in the 1930s. In principle, the deviations from
linearity give q0, as we shall see in Section 19.3.

18.3 The Friedmann–Lemâıtre equations

The Einstein equations are

Gμν + Λgμν = 8πGTμν , (18.13)

where we have included the cosmological constant Λ, and Tμν is the energy–momentum tensor
of the matter.

If the spacetime is maximally symmetric or possesses a family of maximally symmetric
subspaces VN of dimension N , coordinates xa, and metric gab, the tensors describing the
matter must possess the same symmetries. Just like those of the metric, their Lie derivatives
with respect to the Killing vectors must then be zero. We thus see that the scalars must not
depend on xa, the vectors must have null components in VN , and the components Tab of
symmetric 2-fold covariant tensors must be proportional to those of the metric tensor gab.

Therefore, owing to the symmetry imposed on FLRW models of the universe by the
cosmological principle, the energy–momentum tensor representing the ensemble of matter
constituents of the universe must have the form

Tμν = (ε+ p)uμuν + pgμν , (18.14)

where uμ is a time-like vector field which can be normalized to unity (gμνu
μuν = −1)

and which is perpendicular to the maximally symmetric 3-spaces, and ε and p are constant
functions in these 3-spaces. If the coordinates are chosen such that the FLRW metric can be
written in the standard form (17.10) or (18.1), then ε and p are functions of only the cosmic
time t and uμ = (1, 0, 0, 0).

We see that Tμν is a perfect fluid (see Section 3.2). Then uμ is interpreted as the 4-
velocity of the ‘cosmological fluid’, ε is its energy density, and p its pressure. This fluid, just
like a gas in thermodynamical equilibrium, is uniform throughout space and evolves only in
cosmic time.
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The components of the Einstein tensor for a Friedmann–Lemâıtre metric in the coordi-
nates (17.10) have been given in (17.13). In addition [see (18.14)], T 0

0 = −ε and T i
j = p δij .

The Einstein equations are then written as (Friedmann, 1922; Lemâıtre, 1925)

H2 =
8πG

3
ε− K

a2
+

Λ

3
,

ä

a
= −4πG

3
(ε+ 3p) +

Λ

3
, (18.15)

where we recall that a(t) is the scale factor, t is the cosmic time, H ≡ ȧ/a, and K =
{0,+1,−1} for Euclidean, spherical, or hyperbolic spatial sections.

The Einstein equations contain the equations of motion of the matter by virtue of the
Bianchi identities DμG

μν ≡ 0. For a fluid, these equations, DμT
μν = 0, are the conservation

and Euler equations (3.10) and (3.11). In a Friedmann-Lemâıtre spacetime the Euler equation
is satisfied identically and the conservation equation is DμT

μ0 = ∂μT
μ0+Γμ

μνT
ν0+Γ0

μνT
μν =

0, or, writing out the Christoffel symbols explicitly, Ṫ 00 + Γi
i0T

00 + Γ0
ijT

ij = 0, or also

ε̇+ 3H(ε+ p) = 0 . (18.16)

As we can see by taking the derivative of the first equation in (18.15) with respect to time,
eqn (18.16) can replace the second equation in (18.15) as long as the scale factor is not
constant.

It is sometimes practical to write the Friedmann–Lemâıtre equations (18.15) and (18.16)
using the conformal time η related to the cosmic time as dt = adη:

H2 =
8πG

3
εa2 −K +

Λ

3
a2 , H′ = −4πG

3
(ε+ 3p)a2 +

Λ

3
a2 , ε′ + 3H(ε+ p) = 0 , (18.17)

where a prime denotes the derivative with respect to η and H ≡ a′/a = aH.

18.4 The first models of the universe (1917–1960)

• The Einstein static model

In 1917 the galaxies and their systematic recession were unknown (the Great Debate
between Shapley and Curtis about the distance and nature of nebulae dates from the 1920s,
and Hubble’s law from the 1930s). Moreover, the advance judgment of the universe as being
static was well established (the Newtonian cosmological models of expansion also date from
the 1930s). Finally, the problems which arise in representing a homogeneous and isotropic
universe of infinite extent in Newtonian physics were well known (see Book 2, Chapter 16).

It was probably for these reasons that Einstein sought a solution to his equations which
was static, homogeneous, isotropic, and had spherical spatial sections (and therefore finite
volume), where the matter is basically a pressure-less fluid (we recall that the cosmic mi-
crowave background radiation was not discovered until the 1960s).

The Einstein–Friedmann–Lemâıtre equations (18.15) then reduce to

8πGεm0 + Λ− 3

a20
= 0 , 4πGεm0 − Λ = 0 , (18.18)

where εm0 is the constant energy density. We see that the presence of the cosmological constant
is needed for the system to have a solution.
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The introduction of this new fundamental constant was later viewed by Einstein as his
‘biggest blunder’, and he abandoned it definitively after accepting the validity of the work
done by Friedmann and Lemâıtre, and after Hubble’s discovery of the recession of the galaxies,
an observation which indicated that the universe is expanding.3

• The de Sitter and steady-state models

An additional motivation that Einstein had for introducing the cosmological constant
in his gravitational equations was the hope that the vacuum equations, Gμν + Λgμν = 0,
would then not have any solution, neither the Schwarzschild solution (the only one known
in 1917), nor even the Minkowski solution, so that the theory would not allow there to be
any empty point in space (see footnote 12 of Section 1.6). However, in 1917 de Sitter found
the solution bearing his name in the static form given in (17.18) with4 H2 = Λ/3. Therefore,
the de Sitter universe is devoid of ordinary matter and curved only due to the cosmological
constant, and the galaxies must be viewed as test particles following geodesics. The question
is, which ones? Indeed, since the de Sitter spacetime is maximally symmetric, as we have
seen in Section 17.4, it does not possess a privileged foliation, and various choices of cosmic
time are possible.

In a system of adapted coordinates, the length element of de Sitter spacetime can be cast
in the static form (17.18). First of all, we note that the light emitted by a particle (a galaxy)
which is at rest at ρ = ρg in this frame will be observed at ρ = 0 with a redshift given by

1 + ze ≡ νe/ν0 = (1 − (Hρg)
2)−1/2, from which we find Hρg =

√
ze(2 + ze)/(1 + ze). Since

the luminosity distance is related to ρg as HDL = Hρg(1 + ze) [cf. (18.5)], Hubble’s law for

such galaxies is HDL =
√

ze(2 + ze). It is not linear for short distances, and the ‘galaxies’
do not follow geodesics of the spacetime. However, if the galaxies are in radial free fall, we
find that HDL = ze from an easy calculation like that of Section 6.4 for studying the radial
geodesics in the Schwarzschild metric. In this case Hubble’s law is strictly linear. In both
cases the galactic redshift is not interpreted in terms of expansion of the universe, but as
gravitational redshift combined, in the second case, with a Doppler effect. It seems that this
is also how Hubble himself understood his law, at least initially—proof, if needed, that the
significance assigned to a cosmological observation depends on the theoretical framework in
which it is interpreted.5

3The expression ‘biggest blunder’ attributed to Einstein by Gamow is probably apocryphal. However,
Einstein did write in a letter to Lemâıtre on Septembre 26, 1947, “The introduction of such a constant
implies a considerable renunciation of the logical simplicity of the theory. . . Since I have introduced this term
I had always a bad conscience. . . I cannot help to feel it strongly and I am unable to believe that such an
ugly thing should be realized in nature.”

This static model was defended until the 1970s by partisans of the ‘tired light’ theory, an attempt to explain
the galactic redshift in terms of an interaction between photons and the intergalactic medium. But, on the
one hand, such an interaction is not predicted by the standard laws of electromagnetism, and, on the other,
it would imply a dispersion of light which is not observed. Finally, the existence of a diffuse cosmological
background of radiation cannot be explained within such a scenario.

The cosmological constant itself has again become a component of the standard model; see the following
chapter.

4In addition, the Schwarzschild length element can be generalized as

ds2 = −(1− 2m/r − Λr2/3)dt2 + dr2/(1− 2m/r − Λr2/3) + r2(dθ2 + sin2 θdφ2) ,

which solves the equation Gμν + Λgμν = 0; Kottler (1918).
5See the conclusion of the article Hubble (1929).
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In 1948, Bondi, Hoyle, Gold, and Narlikar postulated that the galaxies follow the geodesics
xi = const of de Sitter spacetime described in the frame where the spatial sections are
Euclidean and the length element takes the form ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2); see
Section 17.4. The scale factor is a(t) = eHt and the observed galactic redshift is interpreted
as an expansion of the spatial sections. The Hubble parameter is then a constant, H = H0,
and as we saw in Section 18.2, the redshift/luminosity distance relation is H0DL = ze(1+ze).
The deceleration parameter is q0 = −1.

In such a model the proper distance between the galaxies increases exponentially. To
describe a universe in a steady state, that is, a universe which is globally identical to itself
over the course of time t, Bondi et al. proposed the continuous creation of matter so as
to compensate for the dispersion of the geodesic flow of the galaxies. In the eyes of its
proponents, this idea is a priori no more shocking than the ex nihilo creation of all matter
in a Big Bang (the expression is due to F. Hoyle, 1949, who used it in a scornful manner).

However, the steady-state model was abandoned after the 1965 discovery by Penzias and
Wilson of the cosmic microwave background radiation. As we shall see below, the existence
of this radiation strongly suggests that the present universe has emerged from a hot, dense
phase in a state of thermodynamical equilibrium in the past, and so it has a history and is
not in a steady state.6

6In 1978 Penzias and Wilson were awarded the Nobel Prize in Physics for this discovery.
For an introduction to the history of modern cosmology, see, for example, the American Institute of Physics

site http://www.aip.org/history/cosmology/index.htm.

http://www.aip.org/history/cosmology/index.htm
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The Lambda-CDM model of the hot
Big Bang

In 1948, under the impetus of George Gamow, Robert Hermann, Ralph Alpher, and Hans Bethe
in particular, relativistic cosmology entered the second phase of its history. In this phase, physical
processes, in particular, nuclear and atomic processes, are taken into account. This provides two
observational tests of the model: primordial nucleosynthesis, which explains the origin of light nuclei,
and the existence of the cosmic microwave background, and it establishes the fact that the universe
has a thermal history. Study of the large-scale structure of the universe then indicates the existence
of dark matter and a nonzero cosmological constant. This model, known as the ΛCDM model, is the
standard model of contemporary cosmology.

19.1 The matter content of the universe and its evolution

We have seen that the cosmological principle requires the matter present in the universe as
a whole to behave as a perfect fluid. But the cosmological fluid can be made up of several
components which can interact in ways other than gravitationally. It is usual to describe these
components also as perfect fluids, at least in a first approximation, and to characterize them
by their equations of state, that is, their relations p = p(ε). The energy–momentum tensor
of the cosmological fluid, which must be conserved according to the Einstein equations, is
then viewed as the sum of the energy–momentum tensors of the fluid components, which
separately might not be conserved.1

The ensemble of luminous sources—nebulae, galaxies, and so on—along with the sur-
rounding non-luminous ‘ordinary’ matter (that is, baryonic matter) constitutes the most
familiar component of the cosmological fluid and was historically the first to be studied.
According to the Weyl postulate, each of these sources is assumed to be nearly at rest in the
Friedmann–Lemâıtre frame (18.1). They therefore make up a pressure-less fluid. The energy–
momentum tensor of the baryonic component then is T b

μν = εb(t)uμuν with T 0 b
0 = −εb(t)

and T b
ij = T b

0i = 0.
It appears necessary to add to this baryonic fluid a (large) amount of non-baryonic matter,

that is, matter which interacts only gravitationally with baryonic matter and which is cold,
that is, nonrelativistic, and also pressure-less. This is called cold dark matter (CDM).2 We
write this contribution as T cdm

μν = εcdm(t)uμuν and set εm(t) = εb(t) + εcdm(t). Then

1This is the case, for example, for ionized matter (protons and electrons) and photons which are coupled
via Compton scattering.

2There are numerous indications of the existence of this matter component: the dynamics of galactic
clusters (F. Zwicky, 1937), the rotation curves of spiral galaxies (1980), the failure of strictly baryonic mod-
els of structure formation (1980), gravitational lensing (1985), and temperature anisotropies in the cosmic
microwave background. There also exist numerous candidates for this matter component in extensions of
the Standard Model of particle physics. An alternative explanation based on modified Newtonian dynam-

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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T 0m
0 = −εm(t) , T im

j = 0 . (19.1)

Moreover, the universe contains a radiation fluid dominated by the 2.7 K cosmic mi-
crowave background radiation (CMB) discovered by Penzias and Wilson in 1965, along with
hot dark matter consisting of three families of neutrinos. Its equation of state is3 pr = εr/3
with

T 0 r
0 = −εr(t) , T i r

j =
1

3
εr(t)δ

i
j . (19.2)

Since these fluids making up the matter in the universe interact only gravitationally, their
energy–momentum tensors are separately conserved: DμT

μν = 0, which can be written as
above, ε̇+3H(ε+ p) = 0 . For the cold matter (baryons plus CDM, p = 0) and the radiation
(p = ε/3), this equation can be integrated at sight to give

εm =
εm0 a

3
0

a3
= εm0 (1 + z)3 , εr =

εr0a
4
0

a4
= εr0(1 + z)4 , (19.3)

where εm0 a
3
0 and εr0a

4
0 are integration constants and we have used the relation (18.2) between

the scale factor and the redshift.
The dilution factor of 1/a3 for the cold matter density is simply due to the volume

expansion. The 1/a4 decrease of the radiation density can be explained as a combination
of the effects of expansion and the fact that the energy of a photon is proportional to its
frequency, which decreases as 1/a owing to the cosmological redshift. Since the background
radiation is black-body radiation, the Stefan–Boltzmann law implies that its energy density
is proportional to the fourth power of its temperature, and so

T ∝ 1

a
or T = T0(1 + z) , (19.4)

where T0 ≈ 2.7 K is the temperature measured today. Therefore, as Gamow noticed in the
1940s, any expanding universe containing a radiation fluid was hotter and always dominated
by radiation in the past.4

19.2 Evolution of the scale factor

If the matter is just cold matter and radiation interacting only gravitationally and there-
fore evolving according to (19.3), the Friedmann–Lemâıtre equations (18.15) reduce to a
differential equation for a(t) (with the condition that H0 �= 0):

H2

H2
0

= Ωm
0

(a0
a

)3
+Ωr

0

(a0
a

)4
+ΩΛ

0 +ΩK
0

(a0
a

)2
, where H ≡ 1

a

da

dt
(19.5)

ics (MOND) at extremely small accelerations (M. Milgrom, 1983) now appears to be quite forced; see, for
example, Peter and Uzan (2009), Chapter 7.

3The speed of sound cs of a fluid is given by c2s = dp/dε (see, for example, Book 1, Section 16.4). If it is
constant, the fluid equation of state is p = c2s ε. A fluid of light composed of photons propagating at speed

c isotropically in three-dimensional space with a velocity dispersion cs =
√

〈c2〉 = c/
√
3 therefore has the

equation of state p = ε/3. This holds for any ultrarelativistic matter.
4Here we shall not discuss the thermal history of the universe (primordial nucleosynthesis, the cosmic

microwave background radiation, the decoupling of radiation and matter, and so on), nor the tools used to
study it (the Boltzmann equation, the freeze-out of interactions, and so on). These topics are discussed in,
for example, Peter and Uzan (2009) or Mukhanov (2005).
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and we have introduced the density parameters

Ωm
0 ≡ 8πGεm0

3H2
0

, Ωr
0 ≡ 8πGεr0

3H2
0

, ΩK
0 ≡ − K

H2
0a

2
0

, ΩΛ
0 ≡ Λ

3H2
0

(19.6)

related to each other as

1 = Ωm
0 +Ωr

0 +ΩΛ
0 +ΩK

0 . (19.7)

Therefore, in this model, which has been used in observational cosmology since the 1960s, the
Friedmann–Lemâıtre equation (19.5) gives the time evolution of the scale factor as a function
of the Hubble constant H0 and three independent density parameters by quadrature.

We see from (19.5) that for sufficiently small a(t) it is the radiation fluid which governs

the evolution of the universe, and the scale factor grows as t
1
2 . At t = 0 the energy densities

and curvature tensor diverge. This is the Big Bang, a spacetime singularity at which the
Einstein equations are no longer valid. Moreover, close to the Big Bang the matter is hot,
because the temperature of the radiation, which is inversely proportional to the scale factor,
becomes infinite there.5

Next, for a > aeq, where aeq/a0 ≈ Ωr
0/Ω

m
0 , the cold matter dominates and, as long as the

curvature term and the cosmological constant can be ignored, the scale factor grows as t
2
3 .

This is the Einstein–de Sitter solution (1932).
The ultimate evolution of the universe depends on whether or not the cosmological con-

stant and curvature of the spatial sections vanish. For ΩΛ
0 = 0 and ΩK

0 < 0 (K = +1), for
example, the universe will collapse on itself after its expansion. However, for ΩΛ

0 > 0 the
universe will tend asymptotically to a de Sitter spacetime.

Scale factor of a ΛCDM model

In the case of a spatially Euclidean universe (K = 0) containing only pressure-less matter
and a cosmological constant, so that Ωm

0 = 1−ΩΛ
0 , it can be verified that the scale factor, which

is dimensionless because K = 0, is explicitly given by

a(t) =

(
Ωm

0

ΩΛ
0

)1/3

sinh2/3

(
3

2

√

ΩΛ
0H0t

)

, (19.8)

a solution which interpolates between the t2/3 behavior in the matter-dominated era and the

exp
(
3
√

ΩΛ
0H0t/2

)
behavior in the era dominated by the cosmological constant.

Einstein–de Sitter models

In the case where the universe is spatially flat and dominated by a fluid with equation of
state p = wε with w constant, eqn (18.16) implies that ε = ε0(a/a0)

−3(1+w), and according to

5The geometry near a space-like singularity can be very different from its homogeneous and isotropic limit
far from the singularity. See the work on this subject by Belinski, Khalatnikov, and Lifshitz, summarized in
Landau and Lifshitz (1971). For recent developments within the larger framework of supergravity theories
see, for example, Damour and Lecian (2011).
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the Friedmann equation (19.5) H = Ω0H0(a/a0)
−3(1+w)/2. If we assume that w 	= −1 (which

corresponds to a nonzero cosmological constant), this equation can be integrated to give

a ∝ tq with q =
2

3(1 + w)
. (19.9)

Using the definition of conformal time dt = adη, we find that a ∝ η2/(1+3w) as long as w 	= −1/3,
and a ∝ eη if w = −1/3.

Strictly speaking, the term Einstein–de Sitter model (1932) refers to the particular model
with p = 0. It therefore assumes that the spatial sections are Euclidean (K = 0) and that the
universe, without a cosmological constant (Λ = 0), contains only a pressure-less fluid. According

to (19.9), a = a0(t/t0)
2/3, where the age of the universe today is given by t0 = 2/(3H0).

19.3 Parameter values

The values of the Hubble constant H0 and the density parameters Ωm
0 , Ω

r
0, and ΩΛ

0 qualita-
tively determining the evolution of the universe in the hot Big Bang model are derived from
a variety of astronomical observations.

Hubble’s law (18.12) relating the luminosity distance and redshift is linear for small
redshifts H0DL ≈ ze and gives H0. The value that astronomers agree upon at present is6

H0 = 100h km/s/Mpc with h ≈ 0.7 (19.10)

(where 1 pc = 3.26 light-years). The corresponding Hubble time 1/H0 is of order 9.78 h−1 ×
109 yrs ∼ 14 billion yrs, and the Hubble radius c/H0 is of order 3000 h−1 Mpc ∼ 4000 Mpc.

The density of electromagnetic radiation is dominated by the black-body radiation of the
microwave background, of temperature

T0 = 2.725 K . (19.11)

The Stefan–Boltzmann law (εCMB
0 = σT 4

0 ) combined with (19.10) then gives the corre-
sponding density parameter (ΩCMB

0 = 8πGεCMB
0 /3H2

0 ). The neutrino temperature and den-
sity are directly related to the photon temperature and density [Tν = Tγ(4/11)

1/3, εν =
21(4/11)4/3εγ/8 for three neutrino families], and so the total radiation density parameter is

Ωr
0 ≈ 4× 10−5 . (19.12)

If pushed beyond linear order using distant supernovae as standard candles, Hubble’s law
can be used to find a relation between Ωm

0 and ΩΛ
0 . As we saw in (18.7), Hubble’s law is

derived from

χg =

∫ t0

te

dt

a(t)
, ze =

a0
ae

− 1 , DL = a0(1 + ze)fK(χg) .

Using the second equation and the definition of the Hubble function H = ȧ/a, we can write
dt/a = da/a2H = −dz/(a0H). The first equation then becomes χg =

∫
dz/(a0H), and if H

6In practice, this determination involves a global fit of all the parameters to the observations. The result
depends in particular on the number of free parameters considered, the data which is chosen, certain features
of astrophysical models, and the statistical analysis. To learn more, see, for example, Peter and Uzan (2009),
Chapters 4 and 7.
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is replaced by (19.5) as a function of a and therefore of z, the third equation becomes, using
(19.7) and neglecting the radiation contribution (Ωr

0 � 1),

H0DL=(1+ze) fK

[∫ ze

0

dz
√

1+(2+Ωm
0 −2ΩΛ

0 )z+(1+2Ωm
0 −ΩΛ

0 )z
2+Ωm

0 z
3

]

, (19.13)

where fK = {sin, I, sinh} for ΩK
0 = 1− (Ωm

0 +ΩΛ
0 ) negative, zero, or positive.

In the redshift range z ≈ [0, 1.5] the limited expansion of (19.13) obtained in (18.12) is
insufficient, and a fit of the integral (19.13) to the observations gives

3ΩΛ
0 − 4Ωm

0 ≈ 1 , ΩΛ
0 − Ωm

0 ≈ 0.4 , (19.14)

according to Perlmutter et al. (1998) or Riess et al. (1998), respectively. Of course, care
must be taken to extract Ωm

0 and ΩΛ
0 separately, but it is clear that ΩΛ

0 , and therefore the
cosmological constant Λ, cannot be zero.7

( (1, 0), Ω0
1
) =Ωm

0

(0.05, 0)

(0.2, 0.8)

L
u
m

in
o
si

ty
 d

is
ta

n
c
e
 H

0
D

L

15

10

5

0

Redshift z

0 1 2 3 4 5

Fig. 19.1 Hubble’s law in the ΛCDM model.

To go further, it is necessary to obtain additional observational data giving either a direct
estimate of the actual cold matter density Ωm

0 , or a relation other than (19.14) between Ωm
0

and ΩΛ
0 . Such a relation is provided by the temperature anisotropy spectrum of the cosmic

microwave background, which constrains ΩK
0 . All the current data are in agreement in giving8

|ΩK
0 | < 10−2 =⇒ Ωm

0 ≈ 0.3 , ΩΛ
0 ≈ 0.7 . (19.15)

Using these values and (19.12), we deduce that when matter and radiation are equally
dominant we have (since Ωm

0 h
2 ≈ 0.15)

7The 2011 Nobel Prize in Physics was awarded to Perlmutter, Schmidt, and Riess for their 1998
discovery of the accelerated expansion of the universe by the observation of distant supernovae. See
http://www.nobelprize.org/nobel-prizes/physics/laureates/2011.

8See, for example, Bahcall, Ostriker, Perlmutter, and Steinhardt (2008).
The discovery of anisotropies in the microwave background radiation and the confirmation of its black-body

spectrum by the COBE satellite launched in 1989 resulted in the 2006 Nobel Prize in Physics being awarded
to Mather and Smoot; see http://www.nobelprize.org/nobel-prizes/physics/laureates/2006/.

Currently, the best constraints on ΩK
0 come from analysis of the anisotropies of the CMB studied by the

Planck satellite launched in 2009; see Planck Collaboration (2013).
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zeq � 3600

(
Ωm

0 h
2

0.15

)
, Teq � 104

(
Ωm

0 h
2

0.15

)
K � 0.85

(
Ωm

0 h
2

0.15

)
eV . (19.16)

It is important to note that this is a temperature accessible in the laboratory, and the physics
at this temperature is well understood.

Finally, we need to estimate the contribution of ordinary, baryonic, matter to Ωm
0 . The

most reliable method is to measure the proportions (relative to hydrogen) of light elements
(helium, deuterium, lithium, and so on) present in the universe. These elements (as shown by
Gamow, Bethe, Hoyle, and Alpher) are products created in the first minutes of the history of
the universe, during primordial nucleosynthesis. As long as the temperature is above several
MeV, no nucleus can be formed because it would undergo instantaneous photodissociation.
Therefore, the universe can contain only protons and neutrons in equilibrium owing to the
weak interaction, and also electrons, neutrinos, and photons as well as their antiparticles.
Starting from the time the temperature of the photon bath becomes of the order of the
deuterium binding energy, T ∼ 0.066 MeV, nuclear synthesis can begin. Since helium is
more stable than deuterium, its production is favored by the nuclear reactions.9 There is no
significant production of heavier elements until much later during stellar nucleosynthesis.10

The proportions which are produced are the result of equilibrium between the rate of
expansion of the universe and the density of protons present. It is found that

Ωb
0h

2 ≈ 2× 10−2 or Ωb
0 ≈ 0.04 , (19.17)

taking h ≈ 0.7. Observations of CMB anisotropies (in particular, the position of the second
acoustic peak) also provide a direct measurement of Ωb

0 . It should be noted that Ωb
0 < Ωm

0 ,
which is evidence in favor of the existence of dark matter.

The results (19.12), (19.15), and (19.17) of the ΛCDM cosmological model are, at the very
least, surprising: the evolution of the universe is governed not, as believed up to the 1980s,
by ordinary matter known in the laboratory, but by cold dark matter of an as-yet unknown
nature, and a cosmological constant whose only ‘natural’ values are either strictly zero as
Einstein favored, or, if it is a ‘vacuum energy’, εΛ � εPlanck, which is in disagreement by more
than 120 orders of magnitude with the value predicted using the measured value of H0.

11

We stress the fact that all the cosmological observations used to determine these param-
eters concern epochs ranging from 0.1 s after the Big Bang to the present day, and involve
only physical processes occurring at energies below 100 MeV, that is, physics at energies well
understood from laboratory experiments and not at all speculative.

9We also note that this model predicts that the number of neutrino families is Nν = 3, which has been
confirmed by accelerator experiments. However, the prediction for the lithium 7 abundance deduced from
primordial nucleosynthesis combined with the observations of CMB anisotropies still disagrees, by a factor
of about 3, with the astronomical observations. See Peter and Uzan (2009) and Weinberg (1972).

10As shown in the B2FH paper of Burbidge, Burbidge, Fowler, and Hoyle (1957).
11We have εPlanck ∼ M4

P and the cosmological value of the vacuum energy is εcosmo ∼ 3ΩΛ
0 H

2
0M

2
P ∼ H2

0M
2
P

using (19.15). Therefore, εPlanck ∼ (MP/H0)2εcosmo.
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Inflationary models of the primordial
universe

The hot Big Bang model described in the preceding chapter leaves certain problems unsolved, in
particular, the problem of fine-tuning the initial conditions so that the universe has the observed
properties, as well as the problem of the origin of large-scale structure.

We shall see that these problems are related to each other, and can be solved by assuming a
period of accelerated expansion in the earliest history of the universe. Since the 1980s, the general
acceptance of this idea of a primordial inflationary phase can be considered as the third phase in
the history of the development of relativistic cosmology.

20.1 The hot Big Bang model: unanswered questions

The ΛCDM model of the hot Big Bang leaves a number of questions unanswered.

• The flatness problem

When the effect of the cosmological constant is not noticeable (as is the case for a � a0,
as seen from the observational data), the Friedmann–Lemâıtre equations (18.15) can also be
written as

Ω− 1 =
K

ȧ2
=

K

(aH)2
,

ä

a
= −4πG

3
(ε+ 3p) , (20.1)

where Ω ≡ 1− ΩK is the density parameter (Ω = 8πGε/3H2).
We see that in the standard model, where ε + 3p > 0 during radiation- or cold matter-

dominated periods, we have ä < 0, and so ȧ = aH decreases with time. Therefore, Ω must
have been very close to 1 just after the Big Bang in order for the spatial sections of the
universe not to be very curved at the present time. In other words, the solution ΩK = 0 is
an unstable fixed point of the dynamics, and so |ΩK

0 | < 10−2 implies that |ΩK | � 1 in the
primordial universe.

More precisely, we have (Ω − 1)/(Ω0 − 1) = (ȧ0/ȧ)
2 = (a0H0/aH)2. Assuming that the

actual universe is dominated by cold matter and neglecting the effect of the cosmological
constant, we find (see Section 19.2) ε ∼ εm ∝ a−3 and (H/H0)

2 ≈ Ωm
0 (a0/a)

3. Moreover, the
scale factor at the radiation–matter transition epoch is given by aeq/a0 ≈ Ωr

0/Ω
m
0 . Therefore,

Ωeq − 1 ≈ −ΩK
0 Ωr

0

(Ωm
0 )

2
, (20.2)

which is of order 10−5 using the parameter values given by recent observations; see Sec-
tion 19.3. Before the transition period, when the universe is radiation-dominated, we have
a ∝

√
t (see Section 19.2) and so ȧ ∝ 1/a, and in the end

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.
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Ω− 1 ≈ (Ωeq − 1)

(
a

aeq

)2

≈ −ΩK
0

Ωr
0

(
T0

T

)2

, (20.3)

where we have used (20.2) and replaced the scale factor by the microwave background tem-
perature using aT = a0T0. For any values of the parameters, Ω is arbitrarily close to 1 near
the Big Bang. For example, during the epoch of primordial nucleosynthesis when T ≈ 0.05
MeV ≈ 5× 108 K, we have Ωnucl − 1 = O(10−14) for the parameter values given by current
observations.

Therefore, the observed flatness of the universe demands a fine-tuning of the curvature
parameter in the primordial universe, which seems rather unnatural.

• The horizon and monopole problems

The cosmological principle requires that the matter present in the universe as a whole
be a perfect fluid of density ε and pressure p, and the Bianchi identities require that it
be conserved (see Section 18.3). As long as the equation of state w = p/ε is constant, the
conservation equation (18.16) implies that

ε ∝ a−3(1+w) . (20.4)

The density therefore decreases in an expanding universe if 1 + w > 0, which is the case for
all known matter.

In the Friedmann–Lemâıtre equation (18.15) the matter contribution (∝ ε) dominates, for
small a, the cosmological constant contribution (∝ a0) and the contribution of the curvature
term (∝ a−2) if 3(1 + w) > 2, or ε + 3p > 0, which is also the case for all known matter.
Therefore, the evolution of the scale factor as a function of the cosmic time t is given by
(19.9):

a ∝ tq with q =
2

3(1 + w)
, where 0 < q < 1 . (20.5)

The history of the universe then necessarily starts with a Big Bang, that is, with a singularity
of the scale factor and also of the curvature. (To learn more about the geometry of spacetime
near a singularity, see the references in footnote 5 of Section 19.2.)

This type of behavior of the scale factor near the Big Bang also leads to the horizon
problem.1 The proper distance traveled since the Big Bang by a photon and therefore by any
causal phenomenon (also referred to as the particle horizon) is given by Dp = a

∫ t
0
dt/a; see

(18.4) and (18.7). If we use (20.5) for the scale factor, the integral converges and

Dp =
t

1− q
=

(
q

1− q

)(
1

H0

)(
T0

T

) 1
q

, (20.6)

where we have used the fact that a = αtq, a0 = α(q/H0)
q, and aT = a0T0, which relates the

scale factor and the microwave background temperature.
Therefore, the spatial sections of the observable universe are at any instant composed

of regions of volume O(D3
p) which are causally independent, but have the same physics

in each owing to the cosmological principle. This is unsatisfying: while the hypothesis of

1See Rindler (1953).
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homogeneity and isotropy of our observable universe seems reasonable, it is clear that these
conditions cannot have been established dynamically. This is therefore a strong but unrealistic
hypothesis about the structure of space in its primordial phase.

To illustrate the possible observational consequences of the existence of a particle hori-
zon, we assume, as predicted by grand unified theories,2 that at the temperature TGUT,
‘monopoles’ of mass MGUT = TGUT are produced at the rate of about one per causal vol-
ume. These massive ‘relics’ are cold matter and therefore are diluted as 1/a3, that is, as T 3.
Their current density is then given by the following, using (20.6) with q = 1/2:

ε0mGUT ≈
(
M

D3
p

)

GUT

(
aGUT

a0

)3

≈
(
TGUT

T0

)4

T0H
3
0 , (20.7)

corresponding to a density parameter of

Ω0
mGUT ≡ 8πGε0mGUT

3H2
0

=
8πG

3

(
TGUT

T0

)4

T0H0 = O(1013) (20.8)

for T0 = 3 K, H0 = 70 km/s/Mpc, and TGUT = 1015 GeV. This is completely excluded by
the observational data, which give Ω0

m total ≈ 0.3. It is therefore necessary to choose one or
the other: either the grand unified theories predicting the formation of such relics, or the
description of the primordial universe given by the hot Big Bang model.

• The problem of the origin of large-scale structure

Another question that the hot Big Bang model leaves hanging is that of the origin of
the large-scale structure in the universe (galaxies, galactic clusters, and also temperature
anisotropies of the cosmic microwave background radiation). We shall put off the discussion
of this topic to Chapters 21 and 22, because it requires study of the evolution of perturbations
of the Friedmann–Lemâıtre metric.

However, the problem can be understood qualitatively as follows.
The ‘proper’ radius of the particle horizon is Dp = t/(1−q) if the scale factor grows as tq,

q < 1. However, the proper size of a fluctuation of a given co-moving size grows as the scale
factor, that is, as tq. We therefore see that sufficiently early in the history of the universe,
any fluctuation has had a size greater than the size of the horizon. It therefore cannot have
been produced by a causal process (see Fig. 20.1). This means that it is impossible within the
standard model to explain the perturbation spectrum giving rise to large-scale structure—it
must be postulated.

The horizon vs. the Hubble radius

The particle horizon defined in (20.6) depends on the history of the universe since its incep-
tion, which is poorly known. Instead, we characterize the ‘size’ of the universe by the Hubble
radius DH = 1/H, where H = ȧ/a is the Hubble parameter. Any physical length λ is associated
with a co-moving length λc which is a constant given by λ = aλc. Similarly, the co-moving
Hubble radius is 1/(aH). A distance is termed sub-Hubble (respectively, super-Hubble) if it is
smaller (larger) than DH:

super-Hubble: λc >
1

aH
, sub-Hubble: λc <

1

aH
. (20.9)

2For a detailed discussion, see, for example, Linde (1990), and also Mukhanov (2005).
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In terms of the co-moving wave number k = 2π/λc, this corresponds to

super-Hubble: k < aH , sub-Hubble: k > aH . (20.10)

The problem of the origin of the large-scale structure of the universe can therefore be stated as
follows. In the hot Big Bang model, the (co-moving) Hubble radius 1/(aH) always grows, while
the co-moving distance between two ‘structures’ (galaxies or hot spots in the CMB anisotropy,
for example) is constant (because they move on geodesics). Sufficiently far in the past, this
distance was therefore larger than the Hubble radius, and it is impossible to see how objects
separated by a distance larger than the ‘size of the universe’ characterized by the Hubble radius
can have statistical properties similar to those observed; see Fig. 20.1.

aH ∝ t q–1 

t

k < aH

super-Hubble sub-Hubble

k

k > aH

(aH)−1 

t

λc

Fig. 20.1 The problem of the origin of large-scale structure when a ∝ tq , 0 < q < 1.

We stress the fact that the Hubble radius is not associated with the notion of causality. It
therefore differs from the concept of horizon. However, if a ∝ tq, with 0 < q < 1 near the Big
Bang, we have Dp = qDH/(1 − q). The Hubble radius and the particle horizon then are of the
same order of magnitude. We anticipate that this does not generalize to the inflationary phase.

20.2 Inflation

• A brief period of accelerated expansion

One way of solving the problems of the hot Big Bang model discussed above is to postulate
the existence of an accelerated primordial expansion phase, or inflation.

If ä > 0 between ti and tf , the co-moving Hubble radius (aH)−1 decreases during this
period; see Fig. 20.2. Moreover, if it decreases enough, the present-day observable universe,
defined as (aH)−1

0 , could have been, in the distant past, smaller than the Hubble radius of
the universe at that time. For this it is sufficient that (aH)−1

0 < (aH)−1
i or

(aH)−1
i

(aH)−1
f

(aH)−1
f

(aH)−1
0

> 1 . (20.11)

During the radiation era a ∝ t1/2, and so (aH)−1 = 1/ȧ ∝ a ∝ T−1, where T is the
temperature of the radiation. In addition, let us assume that the inflation is quasi-exponential,
that is, that H is nearly constant between ti and tf . Then, if for simplicity we ignore the
recent matter-dominated phase, the inequality (20.11) becomes

af
ai

T0

Tf
> 1 or N > ln

Tf

T0
, where we have set eN ≡ af

ai
. (20.12)
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Fig. 20.2 Evolution of the Hubble radius.

Here N is the number of nepers, more commonly referred to as the number of e-folds,
characterizing the duration of the inflationary phase. If we estimate that at the end of inflation
the temperature has risen to grand-unified interaction scales, then Tf ≈ 1028 K. Since T0 �
2.7 K, we obtain roughly N > 65. Therefore, if the inflationary period lasts longer than 65
e-folds, it becomes possible to seek a physical origin of the formation of large-scale structure.3

Inflationary models also solve the horizon problem in the sense that between the beginning
and the end of the inflationary period, the proper distance traveled by a light signal is given
by (for a ∝ eHt)

Dp = a(t)

∫ tf

ti

dt

a(t)
=

1

H

(
eN − 1

)
(20.13)

and is exponentially large compared to the size of the Hubble radius predicted in the standard
model, given in (20.6). For example, if at the end of the inflation monopoles are produced at
the rate of one per causal volume D3

p, their density will remain negligible. Any monopoles
which might have been created before the start of the inflation will be completely dispersed
by the exponential growth of the physical distance separating them. However, it is important
to emphasize the fact that, strictly speaking, the horizon problem persists as long as the
universe has a space-like initial singularity.

Finally, an inflationary phase also solves the flatness problem, because if (aH)−1 de-
creases, then ΩK will tend to 0; cf. (20.1). More precisely, if H is nearly constant between
ti and tf so that a ∝ eHt, we will have, cf. (20.1), |ΩK(tf )/Ω

K(ti)| ∼ [a(tf )/a(ti)]
−2 =

exp(−2N). For N = 65 we find |ΩK(tf )/Ω
K(ti)| ≈ 10−55.

3A more accurate calculation including the matter-dominated era among other things gives N � 62 for
Tf = 1016 GeV; see, for example, Liddle and Lyth (2000).
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• A scalar field as the inflation engine

The Friedmann equation (20.1) tells us that an inflationary phase (such that ä > 0) can
be generated only by the matter equation of state ε+3p < 0. A scalar field provides a simple
and elegant device for accomplishing this.4

Let us therefore add a homogeneous scalar field φ = φ(t) to the matter components of
the universe. Its energy–momentum tensor is, see Section 3.4,

−T 0φ
0 ≡ εφ =

1

2
φ̇2 + V (φ) , T i φ

j ≡ pφδ
i
j =

(
1

2
φ̇2 − V (φ)

)
δij ,

or pφ = wεφ with w =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
,

(20.14)

where V (φ) is the self-interaction potential of the field [V (φ) = m2φ2/2 for a field of mass
m]. It is clear from this expression that the equation of state of the scalar field can vary
between w = +1 if φ̇2 � V and w = −1 if φ̇2 � V .

If the field φ interacts only gravitationally with the other matter fluids, its energy–
momentum tensor is conserved (DμT

μν
φ = 0). This gives the Klein–Gordon equation, which

in the Friedmann–Lemâıtre metric is written as

φ̈+ 3Hφ̇+ Vφ = 0 , where we have set Vφ ≡ dV

dφ
. (20.15)

The Friedmann–Lemâıtre equations (18.15) then become

3H2 = κ

(
1

2
φ̇2 + V (φ) +

εr0a
4
0

a4

)
, 3

ä

a
= κ

(
V (φ)− φ̇2 − εr0

a40
a4

)
, (20.16)

where, since we are interested in the primordial universe, we have neglected the contributions
from the cold matter, the curvature term, and the cosmological constant Λ.

Here we see the role that the scalar field can play. If during the evolution the field is in the
slow-roll regime, φ̇2 � V , it is nearly constant. If this regime lasts a sufficiently long time,
the potential will also become constant and will rapidly dominate the radiation term. The
scale factor then grows quasi-exponentially and the metric becomes ds2 = −dt2 + e2Htd�x2,
which is just the de Sitter metric. During this inflationary period the scalar field can in a
first approximation be treated as a ‘primordial’ cosmological constant Λprim ≡ 3H2 = κV .

However, a cosmological constant can be viewed as a perfect fluid with equation of state
p = wε for w = −1 and ε = Λprim/κ; see (20.4). Therefore, ε+3p is negative and the flatness
and horizon problems, and even the monopole problem, of the standard model can be solved
or, at least, viewed from a new perspective, by relegating the period preceding dominance
by the scalar field to the Planckian limbo of ignorance.5

4Among the precursors of this idea were Englert, Sato, and Starobinsky, and among the pioneers, Guth
(who coined the term ‘inflation’), Linde, Albrecht, and Steinhardt.

5We mention in passing that the cosmological constant present in the ΛCDM model of the hot Big Bang
can also be replaced by a scalar field called ‘quintessence’. For a review of these models, see, for example,
Chongchitnan and Efstathiou (2007).
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• The slow-roll regime

The question then comes down to how to construct a model in which the duration of the
inflation is sufficiently long.

During this phase, the dynamical equations (20.15) and (20.16) reduce to 3H2 = κ( 1
2 φ̇

2+
V ) and φ̈+ 3Hφ̇+ Vφ = 0 (from which we derive the useful relation Ḣ = − 1

2κφ̇
2). They can

be rewritten in terms of the parameters

ε ≡ − Ḣ

H2
=

κ

2

φ̇2

H2
and δ ≡ − φ̈

Hφ̇

as H2 (3− ε) = κV , (3− δ)Hφ̇ = −Vφ .

(20.17)

In the slow-roll approximation where ε � 1 and δ � 1, we have H ≈
√

κV/3, φ̇ ≈
−Vφ/

√
3κV , and Ḣ ≈ −V 2

φ /(6V ), and so the parameters ε and δ can be written as functions
of only the potential:

ε ≈ 1

2κ

V 2
φ

V 2
, δ ≈ 1

2κ

(

2
Vφφ

V
−

V 2
φ

V 2

)

· (20.18)

The number of e-folds, N ≡ ln(af/ai) [see (20.12)] is calculated as a function of the initial

and final values of the field φi and φf using H ≡ ȧ/a = (d ln a/dφ)φ̇, which gives d ln a/dφ =

H/φ̇ = −
√
κ/(2ε), and so

N =

∫ φi

φf

√
κ

2ε
dφ ≈ κ

∫ φi

φf

V

Vφ
dφ. (20.19)

As we saw above, we need approximately N > 60 in order to solve the problems of the hot
Big Bang model.

Therefore, at this stage we need to propose a plausible candidate for the scalar field. In
1981 Alan Guth suggested that it might be the scalar boson of grand unified theories, the same
as that which, in the standard scenario, gives rise to the monopole problem. Unfortunately,
this scenario of ‘old inflation’ is not viable, as it leads to a universe which is much too
inhomogeneous.6

In the following section we shall present a simple model which for the present is consistent
with the observations.

20.3 ‘Chaotic’ inflation

In 1983 A. Linde7 suggested postulating the existence of a scalar field called the inflaton,
which is as simple as possible, that is, free and massive. The evolution equations of the
primordial universe when governed by this field are then simply

3H2 =
1

2
φ̇2 + V (φ) , φ̈+ 3Hφ̇+

dV

dφ
= 0 , V (φ) =

1

2
m2φ2 (20.20)

(where the factor κ = 8πG has been absorbed in a redefinition of the field and the potential).
It is easy to see that the slow-roll parameters (20.18) are given by ε ≈ 2/φ2 and δ ≈ 0.

6As Guth himself showed in Guth (1981).
7Linde (1983).
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Therefore, if initially φ � 1, the field will undergo a slow roll and the approximate solution
of (20.20) will be

φ̈ � 0 , φ̇ � −
√

2

3
m, H � mφ√

6
(φ � 1) , (20.21)

which implies a quasi-exponential expansion of the scale factor. We can indeed integrate
these equations to obtain

φ(t) = φi −
√

2

3
mt , a(t) = ai exp

[
1

4
(φ2

i − φ2(t))

]
. (20.22)

The number of e-folds is given by (20.19) or

N(φi) =
1

4
φ2
i −

1

2
. (20.23)

It is therefore sufficient that φi > 16, that is, φi > 3MP if we restore the units, in order to
have N > 70. The larger φi is, the longer the duration of the inflationary phase.8

At the end of this slow-roll period the scalar field oscillates at the bottom of its potential
well and the approximate solution of (20.20) becomes

φ � 2

√
2

3

sinmt

mt
, H � 2

3t
(φ � 0) , (20.24)

so that the scale factor grows on average as t2/3, as though the universe were dominated by
a pressure-less fluid.

The evolution of the scalar field and the scale factor is shown in Fig. 20.3 for a field
which is initially in the slow-roll regime. If now we allow free initial conditions on φ̇, it can
be shown that the slow-roll trajectory determined by (20.22) is an attractor in the dynamics.
The trajectory in (φ, φ̇) space converges rapidly to this solution, as shown in Fig. 20.3.

Other models

Of course, the basic scenario of chaotic inflation can be refined as much as one wants. The
potentials can be made more complicated, several inflatons can be introduced, and so on.

8This is the origin of the idea (and the term) of chaotic inflation proposed by Linde: the universe can
be imagined as a juxtaposition of independent regions, each governed by (20.20), but with arbitrary initial
values of the field φ (a rather bold hypothesis!). Given this situation, certain regions, like our own, will have
already left the inflationary period, while others are still in it. It can also be argued that the regions where
φi is the largest will ‘inflate’ the most and will exponentially dominate the physical volume of the universe at
the end of the inflation, and so it is probable that most observers will inhabit such a zone. Finally, quantum
fluctuations of the field can be invoked to predict that in certain regions φ will grow, which leads to the
idea of eternal chaotic inflation. However, it must be borne in mind that global cosmic time will disappear
when the universe is represented by an inhomogeneous geometry, and that the concept of probability in this
context is debatable.

A scenario of this type combined with the fact that string theory defined in 10- or 11-dimensional spacetime
predicts a large number of compactifications (10500 . . .), that is, possible fundamental geometries, has led to
the idea of a landscape, in which all these geometries are realized in the universe and selected by inflation,
and the anthropic principle. See Susskind (2009).
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Fig. 20.3 Dynamics of the field and the scale factor for a m2φ2/2 chaotic inflationary model.

At present there exist more than one hundred inflationary models which differ in their
potential, their coupling—minimal or non-minimal—to gravity, and the number of scalar fields
involved.

The simplest models with one field generalize the potential V = m2φ2/2 to power-law
potentials V = λφn. In such models the slow-roll regime is reached at large values of the field
because ε = n2/16πGφ2. Models of the type V ∝ exp

√
16πG/pφ lead to a power-law expansion

a ∝ tp, but have the flaw that they never stop inflating, because ε = δ = 1/p. The class of
models with small field value develop inflation for φ ∼ 0. This is the case of V ∝ 1 − (φ/m)p,
for which it can be shown that δ < −ε.

Among the models with more than one field, we should mention hybrid inflation constructed
using the potential V = λ(σ2 − v2)/4 + g2φ2σ2/2 + V (φ). As long as φ > φc =

√
λv2/g2, the

potential has a valley along σ = 0. The field φ then undergoes a slow roll along this valley until
it reaches φc, where the mass of the field σ, m2 = g2(φ2 − φ2

c), becomes negative, giving rise to
an instability which halts the inflation.9

Exiting inflation

The problem with all inflationary scenarios is how to ‘make a graceful exit’, that is, how
to find a mechanism which converts the field φ into a radiation fluid in order to match this
primordial inflationary evolution to the standard scenario governed by the mixture of radiation,
cold matter, and the cosmological constant. Since the nature of the inflation is unknown, its
couplings to matter are modeled on the ones commonly used in field theory, for example, φ2ψ2,
where ψ stands for ordinary matter. The Klein–Gordon equation of motion for ψ then turns out
to belong to the class of Matthieu differential equations, whose solutions are interpreted as the
production of bursts of particles ψ. This ‘pre-heating’ phase must be followed by a thermalization
period whose mechanisms are still not well understood.10

9See, for example, Lyth and Riotto (1999) for an exhaustive description of inflationary models inspired
by high energy physics.

10This mechanism was introduced in Shtanov, Traschen, and Brandenberger (1995); Kofman, Linde, and
Starobinsky (1997); and Greene et al. (1997).
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Cosmological perturbations

Structures are observed in the universe at all scales—galaxies, groups of galaxies, galactic clusters.
Here we describe the first steps toward an understanding of their formation by studying the evolution
of perturbations at linear order in Friedmann–Lemâıtre spacetimes.

To simplify our discussion we limit ourselves to the textbook case where the spatial sections of the
background space are Euclidean (K = 0), and anisotropic perturbations and entropy perturbations
are absent, which basically means that the matter reduces to a single fluid [see eqns (21.11) and
(21.14) for definitions].

The relativistic and Newtonian theories of cosmological perturbations differ. In the final section
of this chapter we shall discuss the limit in which they converge.

21.1 Perturbations of the geometry

Following the approach adopted in Section 13.2 in our study of gravitational waves, we write
the length element of a perturbed Friedmann–Lemâıtre spacetime as

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2Bidx

idη + (δij + hij)dx
idxj
]
, (21.1)

where the perturbations A, Bi, and hij are 10 functions of η and xi which must be determined
using the Einstein equations. We shall consider only the case K = 0, and so the background
co-moving spatial metric is δij .

As in Section 13.2, we make an SVT (scalar–vector–tensor) decomposition of the pertur-
bations. We then have

Bi = ∂iB +Bi with ∂iB
i
= 0 . (21.2)

Similarly, hij is decomposed as

hij = 2Cδij + 2∂i∂jE + 2∂(iEj) + 2Eij with ∂iE
ij
= 0, E

i

i = 0 . (21.3)

The ten original perturbations are thus replaced by four scalars (A, B, C, and E), two vectors

(B
i
and E

i
) corresponding to 2 × 2 = 4 perturbations, and one tensor (E

ij
) corresponding

to 6 − 1 − 3 = 2 perturbations. Since we are limiting ourselves to linear order, the indices

on these quantities are raised and lowered using δij : B
i
= δijBj . We note that these SVT

quantities (for example, B, the solution of �B = ∂iB
i) are unique only when the boundary

conditions are specified.
To extract the perturbations which remain invariant under a change of coordinates, we

consider the active transformation xμ → x̃μ = xμ + ξμ, with the four components of the
displacement field ξμ decomposed as

ξ0 = T , ξi = Li = ∂iL+ L
i
, (21.4)

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.
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where T and L are two scalars and L
i
with ∂iL

i
= 0 is a vector representing two perturba-

tions.
The metric then transforms as

gμν → g̃μν = gμν − Lξgμν = gμν −Dμξν −Dνξμ = gμν − ∂μξν − ∂νξμ + 2Γρ
μνξρ ,

from which we easily extract A → A−T ′−HT , Bi → Bi+∂iT −L′
i, and hij → hij −∂iLj −

∂jLi−2HTδij (a prime corresponds to differentiation with respect to η, and H = a′/a). The
scalar variables therefore transform as

A → A− T ′ −HT, B → B + T − L′, C → C −HT, E → E − L , (21.5)

and the vector and tensor variables as

B
i → B

i − L
i′
, E

i → E
i − L

i
, Eij → Eij . (21.6)

Therefore, the Bardeen potentials1

Ψ ≡ −C −H(B − E′), Φ ≡ A+H(B − E′) + (B − E′)′, Φ
i ≡ E

i′ −B
i
, E

ij
(21.7)

are gauge-invariant, that is, they are invariant under a change of coordinates. They are made

up of 2 = 4−2 scalars Ψ and Φ, 1 = 2−1 vector Φ
i
corresponding to two perturbations, and

one tensor E
ij

corresponding to two perturbations. These six quantities cannot be made to
vanish by any change of coordinates if they are not zero initially.

The potentials (21.7) become those of Section 13.2 if the scale factor is constant, that is,
for H = 0, because the background space then reduces to Minkowski space.

It is important to stress the fact that these gauge-invariant perturbations are useful, as
they allow the calculations to be simplified and make it easy to pass from one coordinate
system to another. However, they are not quantities which a priori are directly observable.

Linearization of the Einstein tensor

The components of the Einstein tensor of the metric (21.1) are given at linear order by
Gμ

ν = Gμ
ν |FL + δGμ

ν with (when K = 0)

a2δG0
0 = 2

[
3H2A− 3HC′ +
(C +HB −HE′)

]
, (21.8)

a2δG0
i = −2∂i

(
HA− C′)− 1

2

(E

′
i −Bi) , (21.9)

a2δGi
j = ∂i∂j

[
(E′ −B)′ + 2H(E′ −B)− (C +A)

]
+ δij

[

−
(E′ −B)′ − 2H
(E′ −B)

−2C′′ − 4HC′ +
C + 2HA′ +
A+ 2(2H′ +H2)A

]

+δik∂(k

{[
E

′
j) −Bj)

]′
+ 2H

[
E

′
j) −Bj)

]}
+ E

′′i
j + 2HE

′i
j −
E

i
j ,

(21.10)
where 
 is the Euclidean Laplacian.

1These variables were introduced in Bardeen (1980); see also Stewart (1990).
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21.2 Matter perturbations

The perturbations of the energy–momentum tensor (18.14) describing the matter present in
the universe can be written in the general form

δTμν = (δε+ δp)ūμūν + δp ḡμν + 2(ε+ p)ū(μδuν) + p δgμν + a2p πμν , (21.11)

where uμ = ūμ + δuμ is the vector tangent to the geodesics of co-moving observers. The
normalization condition on ūμ (ḡμν ū

ν ūμ = −1) implies that ūμ = a−1δμ0 and ūμ = −aδ0μ.
Since uμ is normalized as gμνu

νuμ = −1, we deduce that 2ūμδu
μ + δgμν ū

μūν = 0 and so
δu0 = −A/a. Defining vi ≡ aδui and uμ = ūμ + δuμ, we then have

δuμ = a−1(−A , vi) , δuμ = a(−A , vk +Bk) , (21.12)

and so (always for K = 0)

δT00 = εa2 (δ + 2A) , δT0i = −εa2 [(1 + w)vi +Bi] ,

δTij = pa2
(
hij +

δp

p
δij + πij

)
,

δT 0
0 = −εδ , δT 0

i = ε(1 + w)[∂i(v +B) + v̄i + B̄i] , δT i
j = δp δij + p π̄i

j ,

(21.13)

after introducing the density contrast δ ≡ δε/ε and setting w = p/ε. It is also usual to
decompose δp as

δp = c2sδε+ pΓ , (21.14)

where cs is the adiabatic speed of sound and Γ is the entropy perturbation.
We can decompose vi into a scalar part and a vector part as

vi = ∂iv + v̄i with ∂iv̄
i = 0 .

The quantity πμν is the anisotropic stress tensor. It is chosen to be traceless (gμνπμν = 0)
because it can be absorbed in the isotropic pressure δp. It is a symmetric tensor orthogonal
to uμ, that is, uμπμν = 0, which implies that π00 = π0i = 0. Its spatial part can then be
decomposed into SVT perturbations as

πij = �ij π̄ + ∂(iπ̄j) + π̄ij with �ij ≡ ∂i∂j −
1

3
δij� .

The ten components of δTμν are therefore regrouped into four scalars (δ, δp, v, π), two
vectors (v̄i, π̄i) representing four perturbations, and one tensor (π̄ij) representing two per-
turbations.

Now we can construct gauge-invariant perturbations of the matter by following the same
procedure as in Section 21.1. Under a change of coordinates (21.4) we have δQ → δQ−LξQ

with LξQ = ξα∂αQ = TQ
′
and δuμ → δuμ−Lξu

μ with Lξu
μ = ξα∂αu

μ− ūα∂αξ
μ. From the

SVT decomposition we then deduce that

δε → δε− ε′T , δp → δp− p′T , v → v + L′ , v̄i → v̄i + L
′
i . (21.15)
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We observe that the quantities π, π̄i, π̄ij , and Γ are gauge-invariant. One can define various
gauge-invariant perturbations of the density contrast, for example,

δN = δ +
ε′

ε
(B − E′) , δC = δ +

ε′

ε
(v +B) . (21.16)

The gauge-invariant pressure perturbations δpN and δpC are defined in the same way.2

Finally, we define the gauge-invariant velocity perturbations as

V = v + E′ , V̄i = v̄i +Bi . (21.17)

In what follows we shall consider only the case of an anisotropic, pressure-less fluid πμν = 0,
and we shall also assume that the entropy perturbation Γ is zero. In this case the speed of
sound is c2s = δp/δε with, we recall, p/ε = w. If, in addition, w is constant, then3 c2s = w.

The Friedmann equations

We shall often need to use the Friedmann–Lemâıtre equations governing the unperturbed
geometry. Here we recall these equations, and give some useful expressions derived from them.
We set w = ε/p and c2s = p′/ε′. In our case where K = Λ = 0 we have

κεa2=3H2, 2H′=−H2(1+3w) , ε′ = −3H(1+w)ε , w′ = −3H(1+w)(c2s−w) . (21.18)

For w = const, a ∝ ηn with n =
2

1 + 3w
, and ε ∝ a−3(1+w).

21.3 Evolution of vector and tensor perturbations

The Stewart–Walker lemma

Under a change of coordinates, any scalar Q transforms as δQ → δQ−LξQ in first order in
the perturbations. Since each vector field ξ engenders a gauge transformation, we conclude that
the only gauge-invariant quantities are those satisfying LξQ = 0 ∀ ξ. This is the Stewart–Walker
lemma. Since the relativistic equations are covariant, they can always be cast in the form Q = 0,
where Q is a tensor field. We thus conclude that it is always possible to write them in linear
order as a function of only gauge-invariant variables.

As we saw in Section 13.2, since scalar, vector, and tensor perturbations decouple at linear
order, each sector can be treated independently. The Stewart–Walker lemma then allows us to
study them in any particular gauge, for example, the gauge in which B = E = Ēi = 0, where
scalar and vector perturbations reduce to A = Φ, C = −Ψ, and B̄i = −Φ̄i; δ = δN , v = V , and
v̄i = V̄i − Φ̄i; see (21.7), (21.16), and (21.17).

2Of course, these variables are not independent: δC = δN + ε′
ε
V .

3These approximations are not always good. For example, the anisotropic pressure of the photons and
neutrinos should be taken into account, which requires adopting a kinetic approach and writing down a
perturbed Boltzmann equation [see Peter and Uzan (2009), Chapter 7]. Moreover, topological defects and
magnetic fields produce a nonzero anisotropic pressure. The entropy perturbation Γ is zero for a perfect fluid,
but not for a mixture (for example, a matter–radiation fluid). See Peter and Uzan (2009), Chapter 5 for a
more general discussion (K = 0, nonzero πij and Γ, a mixture of fluids).
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The vector perturbations are the easiest to deal with. (We recall that we are assuming that
there are no anisotropic matter perturbations, πμν = 0, and no entropy perturbation, Γ = 0,
that the spatial sections are Euclidean, K = 0, and that Λ = 0.) The conservation equation
δ[DνT

μν ] = 0 contains only a single vector component (the vector part of the Euler equation),
which is written as

V̄ ′
i +H

(
1− 3c2s

)
V̄i = 0 . (21.19)

Two other equations come from the 0i and ij parts of the Einstein equations which, using
(21.9), (21.10), and (21.18), reduce to

�Φi = −6H2(1 + w)V̄i , Φ
′
i + 2HΦi = 0 . (21.20)

Equation (21.20) gives Φi = f(xk)a−2 and V̄i = −Δf [6H2a2(1 + w)]−1, and using the
Friedmann equations (21.18) we can verify that (21.19) is satisfied identically. If, in addition,
c2s < 1/3, the vector perturbations will be damped out during the expansion and will play
only a negligible role in the formation of large-scale structure in the universe (as long as π̄i

is zero).
The case of tensor perturbations is more interesting. These appear only in the transverse,

traceless part of the spatial components of the Einstein equations, δGij = κδTij [see (21.8)–
(21.10) and (21.13)], which are written as (for K = π̄i

j = 0)

E
′′
kl + 2HE

′
kl −�Ekl = 0 . (21.21)

This is a propagation equation similar to that for gravitational waves derived in Section 13.2,
but with a damping term due to the cosmological expansion.

Let us consider a Fourier mode Ēij(η, x
k) = Ēij(η) e

ikkx
k

and assume that the scale
factor behaves as a ∝ ηn, where n is related to the equation of state of the cosmic fluid as
n = 2/(1 + 3w); see (21.18). Equation (21.21) then takes the form

d2Eij

dx2
+

2n

x

dEij

dx
+ Eij = 0 , (21.22)

with x ≡ kη, the solution of which is

Eij = x1/2−n
[
Aij Jn− 1

2
(x) +Bij Nn− 1

2
(x)
]
, (21.23)

where Aij and Bij are two constant, transverse, traceless tensors and Jν and Nν are Bessel
functions (see the following box). The solution which is regular for x → 0 is the growing
mode: Eij = x1/2−nJn−1/2(x)Aij . Therefore, as can also be seen directly from (21.22), the

mode Eij(η) is constant as long as it is a super-Hubble mode (kη < 1), then it undergoes
damped oscillations as soon as it becomes sub-Hubble (see Fig. 21.1).
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ln x ln x

ĒijĒij

Fig. 21.1 Evolution of gravitational waves in a radiation-dominated universe n = 1 (left) and a

matter-dominated universe n = 2 (right).

Bessel functions

The Bessel functions Zν(z) are solutions of the differential equation

d2Zν

dz2
+

1

z

dZν

dz
+

(

1− ν2

z2

)

Zν = 0 . (21.24)

The Bessel functions of the first (Jν) and second (Nν) kinds are two independent solutions of
this equation. We also define the Hankel functions

H(1)
ν (z) = Jν(z) + iNν(z) , H(2)

ν (z) = Jν(z)− iNν(z) .

They satisfy the recursion relations

zZν−1 + zZν+1 = 2νZν , Zν−1 − Zν+1 = 2Z′
ν .

Near z = 0 they behave as

Jν(z) ∼
1

Γ(ν + 1)

(z

2

)ν

, Nν(z) ∼
1

Γ(−ν + 1) sin νπ

(z

2

)−ν

,

while at infinity

J±ν(z) ∼ −
√

2

πz

Γ
(
ν + 3

2

)

Γ
(
ν − 1

2

) sin
(
z ± π

2
ν − π

4

)
,

N±ν(z) ∼ −
√

2

πz

Γ
(
ν + 3

2

)

Γ
(
ν − 1

2

) cos
(
z ± π

2
ν − π

4

)
,

H(1)
ν (z) ∼

√
2

πz
ei(z−

π
2
ν−π

4 ), H(2)
ν (z) ∼

√
2

πz
e−i(z−π

2
ν−π

4 ).
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21.4 Evolution of scalar perturbations

The equations of motion of the scalar perturbations follow from the Einstein equations and
the conservation of the energy–momentum tensor. Owing to the Bianchi identities, these
equations are not independent, but from the technical point of view they are all useful.

The Stewart–Walker lemma assures us that they can be written in terms of gauge-
invariant quantities. We can therefore either start from the general metric (21.1) and show
that the equations involve only the variables (21.7), which is an excellent exercise, or we
can from the beginning work in a particular gauge. We shall adopt the second approach and
work in the Newtonian gauge defined by the condition B = E = 0. Then from (21.7) we have
A = Φ and C = −Ψ, and so the metric for the scalar perturbations is

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + (1− 2Ψ)δijdx

idxj
]
. (21.25)

The scalar part of the Einstein equations gives four equations. The combinations δG0
0 +

3H∂−1
i δG0

i , the traceless part of δGi
j , δG

0
i , and δGi

i + 3c2sδG
0
0 prove the most useful. First,

using (21.8)–(21.10), (21.13), and (21.18), we obtain two constraint equations which, in our
case where K = Λ = 0, π̄i

j = Γ = 0, can be written as

�Ψ =
3H2

2
δC and Ψ− Φ = 0 , (21.26)

where the density contrast δC was defined in (21.16). Next we have

Ψ′ +HΦ = −3H2

2
(1 + w)V , (21.27)

where the velocity perturbation V was defined in (21.17). Then, using Ψ = Φ,

Φ′′ + 3H
(
1 + c2s

)
Φ′ + 3H2(c2s − w)Φ− c2s�Φ = 0 . (21.28)

The conservation equations give a continuity equation obtained starting from uμDνT
μν = 0:

(
δN

1 + w

)′
= −�V + 3Ψ′, (21.29)

where the density contrast δN = δC − (ε′/ε)V = δC +3H(1+w)V [from (21.18)] was defined
in (21.16), and an Euler equation obtained starting from (gμα + uμuα)DνT

μν = 0:

V ′ +HV = −Φ− c2s
1 + w

δC . (21.30)

After decomposing the perturbations in Fourier modes, these equations lead to second-order
linear ordinary differential equations. The unknowns are Φ, Ψ, V , and δC . Once Φ is known
from the solution of (21.28), we trivially have Ψ = Φ. Then we extract δC algebraically
from the Poisson equation (21.26). Equation (21.27) then gives V . The conservation equa-
tions (21.29) and (21.30) are redundant: they follow from (21.26)–(21.28), as can be shown
explicitly using the Friedmann equations (21.18).



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 627 — #639

Chapter 21: Cosmological perturbations 627

To solve (21.28) we need to have an equation of state w ≡ p/ε. If we assume that w is
constant, which according to (21.18) implies that c2s = w, and a ∝ ηn with n = 2/(1 + 3w),
then (21.28) reduces to (for w �= 0)

d2Φ

dy2
+

6(1 + w)

1 + 3w

1

y

dΦ

dy
+Φ = 0 with y ≡

√
w kη , (21.31)

where k is the comoving wave number of the Fourier mode. The solutions of this equation
are the Bessel functions (see Section 21.3)

Φ = x−ν [C1Jν(y) + C2Nν(y)] with ν =
5 + 3w

2(1 + 3w)
. (21.32)

The Poisson equation (21.26) and then eqn (21.27) [or (21.30)] give the density contrast and
the velocity perturbation:

δC = − (1 + 3w)2

6w
y2Φ ,

√
w kV = − (1 + 3w)2

6(1 + w)
y2
[
dΦ

dy
+

2

1 + 3w

Φ

y

]
. (21.33)

In the radiation era when w = 1/3, the solutions (21.32) and (21.33) become simply

Φ =
1

y2

[
Φ+

(
sin y

y
− cos y

)
+Φ−

(
cos y

y
+ sin y

)]
,

√
3kV = −y

2

(
y
dΦ

dy
+Φ

)
, δC = −2y2Φ , δN = −2

[
y
dΦ

dy
+ (1 + y2)Φ

]
,

(21.34)

where we have also given the expression for δN = δC + 3H(1 + w)V ; cf. (21.16). The super-
Hubble modes (y � 1) which dominate in the end correspond to Φ− = 0. Their long-term
behavior is shown in Figs. 21.2 and 21.3.
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Fig. 21.2 Evolution of the Bardeen potential and the velocity (the case of a radiation fluid).
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Fig. 21.3 Evolution of the density contrasts.
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Let us conclude with the even simpler case of a pressure-less matter fluid w = c2s = 0. In
this case a ∝ η2, H = 2/η, and the solution of (21.28), which reduces to Φ′′ + 6Φ′/η = 0, is
found immediately:

Φ = Φ+ +
Φ−
x5

with x ≡ kη . (21.35)

Equations (21.26)–(21.30) then give

δC = −1

6
x2Φ = Ca+

D

a3/2
and − kV =

1

3
Φ+x− 1

2

Φ−
x4

. (21.36)

Therefore, for the growing mode we have δCmat ∝ a, independently of the wavelength, which
corresponds to the Newtonian result;4 see Book 1, Section 16.4.

Matching of the perturbations in different eras

Using (21.28) as well as the Friedmann background equations (21.18) (after passing to Fourier
space), it can be verified that the quantity

ζ ≡ Φ+
2

3H
Φ′ +HΦ

1 + w
is such that ζ′ = −2

3

H
1 + w

c2s

(
k

H

)2

Φ . (21.37)

The evolution of the super-Hubble modes (k/H � 1) therefore has ζ as the first integral, that is,
ζ = const. This conserved quantity is very useful for following the evolution of the perturbations.

As an example, let us consider the evolution of the gravitational potential as the equation of
state of the cosmic fluid changes. We assume that w passes from w1 for η < η∗ (the first era) to w2

for η > η∗ (the second era). During each phase, a ∝ tqi ∝ ηni with ni = qi/(1− qi) and 1+wi =
2/(3qi). The general solution of (21.28) in each era then is Φ = H

a2

[
A− +A+

∫
a2(1 + w)dη

]
,

where A+ and A− are two constants characterizing the growing and decaying modes. If we assume
that the decaying mode in the first era is negligible at η∗, then Φ(η < η∗) ∼ A+ (1 + w1) q1/(q1+
1) = 2A+/[3(1 + q1)]. For η � η∗, it is the growing mode in the second era which dominates:
Φ(η � η∗) ∼ 2A+/[3(1 + q2)]. The conservation of ζ then implies that

Φ(η � η∗)

Φ(η < η∗)
=

1 + q1
1 + q2

. (21.38)

For the matter–radiation transition, q changes from q1 = 1/2 to q2 = 2/3, and so
Φ(ηηeq)

Φ(η<ηeq)
= 9

10

for the super-Hubble modes.

4We recall that here we are limiting ourselves to the particularly simple case where the spatial sections
are Euclidean (K = 0), and the cosmological fluid has zero anisotropic pressure (πμν = 0) and zero entropy
(Γ = 0). This has in fact restricted us to the case where a single fluid dominates, and, moreover, in the end
we have assumed that its equation of state is p/ε = w = const.

However, it is just as easy to analytically study the more realistic case of a mixture of photon, neutrino,
baryon, and cold dark matter fluids, with the baryons and photons initially coupled. See, for example,
Mukhanov (2005) or Langlois (2003).

To get an idea of how the anisotropies of the cosmic microwave background created by these perturbations
are calculated, see, for example, Uzan, Deruelle, and Riazuelo (2000), where the anisotropic pressure of
possible topological defects is also included, and a simplified numerical code for calculating the microwave
background anisotropies is given.

In order to be useful for analyzing the observational data, the evolution of the perturbations and
anisotropies of the cosmic microwave background needs to be calculated within the framework of the kinetic
theory using efficient numerical codes. On this subject see, for example, Peter and Uzan (2009), Chapter 6.



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 629 — #641

Chapter 21: Cosmological perturbations 629

21.5 The sub-Hubble limit

Let us focus on the regime of small wavelengths in a universe dominated by a pressure-
less fluid (w = 0) and a cosmological constant. This regime is relevant to understanding the
growth of large-scale structure in the universe. As we have seen in Fig. 21.3, in this regime all
gauges become identical, and the evolution equation of the density perturbations is written
as (the dot denotes the derivative with respect to the cosmic time t with dt = a dη)

δ̈ + 2Hδ̇ = 4πGεδ , (21.39)

where we recall that δ = δε/ε. This expression is obtained from the conservation equations
(21.29) and (21.30) (which do not depend on the presence of a cosmological constant, and
where Ψ′ can be neglected), namely, δ̇ = k2V/a and V̇ + HV = −Φ/a, together with the
constraint equation (21.26), which in the general case is written as −k2Φ = κa2εδ/2. This is
the same equation as that governing the evolution of the density contrast in the Newtonian
theory of cosmological perturbations; see Book 1, Section 16.4.

The general solution of (21.39) is

δ(x, t) = D+(t)ε+(x) +D−(t)ε−(x) ,

where the two functions ε+(x) and ε−(x) are determined by the initial conditions. The
functions D± are two independent solutions of

D̈ + 2HḊ − 3

2
H2(t)Ωm(t)D = 0 , (21.40)

where we have used the fact that 4πGεm(t) = 3
2H

2Ωm(t). In the particular case of the

Einstein–de Sitter universe [Λ = K = 0, Ωm(t) = Ωm
0 = 1 so that a ∝ t2/3], we find that

D+(t) ∝ t2/3 ∝ a and D−(t) ∝ t−1 ∝ a−3/2, as in the Newtonian theory.
It is convenient to use the scale factor x = a/a0 as the time variable. Since Ωm(t) =

Ωm
0 x−3(H0/H)2, we deduce that

d2D

dx2
+

(
1

H

dH

dx
+

3

x

)
dD

dx
− 3

2

Ωm
0

x5

(
H0

H

)2

D = 0 . (21.41)

We can then check that D− = H is indeed a solution as long as the growing mode is given by

D+(x) =
5

2

H

H0
Ωm

0

∫ x

0

dx′

[x′H(x′)/H0]3
. (21.42)

The arbitrary normalization coefficient has been fixed so as to recover D+ = a/a0 for
Einstein–de Sitter space. In general, this integral must be calculated numerically. However,
in the case of a universe with Euclidean spatial sections containing only pressure-less matter
and a cosmological constant (K = w = 0, Λ �= 0), the scale factor a(t) is given by (19.8) and
we obtain

D+(t) = a(t)2F1

[
1,

1

3
;
11

6
;− sinh2

(
3αt

2

)]

= 2F1

[
1,

1

3
;
11

6
;− ΩΛ

0

Ωm
0 (1 + z)3

]
1

1 + z

(21.43)

with α = H0

√
ΩΛ

0 =
√

Λ/3, where 2F1 is a hypergeometric function (see Fig. 21.4).
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a/a0 

D
+

 (
a
)  

  0.4

  0.2

0.2 0.4 0.6 0.8 1

0.6

0.8

1.0

(Ω0 , Ω0) = (1, 0)
m

(Ω0 , Ω0) = (0.5, 0)
m

(Ω0 , Ω0 ) = (0.3, 0.7)
m

Λ

Λ

Λ

Fig. 21.4 Growth rate of the density perturbation.

The Newtonian continuity equation, see Book 1, Section 16.4, implies that the divergence
of the velocity field is given by ∇ · u = −aδ̇. Since δ ∝ D(t), this implies that

θ(x, t) ≡ (aH)
−1∇ · u = −f(Ωm

0 ,Ω
Λ
0 )δ with f(Ωm

0 ,Ω
Λ
0 ) ≡

d lnD(a)

d ln a
. (21.44)

The quantity θ represents the local fluctuation of the Hubble expansion rate. Since �Φ =
κa2εδ/2, we have ∇·u = −faHδ = −(faH/4πGεma

2)∇·∇Φ, from which, after integration,
we find that the velocity field takes the general form

u = −2

3

f+(Ω
m
0 ,Ω

Λ
0 )

aHΩm
0

∇Φ+∇∧U , (21.45)

where U is an arbitrary function representing the vorticity of the fluid. The Euler equation
can be used to check that the vorticity does not have a source and that it is attenuated by
the expansion. For an Einstein–de Sitter universe, we can also verify that

f+ = 1 , u+ = −t1/3∇Φ , f− = −3

2
, u− = t−

1
3∇Φ . (21.46)

Therefore, the growing mode corresponds to a velocity field describing particles falling into
the potential wells, which enhances the density contrast, while the decaying mode corresponds
to a configuration where the fluid escapes from the potential wells, thereby erasing the density
contrasts.

Finally, the gravitational potential is given by the Poisson equation �Φ = 4πGεma
2δ

and evolves as Φ ∝ D+(t)/a(t). It is therefore constant in an Einstein–de Sitter universe,
as we have already seen in (21.35). In the general case the gravitational potential decreases
with time. The typical amplitude of the density fluctuations is usually characterized by the
quantity σ8 giving the variance of δ in a sphere of radius 8h−1 Mpc. The Poisson equation can

be used to find the typical amplitude of the gravitational potential: σΦ = 3
2Ω

m
0

(
8 Mpc

H−1
0

)2
σ8.

Therefore, σΦ ∼ 10−5 if σ8 ∼ 1. This tells us that even if the density contrast becomes
of order unity, which corresponds to a nonlinear regime for the matter, the gravitational
potential will remain weak.
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These results can be used to relate the relativistic perturbation theory to the Newtonian
theory. They make it possible to include a spatial curvature and a cosmological constant,
and put the perturbation theory on a transparent footing.5

Nonlinear structures form over the course of time, and to understand them we need to
resort to other techniques (higher-order perturbation theory or numerical simulations).

5The foundations were first laid by Lifshitz (1946).
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Primordial quantum perturbations

Perturbation theory can be used to understand how large-scale structures evolve, but it is not predic-
tive if the initial conditions are not determined. The goal of this chapter is to show that fluctuations
of quantum origin are generated during inflation and that this process supplies initial conditions
compatible with the observations. These fluctuations are therefore an important prediction of infla-
tionary models.

22.1 Perturbations during inflation

We recall that during inflation the equations describing the dynamics as a function of con-
formal time are (see Section 20.2)

κφ′2 = 2(H2 −H′) , κ a2V = 2H2 +H′ =⇒ φ′′ + 2Hφ′ + a2Vφ = 0 ,

with Vφ ≡ dV/dφ and κ = 8πG ≡ 8π/M2
P, where MP is the Planck mass (in units where

c = � = 1).
The study of perturbations during inflation follows the same lines as in Chapter 21. We

must first find the perturbation of the energy–momentum tensor of the scalar field. For this
we decompose the field φ into a homogeneous part and a perturbation, φ = φ(t) + δφ(xi, t).
Inserting this decomposition into eqn (3.27) for the energy–momentum tensor, we find

δTμν = 2∂(νφ∂μ)δφ−
(
1

2
gαβ∂αφ∂βφ+ V

)
δgμν

−gμν

(
1

2
δgαβ∂αφ∂βφ+ gαβ∂αδφ∂βφ+ Vφδφ

)
.

Since the perturbed metric is decomposed as in (21.1), we have

a2δT 0
0 = −φ′δφ′ − a2Vφδφ+Aφ′2 , a2δT i

j =
(
φ′δφ′ − φ′2A− a2Vφδφ

)
δij , (22.1)

and
a2δT 0

i = −∂i (φ
′δφ) , a2δT i

0 = ∂i
(
φ′δφ+Bφ′2)+B

i
φ′2. (22.2)

The perturbation of the scalar field δφ is not invariant under the coordinate change (21.4),
δφ → δφ − φ′T , and so, owing to (21.5), it is possible to construct various gauge-invariant
perturbations of the field φ, for example,

χ = δφ+ φ′(B − E′) , Q = δφ− φ′C

H , (22.3)

which are related as Q = χ+ φ′Ψ/H. Here χ represents the fluctuation of the scalar field in
the Newtonian gauge (in which E = B = 0).
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Let us quickly take a look at the vector perturbations. Using (21.9) and (21.10), the vector
parts of the Einstein equations δGi

j = 0 and δG0
i = 0 give

Φ
′
i + 2HΦi = 0 , �Φi = 0 . (22.4)

The second of these means that Φi can only depend on the time, and the first implies that
it must decrease as a−2. There is therefore no vector perturbation. The difference from the
fluid case should be noted; cf. (21.20).

The case of gravitational waves is more interesting. As for a fluid, there is only a sin-
gle equation coming from the transverse, traceless part of the spatial component of the
Einstein equations. It is therefore identical to (21.21) because the spatial part of the energy–
momentum tensor (22.1) is a pure trace. Introducing the auxiliary variable [see (13.10)]

√
8πGμλ ≡ aEλ , (22.5)

where λ = +,× indicates the polarization, (21.21) can be rewritten as

μ′′
λ −�μλ − a′′

a
μλ = 0 . (22.6)

Therefore, the two polarizations are decoupled and satisfy the same propagation equation.
The equations of motion for the three scalar perturbations Φ, Ψ, and χ are obtained by

writing the linearized Einstein equations in Newtonian gauge (where B = E = 0). Using
eqns (21.8)–(21.10), (22.1), and (22.2), they can be written as

−3HΨ′ +�Ψ =
κ

2
(φ′χ′ + 2a2V Φ+ a2Vφχ) ,

Ψ′ +HΦ =
κ

2
φ′χ ,

Φ = Ψ .

(22.7)

The first is the 00 component, the second is the 0i component, and the third is the traceless
part of the ij component (and we see that the equation supplied by the trace is redundant).
The last two equations are constraints. When they are substituted into the first, we arrive at
the single equation governing the only remaining dynamical perturbation, that is, Φ. Using
the background equations recalled at the beginning of this section, this equation can be
written in various equivalent forms, for example,1

Φ′′ + 2

(
H− φ′′

φ′

)
Φ′ + 2

(
H′ −Hφ′′

φ′

)
Φ−�Φ = 0 (22.8)

or

u′′ − θ′′

θ
u−�u = 0 with θ ≡ H

aφ′ and u ≡ a

φ′Φ (22.9)

or also (after some algebra using the constraints)

1See Mukhanov, Feldman, and Brandenberger (1992); Sasaki (1983); and Kodama and Sasaki (1984).
These equations should be compared with eqns (21.26)–(21.28) describing the evolution of the perturbations

when the matter is a fluid.
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v′′ − z′′

z
v −�v = 0 with z ≡ aφ′

H and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v ≡ a

(
φ′

HΨ+ χ

)
=

2

κz

(
a2Φ

H

)′

⇐⇒ �Φ =
κ

2

φ′2

H
(v
z

)′
.

(22.10)

The qualitative behavior of the solutions for Φ can easily be seen from (22.9) and (22.10).
When the spatial variations of Φ (or u or v) dominate the time variations (the sub-Hubble
regime), their Fourier modes behave as harmonic oscillators. In the super-Hubble regime, on
the other hand, the perturbations are zero modes which no longer depend on the time and
are the sum of a growing and a decaying mode. (See Section 22.4 below on the quantitative
study of the solution for v.)

Of course, perturbations other than Φ may be interesting to study, for example, the
curvature perturbation

Rc = −Ψ− Hχ

φ′ = −v

z
with R′

c = − 2H
κφ′2�Φ . (22.11)

Just like the perturbation ζ introduced in (21.37) (in fact, Rc = −ζ), it is useful for studying
the evolution of the perturbations in the super-Hubble regime because then it is constant.
Moreover, since Ψ = −C −H(B − E′) and χ = δφ+ φ′(B − E′) [see (21.7) and (22.3)], Rc

is related to the metric and scalar field perturbations as

Rc = C − H
φ′ δφ . (22.12)

Similarly, we can introduce

Ac ≡ Φ− 1

a

(
aχ

φ′

)′
= A− 1

a

(
aδφ

φ′

)′
, (22.13)

and so Rc and Ac are identified as the perturbations C and A of the metric in the co-moving
gauge where δφ = 0.

We end by noting that when φ′ = 0, the universe is described by a de Sitter space. The
Einstein equations then imply that Φ = Ψ = 0, and the fluctuations of the field φ are not
coupled to the geometry. The equations above are therefore only valid for φ′ �= 0.

22.2 The action of the perturbations

Another method of deriving the equations of motion of the perturbations is to start from
the action of general relativity coupled to a scalar field, corresponding to the Lagrangian√−g(R/2κ − ∂μφ∂

μφ/2 − V ), and expand to second order in the metric and scalar field
perturbations.2 The calculation is greatly simplified by treating the scalar, vector, and tensor
perturbations separately and using the Newtonian gauge.

2When a = 1, we of course recover the action of the perturbations in Minkowski spacetime obtained in
Section 13.2. The action of the perturbations of FLRW spacetime is derived in detail by Mukhanov, Feldman,
and Brandenberger (1992).
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For the vector perturbations the action at second order is

δ(2)S(V) =
1

4κ

∫
d4x a2∂iΦ̄j∂

iΦ̄j , (22.14)

whose extremization indeed gives (22.4).
As far as gravitational waves are concerned, we recall that μ is defined in (22.5) and we

obtain

δ(2)S(T) =
1

2κ

∫
d4x a2

(
Ē′

ijĒ
′ij − ∂kĒij∂

kĒij
)

=
1

2

∑

λ

∫
d4x

[
(μ′

λ)
2 − ∂iμλ∂

iμλ +
a′′

a
μ2
λ

]
.

(22.15)

It is easily seen that extremization with respect to Eij or μλ again gives (21.21) or (22.6),
respectively.

For the scalar modes we find

δ(2)S(S)=
1

2κ

∫
d4x a2[−6Ψ′2−12HΦΨ′−2∂iΨ(2∂iΦ−∂iΨ)−2(H′+2H2)Φ2

+κ(χ′2 − ∂iχ∂
iχ− a2V,φφχ

2 + 6φ′Ψ′χ− 2φ′χ′Φ− 2a2VφΦχ)] .

(22.16)

The action and evolution equations of the scalar modes

It is a rather tedious exercise to show that the extremization of the action (22.16) relative
to the three variables Φ, Ψ, and χ again gives the equations of motion found in Section 22.1. It
can be checked that the variation with respect to Φ gives

2
Ψ− 6HΨ′ − (φ′χ′ + 2a2V Φ+ a2Vφχ) = 0 , (22.17)

which is just the first equation in (22.7). The variation with respect to χ gives

χ′′ + 2Hχ′ −
χ+ a2Vφφχ− φ′(Φ′ + 3Ψ′) + 2a2VφΦ = 0 , (22.18)

and the variation with respect to Ψ gives


(Φ−Ψ) = 3(a2F )′/a2 with F = κφ′χ/2− (Ψ′ +HΦ) . (22.19)

Then some further manipulations are needed (a computer algebra program is useful):
(1) We write χ in terms of F , Φ, and Ψ: χ = (2/κφ′)(F +Ψ′ +HΦ).
(2) We extract Φ as a function of F and Ψ from (22.19) and then find χ in terms of F and Ψ.
(3) Now it is possible to express (22.17) in terms of only F and Ψ, to isolate Ψ′′, and thus

to calculate Ψ′′′ as a function of F and Ψ.
(4) Replacing χ and Φ in (22.18) by their expressions obtained in steps (1) and (2), we obtain

an equation involving F and Ψ . . .Ψ′′′.
(5) Finally, we replace Ψ′′ and Ψ′′′ by the expression obtained in step (3), and find 
F = 0,

or F = 0. We thereby recover the second equation in (22.7), and (22.19) reduces to the third
equation in (22.7): Φ = Ψ.

This shows that the gauge can be fixed before varying the action.

B
o
o
k
3



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 636 — #648

636 Book 3. Part IV: Friedmann–Lemâıtre solutions and cosmology

If we now substitute into (22.16) the constraints Φ = Ψ and Ψ′+HΦ = κφ′χ/2, it can be
shown3 (after a lengthy calculation) that this action can be rewritten as a function of only
v ≡ a (φ′Ψ/H+ χ) (up to total derivatives):

δ(2)S(S) =
1

2

∫
d4x

[
(v′)

2 − δij∂iv∂jv +
z′′

z
v2
]
≡
∫

LSd
4x . (22.20)

The extremization of this action does indeed again give (22.10). This displays the special
status of the perturbation v, whose action is identical to that of a scalar field of variable
mass propagating in Minkowski spacetime.

It is clear that the actions (22.15) and (22.20) for gravitational waves and the scalar mode
are analogs of each other (we can pass from one to the other simply by exchanging z′′/z and
a′′/a). We can therefore focus our attention on the evolution of the scalar modes.

22.3 Determination of the initial conditions

The evolution equation of the scalar modes (22.10) is a second-order differential equation
whose solutions depend on two initial conditions. In Fourier space it is written as

v′′k +

(
k2 − z′′

z

)
vk = 0 (22.21)

and its general solution is

v(ki, η) = A(ki)v↑(k
i, η) +B(ki)v↓(k

i, η) ,

where v↑ and v↓ are two linearly independent solutions. Inflationary theory is said to be
predictive because it suggests a way of determining the constants A(ki) and B(ki).

We recall that during inflation, the wavelength of each Fourier mode grows more quickly
than the comoving Hubble radius, so that each mode is sub-Hubble at the start of the
inflation (see Fig. 22.1). It is in this regime where k2 � z′′/z, which does not exist in the
standard model of the hot Big Bang, that the initial conditions will be fixed by quantizing
the perturbation v.

aH α exp Ht

t

k < aH
super-Hubblesub-Hubble

k

k > aH
sub-Hubble

k > aH

aH α t q–1

Fig. 22.1 Evolution of a co-moving mode k and the co-moving Hubble radius during the inflationary

and hot Big Bang phases.

3Mukhanov and Chibisov (1981).
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The action (22.20) for v is the canonical action of a scalar field of variable mass m2 =
−z′′/z in a Minkowski spacetime with the standard quantization.4

In the Heisenberg representation, the field v(xi, η) is promoted to the status of a quantum
operator which, upon second quantization, can be decomposed as

v̂(xi, η) =

∫
d3k

(2π)3/2

[
vk(η)e

ikjx
j

âk + v∗k(η)e
−ikjx

j

â†k

]
, (22.22)

where â†k and âk are the creation and annihilation operators, and the modes vk are solutions
of (22.21).

The first step in the canonical quantization is to introduce the conjugate momentum
π = ∂LS/∂v

′ = v′, where LS was defined in (22.20). Then π is also promoted to operator
status, and the Hamiltonian takes the form (omitting the hats)

H =

∫
(v′π − LS) d

3x =
1

2

∫ (
π2 + δij∂iv∂jv −

z′′

z
v2
)
d3x . (22.23)

The operators v̂ and π̂ must satisfy the commutation relations

[v̂(xi, η), v̂(yi, η)] = [π̂(xi, η), π̂(yi, η)] = 0 , [v̂(xi, η), π̂(yi, η)] = iδ(xi − yi) (22.24)

on any hypersurface of constant time.

The equation of motion for v̂ is given by the Heisenberg equations v̂′ = i
[
Ĥ, v̂
]
and

π̂′ = i
[
Ĥ, π̂
]
and is just (22.21).

Just as in quantization in Minkowski spacetime, the creation and annihilation operators
satisfy the commutation relations

[âk, âk′ ] = [â†k, â
†
k′ ] = 0 , [âk, â

†
k′ ] = δ(k− k′) . (22.25)

These relations are compatible with (22.24) if vk is normalized as

W (k) ≡ vkv
′∗
k − v∗kv

′
k = i , (22.26)

because [v̂(xi, η), π̂(yi, η)] =
∫

d3k
(2π)3 e

ikj(x
i−yi)W (k). This condition does not determine vk

completely, because uk = αkvk + βkv
∗
k is also normalized if |αk|2 − |βk|2 = 1. We therefore

require that the sub-Hubble modes, that is, the modes of frequency high compared to the
Hubble expansion rate, for which (22.21) reduces to v′′+k2vk = 0, be the positive-frequency
modes:

vk(η) →
1√
2k

e−ikη , kη → −∞ , (22.27)

just as in quantization in flat spacetime. These initial conditions completely determine the
solution, that is, the two arbitrary functions A(ki) and B(ki) appearing in (22.21).

4For the original articles, see Mukhanov and Chibisov (1981), and also Hawking (1982); Starobinsky
(1982); Guth and Pi (1982); and Bardeen, Steinhardt, and Turner (1983).
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Next we construct a Fock representation of the Hilbert space in which v̂ and π̂ operate.
The vacuum state |0〉 is defined in the standard manner by the condition

∀k , âk |0〉 = 0 . (22.28)

In the cosmological context, this state |0〉 is called the Bunch–Davies vacuum.5 The other

states can then be constructed by repeated action using the creation operators â†k.
The correlation function of the operator v̂, ξv ≡ 〈0|v̂(xi, η)v̂(yi, η)|0〉, is then given by

ξv =

∫
d3k

(2π)3
|vk|2eikj(x

j−yj) =

∫
dk

k

k3

2π2
|vk|2

sin kr

kr
, (22.29)

where the isotropy of the background space has been used to integrate over the angles. Now
we can read off the expression for the power spectrum of v:

Pv(k) ≡
k3

2π2
|vk|2 , (22.30)

and deduce the spectrum of the curvature perturbation Rc defined in (22.11):

PR(k) =
k3

2π2

∣
∣∣
vk
z

∣
∣∣
2

. (22.31)

On super-Hubble scales the field v must be classical. However, it is derived from a quantum
field, which explains why it is described by stochastic variables, but the quantum to classical
transition is a mechanism far from being understood.6 Therefore, quantum mechanics and
the choice of the Bunch–Davies vacuum are essentially a method of determining the free
functions A(k) and B(k) of the general solution (22.21). This choice completely fixes the
amplitude and k dependence of the spectrum.

The case of gravitational waves is identical, and each polarization corresponds to an
independent scalar field μ which is quantized in the same way.

22.4 Slow-roll inflation

Perturbation spectrum in the adiabatic approximation

Let us consider a massless scalar test field ϕ propagating in a cosmological space of metric
ds2 = a2(η)(−dη2 + d�x2). Its action is S = − 1

2

∫
d4x

√−ggμν∂μϕ∂νϕ. Introducing ψ = aϕ,
this action becomes, up to a total derivative, the action of a scalar field propagating in flat
spacetime: S =

∫
d4x

(
ημν∂μψ∂νψ + (a′′/a)ψ2

)
. In de Sitter spacetime where a = −(Hη)−1

with H constant, the effective mass of ψ is m2
eff = −a′′/a = −2/η2.

5For an introduction to field theory in curved spacetime, see Birrel and Davies (1984) and Mukhanov and
Winitzki (2007).

6See, for example, Polarski and Starobinsky (1996).



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 639 — #651

Chapter 22: Primordial quantum perturbations 639

The field ψ is quantized like v in the preceding section, with the function z replaced by the
scale factor7 a. The equation of motion of the modes ψk(η) is ψ

′′
k +

(
k2 − 2/η2

)
ψk = 0, and we

keep the positive-frequency solution

ψk =

√
�

2k
e−ikη

(

1− i

kη

)

.

The correlation function of ϕ, namely, 〈0|ϕ̂(η, xi)ϕ̂(η, yi)|0〉, is easily calculated by expanding

ϕ as in (22.22) using the commutation properties (22.25) of the operators âk and â†
k and their

action on the vacuum state: âk|0〉 = 0. As in (22.29), we obtain

〈0|ϕ̂(η, xi)ϕ̂(η, yi)|0〉 ≡
∫

d3keikj(x
j−yj)Pϕ(k)

4πk3
with Pϕ(k, η) =

k3|ψk|2
2π2a2

,

or Pϕ(k, η) = �

(
H

2π

)2
1 + x2

x2
, where x ≡ Ha

k
= −(kη)−1 .

We therefore see that the spectrum of ϕ initially decreases as 1/x2 in the sub-Hubble limit where
x � 1, then it tends to a constant in the super-Hubble limit x � 1.

The case of gravitational waves is treated in the same way, recalling that they are equivalent
to two scalar fields normalized as h = 2

√
κϕ. Their spectrum then is

PT(k, η) = 8�κ

(
H

2π

)2
1 + x2

x2
→ 8�κ

(
H

2π

)2

in the super-Hubble limit .

In de Sitter space the spectra are therefore scale-invariant in the super-Hubble regime: they
are independent of k. However, an inflationary period is not strictly a de Sitter phase because
Ḣ = −φ̇2/(2κ). The spectra obtained in fact depend on the time.

The spectral index nT of gravitational waves is then defined as

nT − 1 ≡ d lnPT

d ln k

∣
∣
∣
∣
∣
k=aH

.

Since, on the one hand, d ln k = d ln(aH) ∼ d ln a = da/a = Hdt while, on the other, PT ∝ H2

so that d lnPT = 2dH/H = 2Ḣdt/H, we find

nT − 1 ∼ 2Ḣ

H2
∼ −2ε ,

where we have introduced the slow-roll parameter ε ≡ −Ḣ/H. A similar calculation,7 which will
be discussed below, for the spectral index of the curvature perturbation R whose spectrum is
given in (22.31) leads to

7See, for example, D. Langlois (2010).
In Section 10.1 we saw that the quantizations of a field in inertial and accelerated frames are not equivalent.

The quantization of a field in de Sitter spacetime depends also on the choice of the spatial sections. See, for
example, Mukhanov and Winitzki (2007).
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ns − 1 ≡ d lnPR
d ln k

∣
∣
∣
∣
∣
k=aH

= 2δ − 4ε , where δ ≡ − φ̈

Hφ̇
.

In Section 20.3 we saw that in the slow-roll regime ε ≈ (1/2κ)(Vφ/V )2, η = Vφφ/(κV ) (where η =

δ+ε), andN = κ
∫
(V/Vφ)dφ. Let us take the example of the potential V ∝

(
1− exp[−

√
2κ/3φ]

)2

.

We then find

ns − 1 =
2

N
, nT − 1 = − 3

2N2
, r̃ ≡ PT

PR
=

12

N2
=⇒ r̃ = 3(ns − 1)2,

relations which can be tested directly by observations of the cosmic microwave background
anisotropy.8

In order to put the formalism described in the preceding sections to work, let us consider the
case of inflation in the slow-roll regime (see Section 20.2).

The first step is to determine the dynamics of the background FLRW spacetime as a
function of the slow-roll parameters ε and δ defined in (20.17), which can also be written as

ε = 1− H′

H2
, δ = 1− φ′′

Hφ′ . (22.32)

In the first-order slow-roll approximation, we see that ε′ and δ′ are of second order, and so
the parameters ε and δ can be treated as constants. Integration of the first equation (22.32)
assuming that ε is constant and small gives

H = −1 + ε

η
+O(2)

(
=⇒ a = −1 + ε

Hη
+O(2)

)
, (22.33)

in which H ≡ H/a can be assumed constant. [The term O(2) corresponds to second-order
contributions in the slow-roll parameters, and we recall that η < 0 during the inflationary
phase.] This equation can be used first of all to calculate a′′/a ≡ H′ +H2:

a′′

a
=

2 + 3ε

η2
+O(2). (22.34)

The term z′′/z, where z ≡ aφ′/H [see (22.10)], is obtained from z′/z = H+ φ′′/φ−H′/H =
H(1 + ε − δ), which is found using the second equation in (22.32) and (22.34). We deduce
that z′′/z = H2 [2 + 2ε− 3δ], which, using (22.33), implies that

z′′

z
=

2 + 6ε− 3δ

η2
+O(2). (22.35)

The evolution equations for the scalar and tensor modes are therefore, at first order in the
slow-roll approximation,

v′′ +

(
k2 − 2 + 6ε− 3δ

η2

)
v = 0 , μ′′

λ +

(
k2 − 2 + 3ε

η2

)
μλ = 0 . (22.36)

8See, for example, Planck Collaboration (2013), figure on p. 10.
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The solutions of these two equations are similar. They are expressed as linear combinations
of Hankel functions (see Section 21.3):

v(k, η) = A1(k)
√
−ηH(1)

ν (−kη) +A2(k)
√
−ηH(2)

ν (−kη) (22.37)

with

ν =
3

2
+ 2ε− δ (scalar modes) , ν =

3

2
+ ε (tensor modes). (22.38)

Now we can fix the initial conditions by the procedure described in Section 22.3. Using the
asymptotic behavior of the Hankel functions (given in Section 21.3), the general solution
(22.37) satisfying the initial condition (22.27) is

v(k, η) ≡ vk(η) =

√
π

2
ei(ν−

1
2 )

π
2
√
−ηH(1)

ν (−kη) . (22.39)

The super-Hubble (|kη| � 1) behavior of this solution is (see Section 21.3)

vk(η) → 2ν−
3
2
Γ(ν)

Γ
(
3
2

)ei(ν−
1
2 )

π
2

1√
2k

(−kη)−ν+ 1
2 for |kη| � 1 , (22.40)

so that in this regime the curvature perturbation Rk = vk/z is given by

Rk(η) →
H

MP
√
ε

√
4π√
2k3

2ν−
3
2
Γ(ν)

Γ
(
3
2

)ei(ν−
1
2 )

π
2 (1+ε)

−ν+1
2

(
k

aH

)−ν+3
2

for |kη|�1 , (22.41)

where η has been eliminated using (22.33). The Planck mass MP = G−1/2 is used to replace
G because, as we recall, we are working in units where � = c = 1. The fact that the
universe is not strictly a de Sitter universe is translated into a scale dependence given by
−ν + 3/2 = δ − 2ε, as is given by the adiabatic approximation discussed above.

The calculation for gravitational waves is identical: μλ has the form (22.39) with ν =
3/2 + ε, and the scale dependence of the spectrum becomes −ν + 3/2 = −ε, in agreement
with the adiabatic approximation presented above.

Perturbations after inflation

The quantity ζ defined in (21.37) remains constant for the super-Hubble modes. This makes
it possible to relate the curvature perturbations during inflation (22.41) to those during the
radiation era, that is, to the initial conditions for large-scale structure formation. Indeed, for the
super-Hubble modes ζ = −Rc [see (21.37)], and its conservation implies that

Φrad(kη � 1) =
2

3

1 + ε

ε
Φinf(kη � 1) (22.42)

if the inflationary phase is well described by the slow-roll regime. Therefore, it is the change of
the equation of state from −1 + 2

3
ε to 1

3
and the fact that the curvature perturbations of the

super-Hubble modes are constant that lead to the amplification of the gravitational potential
between the two eras.
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22.5 Predictions of slow-roll inflation

The results of the preceding section allow us to give generic predictions about slow-roll
inflation, namely, the properties of the perturbations at the end of the inflation for the
super-Hubble modes.

• Vector perturbations are vanishingly small

• The spectrum of the scalar perturbations can be obtained

Equation (22.41) can be used to find the power spectrum of the curvature perturbations.
To do this we use (22.38) for ν and the fact that Γ(1 + h)/Γ(1) ∼ 1 + hγE, where γE ∼ 0.58
is the Euler constant and 2h ∼ 1 + h ln 2. We find

PR =
1

π

H2

M2
Pε

[1− 2(2C + 1)ε+ 2Cδ]

(
k

aH

)2δ−4ε

(22.43)

for the super-Hubble modes, where C = γE + ln 2 − 2. The scalar modes therefore have a
nearly scale-invariant spectrum with spectral index (easily obtained above in the adiabatic
approximation)

ns − 1 ≡ d lnPR
d ln k

= 2δ − 4ε . (22.44)

The value ns = 1 characterizes a scale-invariant spectrum reached in the de Sitter limit (in
which ε = δ = 1). The super-Hubble fluctuations have a typical amplitude H/MP

√
ε (we

recall that H = Hinflation is nearly constant). If we push the expansion to the next highest
order in the slow-roll parameters, the spectral index will acquire a weak dependence on k,
because the slow-roll parameters then will evolve during the inflationary phase.9

• The scalar perturbations have Gaussian statistics

The curvature perturbation (22.41) is written as Rk(η) ∼ H
MP

√
ε

Aν√
2k3

(
k
aH

)−ν+ 3
2 in the

super-Hubble regime, and so the operator R̂c behaves as

R̂c ≈
∫

d3k

(2π)3/2
R̂k e

ik·x∼ H

MP
√
ε
Aν

∫
d3k

(2π)3/2
1√
2k3

(
k

aH

)−ν+ 3
2 (

âk + â†−k

)
eik·x . (22.45)

Therefore, each mode is proportional to the operator (âk+ â†−k). The commutation relations
of this operator are the same as those of a Gaussian field.10 Therefore, at super-Hubble scales
the operator R̂ can be replaced by a Gaussian stochastic classical field. Introducing the unit

9See Lyth and Stewart (1993) and Stewart and Gong (2001).
10Indeed, all the correlation functions can be expressed in terms of the two-point correlation function

〈0|R̂kR̂k′ |0〉 = PR(k)δ(k+ k′) as

〈0|R̂k1
. . . R̂k2p

|0〉 =
∑

perm

∏

(i,j)

〈0|R̂ki
R̂kj

|0〉, 〈0|R̂k1
. . . R̂k2p+1

|0〉 = 0 .
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Gaussian random variable ev(k) satisfying 〈ev(k)〉 = 0 and 〈ev(k)e∗v(k′)〉 = δ(k − k′), we
can formally make the replacement v̂k → vk = vk(η)ev(k). The quantum expectation value
〈0|...|0〉 is then replaced by an expectation value of a classical ensemble 〈...〉. This is an
effective way of taking into account the quantum to classical transition.

• The scalar perturbations are ‘adiabatic’

In the case of a single scalar field there is only one scalar degree of freedom, and so the
metric perturbations are directly related to, for example, Rc, which therefore completely
determines the initial perturbations of the various fluids after inflation.

• Gravitational waves

The same procedure can be used for gravitational waves. We recall, cf. (22.5), that

μλ(k, η) =

√
M2

P

8π
a(η)Eλ(k, η)

for each polarization. The solution becomes formally the same as for v if we set δ = 0 and

ε → ε/2. Defining the power spectrum as 〈Eλ(k, ηf)E
∗
λ′(k′, ηf)〉 = 2π2

k3 PT(k)δ(k−k′)δλλ′ , at
super-Hubble scales we obtain

PT =
k3

2π2

64π

M2
P

∣∣∣
μk

a

∣∣∣
2

=
16

π

H2

M2
P

[1− 2(C + 1)ε]

(
k

aH

)−2ε

. (22.46)

Just like the scalar modes, the gravitational waves develop from super-Hubble correlations
with a nearly scale-invariant spectrum whose spectral index is

nT − 1 ≡ d lnPT

d ln k
= −2ε (22.47)

and which has typical amplitude H/MP, in agreement with the adiabatic approximation
presented in Section 22.4. Their statistics is also Gaussian.

• The consistency relation

The results (22.43), (22.44), (22.46), and (22.47) give rise to a relation between the two
types of perturbation. Renormalizing the power spectra as

A2
S ≡ 4

25
PR(k) , A2

T ≡ 1

100
PT(k) , (22.48)

it can be checked that the ratio of the scalar and the tensor powers is r = A2
T/A

2
S = ε.

Comparing this with (22.47), we find the consistency relation between the amplitudes of the
spectra and the spectral index for gravitational waves:

r =
1− nT

2
. (22.49)

If we manage to detect primordial gravitational waves, this relation will in principle allow us
to reject the scenario of single field, slow-roll, inflation if it is found not to hold, or, if it does
hold, it will reinforce the credibility of this scenario.
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The relations (22.43) and (22.46) completely specify the properties of scalar and tensor
perturbations at the end of the inflation. It is important to stress the fact that these initial
conditions are statistical and allow only a general description of the large-scale structure
distribution and the temperature anisotropies of the cosmic microwave background.

The standard model of cosmology: current status

Figure 22.2 summarizes the present theoretical representation of our universe. It has a hot
Big Bang phase, where the physics is not speculative starting from 0.1 s after the Big Bang.
The description of the universe after this time requires the use of only well understood micro-
physics and gravitation at linear order. As time advances, nonlinear structures form, and their
understanding requires resorting to other techniques (higher-order perturbation theory, numer-
ical simulations). However, it should be noted that the existence of dark matter indicates that
the Standard Model of particle physics must be extended.

Processes occurring in the more primordial universe such as baryogenesis or matter produc-
tion during the reheating phase following inflation are based on more speculative physics, and
at present no model is really satisfactory enough to be considered as the standard model.

The inflationary phase also is based on speculative physics (even though after the detection
of the Higgs boson at the LHC we know that scalar fields do exist), but it is compatible with
observations of the cosmic microwave background.

Finally, the description of the state of the universe preceding this inflationary phase is ex-
tremely speculative and open to numerous conjectures. Primordial cosmology is the playground
of the phenomenology of quantum theories of gravity and, to paraphrase the words of Jean
Eisenstaedt cited above, remains a space for thought not only on general relativity, but also on
theoretical physics.
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Fig. 22.2 The standard model of cosmology.
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Elements of Riemannian geometry

. . . as time goes on it becomes increasingly evident that the rules which the mathematician
finds interesting are the same as those which Nature has chosen.

P. A. M. Dirac, Lecture delivered on presentation of the James Scott prize,
February 6, 1939; Proc. R. Soc. (Edinburgh), Vol. 59, 122 (1939)
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23

The covariant derivative and the
curvature

23.1 Tangent spaces of a non-connected manifold

Let us consider1 a non-connected manifold M, that is, a set of points p labeled by their
coordinates xi, for the time being without a connection or a metric structure.2 The tangent
space at p, denoted E(p), is a vector space (of dimension n) whose ‘natural’ basis associated
with the coordinates xi is the set of n vectors denoted ∂/∂xi; see Fig. 23.1. A tangent (or
vector) t at p is thus an element of E(p) and can be decomposed as t = ti∂/∂xi, where
the ti are the ‘natural components’ (summation on i is understood). It acts on differentiable
functions f(xi) as

t(f) = ti
∂f

∂xi
, (23.1)

where the derivatives ∂f/∂xi are evaluated at p. If as the function f we take the kth coor-
dinate of the point p, f = xk, then t(xk) = tk: the action of a tangent on the coordinates
of the point where the tangent space is ‘located’ gives its components in these coordinates.
N.B. We also will use ∂t to denote a tangent, hence the notations:

∂tf ≡ ∂ti ∂
∂xi

f ≡ ∂ti∂i
f ≡ ti∂if ≡ t(f) ,

where
∂

∂xi
≡ ∂i .

(23.2)

One way of visualizing the tangent spaces, or ‘planes’, of a manifold is to imagine a 2-sphere
embedded in E3 along with the 2-planes tangent to its surface. No matter which coordinate
system is used to label the points of this 2-sphere, its tangent planes cannot be made to lie
‘flat’, one on top of the other, because the sphere is a curved space. However, it is important
to note that the machinery we are describing here does not require that the manifold be
embedded in a higher-dimensional space. It should also always be borne in mind that it can
be generalized to the case where the ‘points’ p are not labeled by the coordinates xi, in which
case we will use hi to denote a basis of E(p).

1For an elementary introduction to vector and differential geometry, see, for example, Book 1, Chapters 2
and 4. A discussion with vivid imagery can be found in Misner, Thorne, and Wheeler (1973).

2The precise definitions of the terms manifold (a continuum of points distinguished by n coordinates xi),
chart (coordinate system), and atlas (set of charts needed to cover the entire manifold) can be found in,
for example, Straumann (2013). For more details see also Bishop and Goldberg (1980) or Choquet–Bruhat,
DeWitt–Morette, and Dillard–Bleick (1978).

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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∂2

∂1

Ep

p

Fig. 23.1 Tangent space of a manifold.

We associate with a tangent t acting at p on a function f a form denoted df , an element
of the cotangent space E∗(p) dual to E(p), which acts on a vector t to give the result of the
action of t on f :

df(t) = t(f) . (23.3)

If we take as the function f the kth coordinate of the point p, f = xk, then t(xk) =
tk according to (23.1) and, from the definition of t and linearity, (23.3) gives dxk(t) ≡
dxk
(
ti∂/∂xi

)
≡ tidxk

(
∂/∂xi

)
= tk. We therefore have dxk

(
∂/∂xi

)
= δki . The n forms dxk

thus form a basis, the natural basis, of the cotangent space E∗(p).
Any form λ of E∗

p , called a differential form, then can be decomposed as λ = λi dx
i. If

there exists a function f(xi) such that λi = ∂f/∂xi, we denote λ ≡ df = (∂f/∂xi) dxi , and
the form λ, of which dxi are examples, is termed exact.

∂1 at pp

∂1 at qq

Fig. 23.2 Example of vector fields.

Let us now consider not a tangent space E(p) associated with a particular point p, but
an ensemble of such spaces {E(p)}. The natural basis vector ∂/∂xi (i fixed) associated with
p then becomes a function of the point p. The application which associates with any point p
the object ∂/∂xi is the vector field ∂/∂xi.

Let us consider p vectors ∂/∂xi and q forms dxj from the natural bases E(p) and E∗(p)
associated with the coordinates xk. Their tensor products (where i and j vary from 1 to n)
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define a basis of the space of multilinear forms, or tensors, of the type
(
p
q

)
, which are p-fold

contravariant and q-fold covariant. Any tensor
(
p
q

)
can then be written as

T = T
i1...ip
j1...jq

∂i1 ⊗ ...⊗ ∂ip ⊗ dxj1 ⊗ ...⊗ dxjq , where ∂i ≡
∂

∂xi
. (23.4)

The T
i1...ip
j1...jq

(xi) are the components of the tensor field T (p) in the natural basis associated

with the coordinates xi. It is such objects which in general relativity describe the elements
of physical reality.

Let us recall the transformation law for the components of a tensor under a change of
coordinates xi �→ xi = xi(x′j):

T
′i1...ip
j1...jq

= T
k1...kp

l1...lq

∂x′i1

∂xk1
...
∂x′ip

∂xkp

∂xl1

∂x′j1 ...
∂xlq

∂x′jq , (23.5)

where all quantities are expressed as functions of xm(x′n). In fact, the law (23.5) serves as
the definition of a tensor.

23.2 The exterior derivative

In this section we summarize the elementary introduction to the exterior calculus of Book 2,
Chapter 5. To learn more, see the works cited in footnote 2.

A tensor, which we denote as α, of the type
(
0
p

)
and completely antisymmetric, that is,

whose components αi1···ip are antisymmetric in all their indices in a basis θi of the cotangent
space E∗(p), and therefore in any basis, is called a p-form or a form of degree p. Such objects
form a subspace of the ensemble of tensors of the type

(
0
p

)
constructed on E∗(p), invariant

under a change of basis, of dimension Cp
n = n!/(n− p)!p!, where n is the dimension of E∗(p).

The maximum dimension of a p-form then is p = n. If, for example, n = 4, the dimensions
of the spaces of 0, 1, 2, 3, 4-forms are 1, 4, 6, 4, 1, respectively.

The exterior product of a p-form α and a q-form β is a (p+ q)-form defined by

α ∧ β ≡ (p+ q)!

p!q!
(α⊗ β)a , (23.6)

where the index a denotes antisymmetrization.3 If θi is a basis of E∗(p), the natural basis of
the space of p-forms is θi1 ∧ θi2 ... ∧ θip , with i1 < i2... < ip. Therefore, any p-form α can be
decomposed as

α =
1

p!
αi1i2...ip θ

i1 ∧ θi2 ... ∧ θip , (23.7)

3The antisymmetrization can be defined by recursion in a basis as T[ij] ≡ (Tij − Tji)/2, T[ijk] ≡ (Tijk +

Tjki + Tkij − Tjik − Tikj − Tkji)/3!, and so on. For example, the antisymmetrized product of two 1-forms θi

and θj is (θi ⊗ θj)a = (θi ⊗ θj − θj ⊗ θi)/2, and their exterior product is the 2-form θi ∧ θj = 2(θi ⊗ θj)a =
θi ⊗ θj − θj ⊗ θi.
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where the θi are not ordered, and so its components in the basis of the ordered θi are the
ordered antisymmetric part4 of αi1i2...ip .

The exterior derivative is an operator, denoted d, acting on a p-form to give a (p+1)-form.
It possesses the following properties, which define it: if f is a 0-form (that is, an ordinary
function) and t is a vector of E(p), then df(t) = t(f), which coincides with the definition of
differential 1-forms given in (23.3). Moreover, d(α+ β) = dα+dβ, where α and β are forms
of the same degree. Finally,

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ and d2 = 0 , (23.8)

where p is the degree of α. In the natural bases ∂/∂xi and dxi associated with the coordinates
xi, the exterior derivative is defined simply as

dα = ∂lαi1i2...ipdx
l ∧ dxi1 ∧ ...dxip . (23.9)

A form α whose exterior derivative vanishes (dα = 0) is said to be closed. A form α which is
the exterior derivative of a form β (α = dβ) is said to be exact.

23.3 The Lie bracket and Lie derivative

A vector is a directional derivative operator which can be written as

v ≡ ∂v = vi∂i (23.10)

(in the coordinates xi); it acts on a function f to give the function vi(∂f/∂xi). The com-
mutator or Lie bracket [v, w] of two vector fields v and w = wj∂j is the antisymmetrized
composition of v and w, viewed not as elements of a vector space or as singly-contravariant
tensors, but as derivative operators:

[v, w] ≡ v ◦ w − w ◦ v ≡ ∂v ◦ ∂w − ∂w ◦ ∂v

= vi∂i ◦ wj∂j − wi∂i ◦ vj∂j = (vi∂iw
j − wi∂iv

j)∂j .
(23.11)

We note that the Lie bracket of two basis vectors is zero ([∂i, ∂j ] = 0), and we can easily
prove the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 . (23.12)

The Lie bracket and closed paths

Let us consider a point p of coordinates xi and the integral curve of a vector field u originating
at p (see Fig. 23.3). We move forward by an amount dλ1 along this curve to arrive at the point

4For example, a 2-form with n = 3 is written as

α =
1

2
(α12θ

1 ∧ θ2 + α21θ
2 ∧ θ1 + ...)

=
1

2
(α12 − α21)θ

1 ∧ θ2 +
1

2
(α13 − α31)θ

1 ∧ θ3 +
1

2
(α23 − α32)θ

2 ∧ θ3 ≡ α|[ij]|θ
i ∧ θj ,

where α|[ij]| is the antisymmetrized and ordered (i < j) part of αij .
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p+ d1p with coordinates xi +uidλ1 + u̇i(dλ1)
2/2+ · · ·. At this point the components of a vector

field v are, to first order in dλ1, v
i(xj) + (∂jv

i)ujdλ1. Then moving forward again by dλ2 along
the integral curve of the field v originating at p+d1p, we reach the point p+d12p with coordinates
xi + uidλ1 + u̇i(dλ1)

2/2 + [vi(xj) + (∂jv
i)ujdλ1]dλ2 + v̇i(dλ2)

2/2 + · · ·. If now we reverse the
operations, passing from p to p+ d2p along the field v, then to p+ d21p along u, we arrive at the
point with coordinates xi + vidλ2 + v̇i(dλ2)

2/2 + [ui(xj) + (∂ju
i)vjdλ2]dλ1 + u̇i(dλ1)

2/2 + · · ·.
The two points p + d12p and p + d21p are the same if uj∂jv

i − vj∂ju
i = 0, that is, if the Lie

bracket of the vectors u and v is zero. There then exist coordinates x1 and x2 tangent to the
vector fields5 u and v: u = ∂/∂x1 and v = ∂/∂x2.

dλ1

p + d1p

p + d2p

p + d12p

p + d21pdλ2

dλ2

dλ1

υ

u

u

p
υ

Fig. 23.3 The Lie bracket.

The Lie bracket is a vector, which can be verified by looking at how it transforms under
a change of coordinates. It therefore defines a derivative operator, the Lie derivative, which
can be introduced independently in the following manner.

We consider a point p of coordinates xi and the integral curve of a vector field u originating
at p. We move an amount dλ along this line to arrive at the point p̃ = p+dp with coordinates
x̃i = xi+ui(xj)dλ at first order in dλ. At this point, another vector field v can be decomposed
as v(p̃) = vi(xj + ujdλ)(∂/∂x̃i) = (vi(xj) + (∂jv

i)ujdλ)(∂/∂x̃i), at first order in dλ.
The pullback of the field v is the vector field ṽ such that ṽ(p) = v(p̃). We then have

ṽi(∂/∂xi) = (vi(xj) + (∂jv
i)ujdλ)(∂/∂x̃i).

Since (∂/∂x̃i) = (∂xj/∂x̃i)(∂/∂xj) with (∂xj/∂x̃i) = δji − ∂iu
jdλ because x̃j = xj +

uj(xi)dλ, we find

ṽi(xj)(∂/∂xi) =
(
vi(xj) + (∂jv

i)ujdλ
)
(δji − ∂iu

jdλ)(∂/∂xj)

=
(
vi(xj) + dλ(uj∂jv

i − vj∂ju
i)
)
(∂/∂xi) .

5Instead of moving in M along integral curves of u or v, it is possible to move in the tangent planes, which
are then affine, along the straight lines of the tangent vectors u or v and then project the points p+ d1p, and
so on, onto the manifold. The conditions for, on the one hand, p+ d12p and p+ d21p to be identical, and, on
the other, to return to p after arriving at p + d12p and making a complete loop, are, at second order, that
the Lie bracket of u and v vanish.
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dλ

p = p + dp

u

υ(p)

υ(p)

υ(p)

p

˜

˜

˜

Fig. 23.4 The Lie derivative.

The Lie derivative of the vector field v with respect to the vector field u is then defined as

Luv =
ṽ(p)− v(p)

dλ
= (uj∂jv

i − vj∂ju
i)∂i . (23.13)

Therefore, the Lie bracket and the Lie derivative of a vector field are equivalent:

Luv = [u, v] , (23.14)

where the operator Lu gives the bracket [u, v] by acting on v. The Jacobi identity is then
written equivalently as either

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 or L[u,v] = [Lu,Lv] . (23.15)

We note that the Lie derivative is not a directional derivative which would allow the vector
v to be transported along the integral curve of u.

If we define the Lie derivative with respect to the vector u of a scalar field f as Luf =
ui∂if , we easily obtain the components of the Lie derivative of a form ω with respect to the
vector u:

Luω = (ui∂iωj + ωi∂ju
i)dxj , (23.16)

as well as those of any tensor. For example, the Lie derivative with respect to the vector u
of a 2-fold covariant tensor, g = gijdx

i ⊗ dxj , can be decomposed as

Lug = (ui∂igjk + gij∂ku
i + gik∂ju

i)dxj ⊗ dxk . (23.17)

‘Passive’ definition of the Lie derivative

Under an infinitesimal change of coordinates xi → x̃i = xi + uidλ, the components of a
vector field at a point p are vi(xj) in the system xi and ṽi(x̃j) in the system x̃i. From the vector
transformation law we have vi = (∂xi/∂x̃j)ṽj or, at first order in dλ, vi(xj) = ṽi(x̃j)− vj∂ju

i =
ṽi(xj) + dλ(uj∂jv

i − vj∂ju
i).
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The quantities ṽi(xj) are the components of the vector field v in the coordinate system x̃i

at the point p̃ which in the system x̃i has the same coordinates xi as the point p in the system
without the tilde.

In this so-called passive approach, the Lie derivative of v with respect to u is defined as
having, in the system xi, the components

(Luv)
i =

vi(xj)− ṽi(xj)

dλ
= uj∂jv

i − vj∂ju
i . (23.18)

23.4 The covariant derivative and connected manifold

The derivative operators introduced in the two preceding sections have limited effectiveness:
the exterior derivative acts only on p-forms, that is, completely antisymmetric tensors; the
vector fields and Lie brackets act only on functions; finally, the Lie derivative with respect
to a vector field involves not only this field, but also its derivative, and therefore is not
the generalization of a directional derivative which would allow tensors to be transported
from one point to another. For this we must introduce an additional object, the covariant
derivative.

Let us recall its operational definition.6

As an example, let us take a singly contravariant and singly covariant tensor field, that is,
a
(
1
1

)
field: T = T i

j ∂i ⊗ dxj , where T i
j are its components in the coordinates xi. Its covariant

derivative with respect to a vector v = vi∂i is a tensor of the same type, denoted DvT :

DvT = Dvi∂i
T = viD∂i

T ≡ viDiT = viDi(T
j
k ∂j ⊗ dxk)

= vi
[
(DiT

j
k )∂j ⊗ dxk + T j

k (Di∂j)⊗ dxk + T j
k∂j ⊗ (Didx

k)
]

= vi
[
(∂iT

j
k )∂j ⊗ dxk + T j

k (Γ
l
ij∂l)⊗ dxk + T j

k∂j ⊗ (−Γk
ildx

l)
]
,

because Di∂j ≡ Γl
ij∂l , Didx

k ≡ −Γk
ildx

l ,

≡ vi(DiT
j
k ) ∂j ⊗ dxk , where DiT

j
k = ∂iT

j
k + Γj

ilT
l
k − Γl

ikT
j
l .

(23.19)

The connection coefficients Γi
jk are n3 functions of the coordinates which define the covariant

derivative D, and the DiT
j
k are the natural components of D∂/∂xiT ≡ D∂i

T ≡ DiT . We note
that in (23.19) we have used the usual properties of derivative operators, in particular, the
Leibniz rule for differentiating composite functions.

We also recall that an auto-parallel is a curve xi = xi(λ) with tangent vector ui = dxi/dλ
such that

Duu = 0 , that is,
dui

dλ
+ Γi

jku
kuk = 0 . (23.20)

Finally, we recall the transformation law for the connection coefficients under a change of
coordinates6:

6For more detail, see Book 1, Chapters 3 and 4, or the studies cited at the beginning of the present chapter.
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Γ′j
ki =

∂xr

∂x′i
∂xl

∂x′k
∂x′j

∂xp
Γp
lr +

∂2xl

∂x′k∂x′i
∂x′j

∂xl
. (23.21)

23.5 Torsion of a covariant derivative

Let us consider the action of the covariant derivative with respect to the coordinate xi [that
is, with respect to the basis vector ∂i of the tangent space E(p)] on the basis vector ∂j . The
result is a vector:

Dj∂i = Γk
ji∂k =⇒ Dj∂i −Di∂j = (Γk

ji − Γk
ij)∂k ≡ −T k

ij∂k . (23.22)

The quantities T k
ij measure the antisymmetry of the connection. They are the components

of a tensor T of the type
(
1
2

)
, called the torsion. The fact that T is a tensor can be verified at

sight by considering how its components transform under a change of coordinates, because
the second term in (23.21) is symmetric in k and i, and so T transforms as (23.5).

In a more intrinsic, that is, coordinate-independent manner, the torsion TD of a covariant
derivative D is a

(
1
2

)
-type tensor which acts on pairs of vectors (v, w) to give another vector

z [TD : (v, w) → z] according to

TD(v, w) ≡ Dvw −Dwv − [v, w] , (23.23)

where [v, w] is the Lie bracket defined in Section 23.3. To make the connection with the
definition (23.22), it is sufficient to decompose v and w on a basis, for example, Dvw =
viDi(w

j∂j), and use the fact that the Lie bracket of two basis vectors is zero. Then from the
definition of the connection coefficients Di∂j = Γk

ij∂k we find

TD(v, w) ≡ T k
ij v

iwj∂k with T k
ij = Γk

ij − Γk
ji . (23.24)

The fact that TD(v, w) is linear in vi and wj is sufficient for showing that it is indeed a
type-

(
1
2

)
tensor.

Therefore, the torsion measures the difference between the antisymmetrized covariant
derivative and the Lie bracket, or also the Lie derivative.

The spacetime connections describing gravitation in general relativity are assumed to be
torsion-free.

23.6 Curvature of a covariant derivative

Similarly, the Riemann–Christoffel curvature RD of a covariant derivative D is a type-
(
1
3

)

tensor which acts on a vector triplet (u, v, w) to give another vector z [RD : (u, v, w) → z] as

RD
u,vw ≡ [Du, Dv]w −D[u,v]w , where [Du, Dv]w ≡ Du(Dvw)−Dv(Duw) . (23.25)

It measures the non-commutativity of the covariant derivatives.
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If now for u, v, and w we use the basis vectors ∂i, ∂j , and ∂k of the tangent space E(p),
since DiDj∂k = Di(Γ

l
jk∂l) = (∂iΓ

m
jk + Γl

jkΓ
m
il )∂m and the Lie bracket of two basis vectors is

zero, we immediately find

RD
∂i,∂j

∂k = (DiDj −DjDi)∂k ≡ Rm
kij∂m

with Rm
kij = ∂iΓ

m
jk − ∂jΓ

m
ik + Γm

il Γ
l
jk − Γm

jlΓ
l
ik .

(23.26)

The curvature is a type-
(
1
3

)
tensor, as can be verified rather laboriously by studying the

transformation law of its components using (23.5), and more easily by showing (a useful
exercise) that

RD
u,vw = uivjwkRm

kij∂m . (23.27)

In a similar manner, see (23.19), we obtain the action of the operator (DiDj −DjDi) on
the 1-form of basis dxk:

(DiDj −DjDi)dx
k = −Rk

lijdx
l , (23.28)

and, by the Leibniz rule, its action on any tensor. For example,

(DiDj −DjDi)(dx
k ⊗ ∂l) = −Rk

mijdx
m ⊗ ∂l +Rm

lijdx
k ⊗ ∂m . (23.29)

Now to make the connection with the ‘component’ approach, we consider RD
∂i∂j

v =

DiDjv − DjDiv, cf. (23.25). This is a vector given by, cf. (23.26), RD
∂i∂j

v = vkRm
kij∂m.

Therefore, vkRm
kij is the mth component of the vector (DiDj −DjDi)v. We can then write

(DiDj −DjDi)v
m = Rm

kijv
k (23.30)

and thus recover the formula obtained in Section 2.2.
Now let us study the relative ‘acceleration’ of two closely spaced auto-parallels, defined

as a = DuDun, with components ai = D2ni/dλ2. We have

DuDun = −RD
n,uu . (23.31)

This result follows, first of all, from the fact that Dun = Dnu because [n, u] = 0; secondly, it
follows from the definition of the curvature tensor:

RD
n,uu = Dn(Duu)−Du(Dnu)−D[n,u]u = −Du(Dnu) , because Duu = 0 .

If we make (23.31) explicit on a basis, we recover the ‘geodesic’ deviation equation derived
in Section 2.3: ai = −Ri

mkju
mujnk.

The vector fields n satisfying (23.31) are called Jacobi fields.
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24

Riemannian manifolds

24.1 The metric manifold and Levi-Civita connection

A metric tensor g is a tensor field on M which is 2-fold covariant [i.e., of the type
(
0
2

)
],

symmetric, and nondegenerate. In a coordinate system xi it is written as

g = gijdx
i ⊗ dxj . (24.1)

The n(n+1)/2 functions gij(x
k), which are symmetric (gij = gji) and invertible (gikgkj = δij),

define it.
Given g, it is always possible to find, at a point, a basis of orthonormal vectors hi of the

tangent space such that

g(hi, hj) = 0 if i �= j , g(hi, hi) = ±1. (24.2)

If n = 4, the set of hi is called a tetrad or a vierbein, or, more generally, a frame field
or moving frame. If all the signs are positive, the metric is Riemannian, and if one sign is
negative it is Lorentzian.1

We know that the metric tensor allows us to define a one-to-one correspondence between
vectors and 1-forms. Indeed, if v = vihi is a vector, then viθ

i, where vi ≡ gijv
j [here

gij ≡ g(hi, hj)], is a 1-form isomorphic to v (and often also denoted by v). Reciprocally, if
λ = λiθ

i is a 1-form, then λihi, where λ
i ≡ gijλj , is a vector (gij is the inverse of the matrix

gij). More generally, with any tensor of the type
(
p
q

)
we thus associate tensors of the type

(
p−1
q+1

)
or
(
p+1
q−1

)
.

Finally, a metric defines the scalar product of two vectors v and v′ as 〈v, v′〉 ≡ g(v, v′) =
gijv

iv′j . In the case of a Lorentzian metric, if the norm 〈v, v〉 of v is positive, v is termed
space-like; if it is negative, v is time-like; if it is zero, v is isotropic or null.

A connection D is a metric connection if for any vector u

Dug = 0 . (24.3)

Decomposing g on the natural basis xi, this condition becomes

0 = Dug = uiDi(gjkdx
j ⊗ dxk) = ui(Digjk)dx

j ⊗ dxk ,

or

1N.B. It is sufficient that the manifold be ‘paracompact’ to allow for a Riemannian metric. On the other
hand, a Lorentzian metric can only be defined if the Euler characteristic of the manifold is zero; therefore, a
2-sphere whose Euler characteristic is two does not admit a Lorentzian metric. Definitions and examples can
be found in any textbook on differential geometry.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.

DOI: 10.1093/oso/9780198786399.001.0001
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Digjk ≡ ∂igjk − Γl
ijglk − Γl

ikgjl = 0 . (24.4)

The condition (24.3) can also be written as

∂ug(v, w) = g(Duv, w) + g(v,Duw) , (24.5)

[where ∂ug(v, w) = u(g(v, w))], a very useful relation which can be proved by expanding the
various terms on a basis and then using (24.4).2

A theorem due to Ricci states that given a metric g, there exists one and only one
metric connection of zero torsion, which is called the Levi-Civita connection (or covariant
derivative). Equation (24.4) is sufficient for proving this and finding the explicit expression
for the coefficients Γi

jk of this connection as a function of the metric components gij . Then

if Γi
jk = Γi

kj , we find

Γi
jk =

1

2
gil(∂jgkl + ∂kglj − ∂lgjk) . (24.6)

The geodesic and geodesic deviation equations

In Section 2.4 we arrived at the ‘auto-parallel’ equation (23.20) by finding the equation
for the ‘geodesics’, curves of extremal length, in terms of the Christoffel symbols, which we
have identified as the connection coefficients by requiring that geodesics and auto-parallels be
identical.

Here to obtain the geodesic equation in a more geometrical manner, we shall extremize not
the length of the curves Cs [with the equations xi = xi

s(λ)], which has the inconvenience of being
reparametrization-invariant, but instead their ‘energy’

E(Cs) =
1

2

∫ λ2

λ1

g(u, u) dλ , (24.7)

where u is the vector tangent to the curve Cs (that is, ui = dxi
s/dλ). Using n to denote the

vector with components ni = ∂xi
s/∂s, we obtain

dE

ds

∣
∣
∣
∣
∣
s=0

=
1

2

∫ λ2

λ1

∂g(u, u)

∂s
dλ ≡ 1

2

∫ λ2

λ1

∂ng(u, u) dλ =

∫ λ2

λ1

g(Dnu, u) dλ using (24.5)

=

∫ λ2

λ1

g(Dun, u) dλ from Dun=Dnu, the torsion and Lie bracket [u, n] being zero

=

∫ λ2

λ1

[∂ug(n, u)− g(n,Duu)] dλ again using (24.5)

=

∫ λ2

λ1

dg(n, u)

dλ
dλ−

∫ λ2

λ1

g(n,Duu) dλ

= −
∫ λ2

λ1

g(n,Duu) dλ if the vector n vanishes at λ1 and λ2. (24.8)

2Indeed, if u = ∂i, v = ∂j , and w = ∂k, we have ∂ug(v, w) = ∂igjk because ∂ug(v, w) = u(g(v, w)),

since ∂uf = ui∂if and g(v, w) = vjwkgjk; g(Duv, w) = g(Di∂j , ∂k) = g(Γl
ij∂l, ∂k) = Γl

ijglk and, similarly,

g(v,Duw) = g(∂j , Di∂k) = g(∂j ,Γ
l
ik∂l) = Γl

ikgjl, from which (24.5) follows via (24.4).
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Since the vector n is arbitrary between the extremities of the curves, we have (dE/ds)|s=0 = 0
if the curve C0 is a geodesic, that is, if

Duu = 0 ⇐⇒ uiDi(u
j∂j) = 0 ⇐⇒ ui(Diu

j)∂j = 0 ⇐⇒ duj

dλ
+ Γj

iku
iuk = 0 . (24.9)

The vector u tangent to the geodesic has constant norm since

dg(u, u)

dλ
= Dug(u, u) = 2g(Duu, u) = 0 owing to (24.5) and because Duu = 0 . (24.10)

Thus, for time-like curves we can choose g(u, u) = −1 (that is, giju
iuj = −1), in which case the

vector u is called the 4-velocity.

24.2 Properties of the curvature tensor

Here we state without proof the intrinsic versions of the properties of the Riemann–Christoffel
tensor of a covariant derivative already given in Section 2.6.3

For any vectors u, v, w, and t,

• RD
u,vw = −RD

v,uw, or in component form Ri
jkl = −Ri

jlk, which follows from the defini-
tion;

• DuR
D
v,w+DvR

D
w,u+DwR

D
u,v = 0, or in component formDmRi

jnp+DnR
i
jpm+DpR

i
jmn=

0, which is proved using the fact that DuR
D
v,wt = Du(R

D
v,wt) − RD

Duv,w
t − RD

v,Duw
u −

RD
v,wDut;

• if the torsion is zero, RD
u,vw+RD

v,wu+RD
w,uv = 0, or in component form Rl

ijk +Rl
jki +

Rl
kij = 0 (the first Bianchi identity, which follows from the Jacobi identity satisfied by

the Lie bracket).

When the connection, which is symmetric, is compatible with a metric tensor, the curva-
ture tensor possesses the additional property

g(RX,Y Z,U) = −g(RX,Y U,Z) , (24.11)

or, in component form Rijkl = −Rjikl, where Rijkl ≡ gipR
p
jkl owing to the fact thatDXg = 0.

Moreover, it can easily be shown that3

g(RX,Y Z,U) = g(RZ,UX,Y ) or, in components, Rlkij = Rjikl . (24.12)

Let us recall the definitions of the Ricci tensor Rij and the scalar curvature R:

Rij ≡ Rl
ilj = −Rl

ijl , which is symmetric: Rij = Rji and R ≡ gijRij . (24.13)

[Writing out the intrinsic form of the definitions (24.13) is quite tedious.3]

3For the proofs, see, for example, Bourguignon (2005) or Straumann (2013).
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The Einstein tensor

Gij ≡ Rij −
1

2
gijR satisfies the Bianchi identities DiG

ij ≡ 0 . (24.14)

We conclude by giving the dimension DR of the Riemann tensor, that is, the number of
its independent components3 in dimension n:

DR =
1

12
n2(n2 − 1) . (24.15)

For n = 2, DR = 1; for n = 3, DR = 6; and for n = 4, DR = 20.

24.3 Variation of the Hilbert action

In Section 4.4 we obtained the Einstein equations of general relativity by varying the Hilbert
action. We shall do the same derivation here,4 but in the intrinsic manner, using the tools
developed in the present and the preceding chapters.

Let us consider the integral over a domain Ω

Sgt =

∫

Ω

Rt ωt , (24.16)

where Rt is the scalar curvature of the metric gt and ωt =
√
−detgt dΩ with dΩ = dx1∧dx2∧

dx3 ∧ dx4 being the volume element. Since R = c(g−1.Ric), where Ric is the Ricci tensor,
where g−1 is the 2-fold contravariant tensor which is the inverse of the metric g, and where c
is the contraction operator, (24.16) is written in component form as Sgt =

∫
Ω
gijRij

√−g dΩ
(where in this notation g is the metric determinant).

The metric gt depends on a parameter t, and for small t we can write

gt = g + th . (24.17)

First of all we have
dωt

dt

∣∣
∣
t=0

=
1

2
c(g−1.h)ω . (24.18)

In tensor notation ω =
√−g dΩ, h is a tensor with components δgij , c(g

−1.h) = gijδgij , and
so (24.18) then reads δ

√−g = 1
2

√−ggijδgij . We note that δgij = −gikgjlδgkl.
Next we have

dRt

dt

∣∣∣
t=0

= −(h,Ric) + g−1 dRict
dt

∣∣∣
t=0

. (24.19)

In tensor notation δR = Rijδg
ij + gijδRij = −Rijδgij + gijδRij .

Now let us introduce some quantities which will prove useful in dealing with the second
term in (24.19).

4Following Bourguignon (2005).
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• The codifferential5 of the 2-fold covariant tensor h, δh, is the 1-form defined as δh =
−c(g−1Dh), where D is the covariant derivative associated with the metric g. In component
form, (δh)i = −gklDkδgli. We also have (since Dg = 0)

δδh = gijgklDjDkδgli . (24.20)

• The Laplacian is such that ΔTracegh = Δ[c(g−1h)], where Δ = δd. In component
form, c(g−1h) = gijδgij , d[c(g

−1h)]=∂k(g
ijδgij)dx

k, and δ{d[c(g−1h)]}=−Dk[∂k(g
ijδgij)],

so that

ΔTracegh = −gklDkDl(g
ijδgij) . (24.21)

Next we proceed by adopting the Landau and Lifshitz method of working in a system of
locally normal coordinates, that is, coordinates in which the components of the metric gij
are constant through first order inclusive. Then the components of the Ricci tensor reduce to

Rij =
1

2
gkl(∂ikgjl + ∂jlgik − ∂ijgkl − ∂klgij) , (24.22)

and an easy calculation shows that the second term in (24.19) can be written as

g−1 dRict
dt

∣
∣∣
t=0

≡ gijδRij = gijgkl(∂jkδgil − ∂ijδgkl) + δgijgkl∂jlgik

−1

2
δgijgkl(∂ijgkl + ∂klgij) .

(24.23)

Moreover, always in a locally inertial frame (expanding Dk in terms of Γi
jk and then g∂g)

we have

⎧
⎨

⎩
δδh = gijgkl∂jkδgil + δgijgkl∂jlgki −

1

2
δgijgkl(∂ijgkl − ∂klgij) ,

ΔTracegh = −gijgkl∂ijδgkl + δgijgkl∂klgij .

(24.24)

Therefore,

g−1 dRict
dt

∣∣∣
t=0

= δδh+ΔTracegh = δ(δh+ dTracegh) . (24.25)

Since the codifferential of a 1-form and the divergence of a vector are related as δ(vidx
i) =

−Div
i, we have thereby shown that (24.25) is a divergence. In component form,

gijδRij = gijDjqi =
1√−g

∂i(
√
−gqi) with qi = gklDkδgli − gkjDiδgkj . (24.26)

Now that we have finished these preliminaries, we return to (24.16) and find that

5N.B. Do not confuse the codifferential δh with the increment δgij . . .
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dSt

dt

∣∣∣
t=0

=

∫

Ω

(
ω
dR

dt

∣∣∣
t=0

+R
dω

dt

∣∣∣
t=0

)

=

∫

Ω

(
ω

[
−(h,Ric) + g−1 dRict

dt

∣∣
∣
t=0

]
+

1

2
c(g−1.h)ωR

)

= −
∫

Ω

(
(h,Ric)− 1

2
Rg

)
ω +

∫

Ω

ωg−1 dRict
dt

∣∣∣
t=0

= −
∫

Ω

(
(h,Ric)− 1

2
Rg

)
ω +

∫

Ω

ωδ(δh+ dTracegh) ,

(24.27)

where we have seen that the integrand of the last term is a divergence, and so the integral is
zero if the h and their derivatives vanish on the boundary, that is, if the variations δgij and
∂kδgij are zero on the boundary of the domain Ω. Therefore, in the end,

dSt

dt

∣∣
∣
t=0

= −
∫

Ω

(
(h,Ric)− 1

2
Rg

)
ω = −

∫

Ω

δgijG
ij√−gdΩ ,

where Gij ≡ Rij −
1

2
gijR

(24.28)

is the Einstein tensor. The Hilbert action then is an extremum if the vacuum Einstein equa-
tions, Gij = 0, are satisfied.
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The Cartan structure equations

25.1 A useful relation

Let1 ω be a 1-form (ω = ωidx
i in the coordinates xi), and let dω be its exterior derivative

(that is, dω = ∂jωi dx
j ∧dxi, where dxj ∧dxi ≡ dxj ⊗dxi−dxi⊗dxj is the exterior product

of the forms dxj and dxi. We recall that owing to the antisymmetry of the exterior product,
d2ω = 0, which is the Poincaré lemma; see Section 23.2). Since dω is a 2-form, it acts on
pairs of vectors (u, v) to give a function. We can write

dω(u, v) = uω(v)− v ω(u)− ω([u, v]) . (25.1)

Indeed, decomposing u = ui∂i, v = vj∂j , and ω = ωkdx
k, we have dω = ∂lωkdx

l ∧ dxk and

(1) dω(u, v) = ∂lωk(u
lvk − ukvl) = (∂lωk − ∂lωk)u

lvk;

(2) uω(v) = u[ωkdx
k(vj∂j)] = u(ωkv

k) = ui∂i(ωkv
k) = uivk∂iωk + uiωk∂iv

k;

(3) similarly, v ω(u) = viuk∂iωk + viωk∂iu
k;

(4) ω([u, v]) = ωk(u
j∂jv

k − vj∂ju
k), using the definition of the Lie bracket.

The terms involving derivatives of the vector components cancel out and we arrive
at (25.1).

If we take the vectors v and w to be vectors of a basis which is not necessarily holonomic
(that is, v = hi and w = hj , where hi = ∂i only if the basis is natural), and if we choose ω
to be a vector of the associated dual basis ω = θk [with θk(hi) = δki ], then (25.1) becomes

{dθk(hi, hj)}hk = −[hi, hj ] (25.2)

(the right-hand side is a vector, and the coefficient of hk on the left-hand side is a scalar).2

25.2 The connection and torsion forms

Let hi be a basis of the tangent space and θj the associated dual basis [θk(hi) = δki ]. We
supply the manifold with an affine connection D defined as

Dhi
hj = γk

ij hk , (25.3)

where the functions γk
ij are the Ricci rotation coefficients [if the basis hi is a natural basis

(hi = ∂i), the rotation coefficients become the connection coefficients Γk
ij ].

1A more complete discussion of the topics covered in this chapter can be found in Straumann (2013).
2Indeed, (25.1) immediately gives dθk(hi, hj) = hi[θ

k(hi)]−hj [θk(hi)]−θk([hi, hj ]). Now, since θk(hj) =

δkj and hi is a derivative operator, the first two terms vanish and the expression reduces to dθk(hi, hj) =

−θk([hi, hj ]). The right-hand side is the kth component of the vector [hi, hj ] (since [hi, hj ] ≡ ([hi, hj ])
lhl,

and so θk([hi, hj ]) = ([hi, hj ])
lθk(hl) = ([hi, hj ])

k). Equation (25.2) then follows.

Relativity in Modern Physics. Nathalie Deruelle and Jean-Philippe Uzan.

c© Oxford University Press 2018. Published in 2018 by Oxford University Press.
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Following Cartan, we treat the γk
ij as the result of the action of 1-forms ωk

j , called con-
nection forms, on the vectors hi:

γk
ij = ωk

j (hi) ⇐⇒ ωk
j = γk

ij θ
i . (25.4)

Armed with these definitions, we can express the torsion as a function of the connection
forms. Indeed, since hi and hj are two basis vectors, from the definitions of the torsion (23.23)
and the connection (25.3) and (25.4) and using (25.2) we have

TD(hi, hj) ≡ Dhi
hj −Dhj

hi − [hi, hj ] = {ωk
j (hi)− ωk

i (hj) + dθk(hi, hj)}hk . (25.5)

The scalar ωk
j (hi) can be viewed as a 2-form (ωk

l ⊗ θl) acting on the pair of vectors (hi, hj):

ωk
j (hi) = (ωk

l ⊗ θl)(hi, hj). Similarly, ωk
i (hj) = (θl ⊗ ωk

l )(hi, hj). Therefore, T (hi, hj) can be
rewritten as

TD(hi, hj) = {(ωk
l ∧ θl + dθk)(hi, hj)}hk , (25.6)

or
TD = Ωk ⊗ hk with Ωk ≡ dθk + ωk

j ∧ θj , (25.7)

where the Ωk are the torsion differential 2-forms (that is, antisymmetric covariant tensors).
Equation (25.7) is Cartan’s first structure equation.
In a natural basis where θk = dxk, we have ωk

j = Γk
ijdx

i and Ωk = Γk
ijdx

i ∧ dxj =

(Γk
ij − Γk

ji)dx
i ⊗ dxj = T k

ijdx
i ⊗ dxj . Finally, TD = T k

ijdx
i ⊗ dxj ⊗ ∂k.

25.3 The curvature forms

If now we take ω in (25.1) to be the connection 1-forms ωi
j , then by a calculation analogous

to that leading to (25.6) we find that the curvature defined in (23.25) can be rewritten as

RD
hi,hj

hk≡Dhi
Dhj

hk−Dhj
Dhi

hk−D[hi,hj ]hk={(dωm
k +ωm

l ∧ ωl
k)(hi, hj)}hm (25.8)

or, more compactly,

RD = Ωm
k ⊗ hm ⊗ θk with Ωm

k ≡ dωm
k + ωm

l ∧ ωl
k . (25.9)

This is Cartan’s second structure equation, and the quantities Ωi
j are the curvature 2-forms.

In a natural basis where hi = ∂i, θ
i = dxi, and ωi

j = Γk
ijdx

i, we have Ωm
k = Rm

kijdx
i⊗dxj ,

where Rm
kij = ∂iΓ

m
jk − ∂jΓ

m
ik + Γm

il Γ
l
jk − Γm

jlΓ
l
ik. In any basis we can write

Ωm
k =

1

2
rmkijθ

i ∧ θj , (25.10)

where rmkij = −rmkji are the components of the curvature tensor in the basis hi.

25.4 The Levi-Civita connection

Now let us assume that the manifold is supplied with a metric g. If the connection D is a
metric connection (that is, Dug = 0 ∀ u), then, as we saw in (24.5),

∂ug(v, w) = g(Duv, w) + g(v,Duw) . (25.11)

Let us take for the vectors u, v, w three basis vectors of the tangent space hi, hj , hk and set
gij ≡ g(hi, hj) as well as [see (23.2)] ∂hi

gjk = hi(gjk) ≡ gjk,i. Then, using the definition
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(23.19) of the covariant derivative D as a function of the Ricci rotation coefficients and their
relation (25.4) to the connection forms, we have

gjk,i = g(Dhi
hj , hk) + g(hj , Dhi

hk)

= g(γl
ijhl, hk) + g(hj , γ

l
ikhl)

= γl
ijglk + γl

ikgjl (25.12)

= ωl
j(hi)glk + ωl

k(hi)gjl

= (ωkj + ωjk)(hi) , where ωkj ≡ ωl
jglk .

The metric condition (25.11) then is rewritten as

dgjk = ωkj + ωjk , (25.13)

where it is understood that dgjk ≡ ∂hl
gjkθ

l, and so we indeed have dgjk(hi) = ∂hi
gjk ≡ gjk,i.

In a natural basis where hi = ∂i, (25.13) is written in tensor form as gjk,i = glkΓ
l
ij+gjlΓ

l
ik,

where now gjk,i = ∂gjk/∂x
i.

If the basis hi is such that the components gij are constants, then ∂hi
gjk = 0 because

hi is a derivative operator, and so the metric condition on the connection then requires that
the connection forms ωkj be antisymmetric.

25.5 Components of the Riemann tensor

Let us consider a Riemannian manifold, that is, a metric manifold with a torsion-less con-
nection. Let hi be a basis of the tangent space and θi the dual basis.

The Cartan equations determining its curvature tensor then are

⎧
⎪⎨

⎪⎩

dθi + ωi
j ∧ θj = 0 ,

ωij + ωji = dgij ,

dωi
j + ωi

k ∧ ωk
j =

1

2
rijklθ

k ∧ θl .

(25.14)

The first equation states that the connection is torsion-free [cf. (25.7)]. Using ωi
j = γi

kj θ
k

and decomposing the 2-forms dθi as

dθi = −1

2
Ci

jkθ
j ∧ θk, (25.15)

it gives
Ci

jk = γi
jk − γi

kj . (25.16)

If the basis is natural, that is, if θi = dxi, then all the Ci
jk are zero by the Poincaré lemma and

we again find that the Ricci rotation coefficients γi
jk identified as the connection coefficients

Γi
jk are symmetric.
The second equation in (25.14) states that the connection is a metric connection [cf.

(25.13)]. Writing dgij = gij,kθ
k [where we recall that gij,k ≡ ∂hk

gij = hk(gij); cf. (23.2)] and
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ωij = gikω
k
j = gikγ

k
ljθ

l, by a suitable combination of cyclic permutations and using (25.16)
we extract the expression

γi
jk =

1

2

(
Ci

jk − gklg
imCl

jm − gjlg
imCl

km

)
+

1

2
gil (gkl,j + gjl,k − gjk,l) . (25.17)

In a natural basis the Ci
jk vanish, gkl,j = ∂jgkl, and we recover the familiar expression for the

Christoffel symbols Γi
jk as a function of the derivatives of the metric components. Conversely,

if the basis hi is such that the metric components gij = g(hi, hj) are constant, then only the
first term of (25.17) survives.

Finally, writing

dωi
j = d(γi

kjθ
k) = γi

kj,lθ
l ∧ θk − 1

2
γi
kjC

k
lmθl ∧ θm , (25.18)

where γi
kj,l ≡ hl(γ

i
kj), from the third equation in (25.14) we extract the components rijkl of

the curvature tensor:

rijkl = γi
lj,k − γi

kj,l + γi
kmγm

lj − γi
lmγm

kj − γi
mjC

m
kl . (25.19)

In a natural basis where Cm
kl = 0 we recover the familiar expression for the Riemann tensor

as a function of the Christoffel symbols Γi
jk (which are symmetric) and their derivatives

Γi
jk,l = ∂lΓ

i
jk.

25.6 The Riemann tensor of the Schwarzschild metric

We consider a static, spherically symmetric spacetime. In Droste coordinates (t, r, θ, φ) the
metric tensor has the form

g = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2 θdφ2) , (25.20)

where ν and λ are two arbitrary functions of r, dxμ = (dt, dr,dθ,dφ) is the basis of the
cotangent space canonically associated with the natural basis ∂μ = (∂t, ∂r, ∂θ, ∂φ) of the
tangent space at (t, r, θ, φ), and dt2 ≡ dt⊗ dt, and so on.

To calculate the Riemann tensor of this metric by the Cartan method, we choose the
basis of the cotangent space to be the four 1-forms

θ0 = eνdt , θ1 = eλdr , θ2 = rdθ , θ3 = r sin θdφ , (25.21)

and so in this (nonholonomic) basis the metric (25.20) is written as

g = ημνθ
μ ⊗ θν (25.22)

with ημν = (−1,+1,+1,+1).
The exterior derivatives of these forms are easily calculated3 and we find

dθμ = −1

2
Cμ

νρθ
ν ∧ θρ with C0

01 = ν′e−λ, C2
21 = C3

31 =
e−λ

r
, C2

32 =
cos θ

r sin θ
, (25.23)

where a prime denotes the derivative with respect to r, Cμ
νρ = −Cμ

ρν , and the other coefficients
Cμ

νρ are either zero or are found by antisymmetry.

3For example, dθ0 = d(eνdt) = ∂μeνdxμ∧dt = ν′eνdr∧dt = ν′eν(e−λθ1)∧(e−νθ0) = ν′e−λθ1∧θ0, from

the definition of the exterior derivative and the Poincaré lemma. On the other hand, dθ0 = − 1
2
C0

μνθ
μ ∧ θν =

− 1
2
(C0

01θ
0 ∧ θ1 + C0

10θ
1 ∧ θ0) = −C0

10θ
1 ∧ θ0, because C0

01 is antisymmetric. Therefore, C0
10 = −ν′e−λ.
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The Ricci rotation coefficients can then be obtained by direct calculation using (25.17)
and the fact that gμν,ρ = 0 since the basis is orthonormal.4

However, it is faster to find the connection 1-forms directly starting from the structure
equations expressing the absence of torsion and the metric nature of the connection, namely
[cf. (25.14)], ωμν + ωνμ = 0 and dθμ + ωμ

ν ∧ θν = 0. The first equation gives

ω0
i = ωi

0 and ωi
j = −ωj

i . (25.24)

The second gives

ν′e−λθ1 ∧ θ0 + ω0
1 ∧ θ1 + ω0

2 ∧ θ2 + ω0
3 ∧ θ3 = 0 ,

ω0
1 ∧ θ0 + ω1

2 ∧ θ2 + ω1
3 ∧ θ3 = 0 ,

e−λ

r
θ1 ∧ θ2 + ω0

2 ∧ θ0 − ω1
2 ∧ θ1 + ω2

3 ∧ θ3 = 0 ,

e−λ

r
θ1 ∧ θ3 +

cos θ

r sin θ
θ2 ∧ θ3 + ω0

3 ∧ θ0 − ω1
3 ∧ θ1 − ω2

3 ∧ θ2 = 0 .

(25.25)

These are four equations for six unknowns (ω0
i , ω1

2 , ω1
3 , ω2

3), but we know that there is a
single solution. With a bit of insight we find

ω0
1 = ν′e−λθ0 , ω0

2 = ω0
3 = 0 , ω1

2 = −e−λ

r
θ2 , ω1

3 = −e−λ

r
θ3 ,

ω2
3 = − cos θ

r sin θ
θ3 .

(25.26)

The curvature 2-forms, Ωμ
ν = dωμ

ν + ωμ
ρ ∧ ωρ

ν , then follow directly5:

Ω0
1 = −e−2λ(ν′λ′ − ν′′ − ν′2)θ0 ∧ θ1 , Ω0

2 = −ν′e−2λ

r
θ0 ∧ θ2 ,

Ω0
3 = −ν′e−2λ

r
θ0 ∧ θ3 ,

Ω1
2 =

λ′e−2λ

r
θ1 ∧ θ2 , Ω1

3 =
λ′e−2λ

r
θ1 ∧ θ3 , Ω2

3 =
1− e−2λ

r2
θ2 ∧ θ3 .

(25.27)

Since Ωμ
ν = 1

2r
μ
νρσθ

ρ ∧ θσ, we can read off the components of the Riemann tensor from
(25.27):

r0101 = e−2λ(ν′λ′ − ν′′ − λ′2) , r0202 = r0303 = −ν′e−2λ

r
,

r1212 = r1313 =
λ′e−2λ

r
, r2323 =

1− e−2λ

r2
.

(25.28)

If now the metric is the Schwarzschild metric, that is, if e−2λ = e2ν = 1− 2m/r, we have

4For example, γ0
01 = 1

2
(C0

01 + C1
00 − C0

10) = C0
01 = ν′e−λ. Similarly, we find γ0

11 = γ0
21 = γ0

31 = 0, and so

ω0
1 = γ0

k1θ
k = ν′e−λθ0.

5For example, Ω0
2 = dω0

2 + ω0
ρ ∧ ωρ

2 = ω0
ρ ∧ ωρ

2 = ω0
1 ∧ ω1

2 = −(ν′e−2λ/r)θ0 ∧ θ2.
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r0101 = r2323 = −2r0202 = −2r1212 =
2m

r3
, (25.29)

and so the Kretschmann curvature invariant K ≡ rμνρσr
νρσ
μ , where the indices are raised and

lowered using the metric ημν , is

K = 4(r0101)
2 + 8(r0202)

2 + 8(r1212)
2 + 4(r2323)

2 =
48m2

r6
. (25.30)
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Julié, F. L. and Deruelle, N. (2017). Two-body problem in scalar–tensor theories as a
deformation of general relativity: an effective-one-body approach. https://arxiv.org/abs/
1703.05360.
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1, 1–12.

Mueller, A. (2007). Experimental evidence of black holes. http://arxiv.org/abs/astro-ph/
0701228.

Mukhanov, V. (2005). Physical foundations of cosmology. Cambridge University Press,
Cambridge.

Mukhanov, V., Feldman, H., and Brandenberger, R. (1992). Theory of cosmological pertur-
bations. Phys. Rep., 215, 203–233.

Mukhanov, V. and Chibisov, G. (1981). Quantum fluctuations and a nonsingular universe.
JETP Lett., 33, 532–535.

Mukhanov, V. and Winitzki, S. (2007). Introduction to quantum effects in gravity. Cam-
bridge University Press, Cambridge.

Nagar, A., Damour, T., Reisswig, C., and Pollney, D. (2016). Energetics and phasing of
nonprecessing spinning coalescing black hole binaries. Phys. Rev. D, 93, 044046; also,
arXiv:1506.08457.

B
o
o
k
3

https://arxiv.org/abs/hep-th/0503203
https://arxiv.org/abs/1303.1583
http://www.madore.org/david/math/kerr.html
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/1109.5139
http://arxiv.org/abs/astro-ph/0701228
http://www.madore.org/david/math/kerr.html
http://arxiv.org/abs/astro-ph/0701228


“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 676 — #688

676 List of books and articles cited in the text

Oppenheimer, J. R. and Snyder, H. (1939). On continued gravitational contraction. Phys.
Rev., 56, 455.

Pais, A. (1983). Subtle is the Lord. Oxford University Press, Oxford.

Penrose, R. (1969). Gravitational collapse: the role of general relativity. Riv. Nuovo Cimento,
1, 252; reproduced in Gen. Rel. Gravit., 34, 1141 (2002).

Penrose, R. (1998). The question of cosmic censorship, in Black holes and relativistic stars,
edited by R. M. Wald. University of Chicago Press, Chicago.

Peter, P. and Uzan, J.-P. (2009). Primordial cosmology. Oxford University Press, Oxford.

Piran, T. and Shaham, J. (1977). Upper bounds on collisional Penrose processes near ro-
tating black hole horizons. Phys. Rev. D, 16, 1615.

Pitkin, M. et al. (2011). Gravitational wave detection by interferometry (ground and space).
Living Rev. Relativity, 14, 5; also, http://relativity.livingreviews.org/Articles/lrr-2011-5/.

Planck Collaboration (2013). Planck 2013 results. XVI. Cosmological parameters. https://
arxiv.org/abs/1303.5076; also, http://www.esa.int/SPECIALS/Planck/ index.html.
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correlation function, 94
correspondence principle, 425
cosmic censorship, 477
cosmic censorship hypothesis, 505
cosmic expansion, 599
cosmic time, 593
cosmological constant, 265, 432, 601, 609
cosmological constant problem, 432
cosmological fluid, 601, 605
cosmological parameters, values of, 608
cosmological perturbations, 620
cosmological perturbations, action of, 634
cosmological principle, 591, 598, 601, 612
cosmological singularity, 607
cosmology, Newtonian, 148
cotangent space, 648
Coulomb gauge, 292, 310, 525
Coulomb potential, 282, 299
Coulomb’s law, 298
covariant, 21
covariant derivative, 32, 46, 76, 221, 415, 653, 654
critical electric field, 287
critical mass, 461
curl, 28, 388
current, 289
current conservation law, 290
current, polarization, 328
curvature, 26
curvature forms, 663
curvature perturbation, 634
curvature singularity, 472, 612
curvature tensor, 414, 658
curvature, Riemann–Christoffel, 654
curved spacetime, 409
curvilinear abscissa, 190, 192
curvilinear coordinates, 30, 53, 216
cyclic coordinate, 82
cyclotron frequency, 288
Cygnus X-1, 462

D
d’Alembertian, 257
dark matter, 610
Darwin Lagrangian, 375, 532
de Donder gauge, 541
de Sitter model, 603
de Sitter spacetime, 595
deceleration parameter, 600
decomposition, 1+3, 433
deflection angle, 303
degrees of freedom, of electromagnetic wave, 310
Delaunay elements, 125
density contrast, 152, 622
density parameters, 607, 608
differential cross section, 360
differential forms, 43, 648
differentiation, 24
dipole field, 367
dipole formulas, 368

dipole moment, 300
dipole radiation, 367
dipole reaction force, 373
Dirac delta distribution, 107
Dirac distribution, 253, 260
directional derivative, 34
dispersion relation, 262, 329
dispersive medium, 329
displacement current, 292
distribution function, 94
divergence, 38, 49
divergence theorem, 426
Doppler effect, 159
Doppler effect, transverse, 207
Doppler–Fizeau effect, 209
Doppler–Fizeau formula, 207
Droste coordinates, 470
dual, 384
dual basis, 180
dual space, 20
duality, 293
duality brackets, 77
dust, 254
dynamical law, 59
dyons, 293

E
e-folding, 617
Earth, 119, 134
Earth, figure of, 135
Earth, fluid model of, 132
Earth, moment of inertia, 137
eccentric anomaly, 114
eccentricity, 112
Eddington coordinates, 482
Eddington parameters, 514
Eddington–Finkelstein coordinate, advanced, 502
Eddington–Finkelstein coordinates, 470
effacement principle, 565
effacement property, 105, 118, 121, 532
effective cross section, 236
effective mass, 120, 232
effective-one-body mapping, 579
EIH equations of motion, 531
eikonal, 335
eikonal equation, 327
Einstein action, 448
Einstein constant, 431
Einstein equations, 431, 439, 661
Einstein equations, post-linear order, 551
Einstein equations, post-Newtonian, 529
Einstein equations, vacuum, 507
Einstein equivalence principle, 408, 492, 598
Einstein pseudo-tensor, 449
Einstein static universe, 473
Einstein summation convention, 12, 180
Einstein tensor, 420, 659
Einstein, static universe, 602
Einstein–de Sitter solution, 607
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Einstein–Infeld–Hoffmann equations of motion,
531

Einstein–Rosen bridge, 476
electric charge, 284
electric displacement field, 328
electric field, 282, 289
electromagnetic field, 428
electromagnetic field, energy–momentum tensor

of, 294
electromagnetic field, equation of state, 296
electromagnetic potential, 281
electromagnetic wave, 292, 310
electromagnetic wave, polarization, 320
electromagnetic wave, propagation, 317
electromagnetism, gauge-invariant action, 311
electromagnetism, Hamilton equations of, 314
electromagnetism, Hamiltonian, 312
electron charge, 175
electron mass, 175
electron, classical radius of, 299
electrostatic energy, 299
electroweak theory, 265
element, length, 11
element, surface, 49
element, volume, 38
ellipse, 112
ellipsoid, gravitational energy of, 147
ellipsoid, Jacobi, 147
energy, 67, 82, 248
energy density, 296
energy extraction from a black hole, 495
energy extraction process, 494
energy, conservation of, 82
energy–momentum tensor, 248, 251
energy–momentum tensor of the electromagnetic

field, 294
energy–momentum tensor of the interaction, 270
energy–momentum tensor, of a field, 428
energy–momentum tensor, of a fluid, 423
energy–momentum tensor, of a wave, 323
enthalpy, 252
entropy, 505
entropy perturbation, 622
EOB mapping, 579
equation of state, 64, 97, 141, 252, 296
equations of motion at 2.5 PN order, 567
equinoxes, precession of, 129
equipotential, 134
equivalence principle, 102, 105, 407, 545
equivalence principle, of Einstein, 408
equivalence principle, strong, 107, 118, 451, 491,

565
equivalence principle, weak, 105, 107, 408
ergodicity theorem, 254
ergoregion, 492
ergosphere, 490, 492
escape velocity, 155
eternal chaotic inflation, 618
Euclidean metric, 22, 81
Euclidean plane, 21

Euclidean space, 22, 41
Euler angles, 14, 61, 184
Euler equation, relativistic, 252, 424
Euler equations, 61–63, 79, 96, 139, 161
Euler–Lagrange equations, 73, 75, 77, 82, 247,

291, 427
Euler–Lagrange equations, for the geodesic, 422
Eulerian derivative, 63
evanescent wave, 330
event, 179
event horizon, 477, 489, 491
extension, maximal analytic, 218
exterior derivative, 27, 385, 387, 649
exterior product, 383, 385, 649
external field, 228
external field approximation, 366
extrinsic curvature, 433, 435, 436, 507

F
Faraday tensor, 281, 386
Faraday’s law of induction, 289
Fermat’s principle, 335
Fermi coordinates, 213, 214, 546
Fermi gas, 461
Fichtenholz Lagrangian, 532, 534
fictitious point, 123
fictitious time, 285
field configuration, 246
field, angular momentum of, 250
field–matter system, 269
figure of the Earth, 135
fine structure, 304, 306
fine structure constant, 175, 235
first law of thermodynamics, 506
first structure equation, 663
Fizeau experiment, 160, 198
Flamm’s paraboloid, 461
flatness problem, 611, 615
flattening, polar, 134
flow, 92
flow of time, 185
FLRW spacetime, 593, 598
fluid, 423
fluid equations of motion, 251
fluid without pressure, 254
fluid, energy–momentum tensor of, 251
fluid, gravitational energy of, 139
focal parameter, 112
Fock function, 565
Fock gauge, 541
Fock representation, 638
focus, 112
Fokker Lagrangian, 575
force 4-vector, 228
forces, 54
form, 43, 648
form of degree p, 383, 649
forms, 20
Foucault pendulum, 57, 58, 203
four-acceleration, 190
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Fourier decomposition, 318, 542
Fourier expansion, 259
Fourier mode, 259
Fourier transform, 259
Fourier trick, 542
frame field, 656
free field, 246, 247
free field, dynamical, 247
free field, energy–momentum tensor, 247
free particle, 266
Frenet trihedron, 26
Frenet–Serret equations, 26
frequency, 158, 207
frequency, positive, 637
Fresnel equations, 332
Fresnel formula, 198
Fresnel laws, 332
Freud superpotential, 449
Friedmann equation, Newtonian, 150
Friedmann solution, interior, 465
Friedmann spacetime, 593
Friedmann–Lemâıtre equations, 601, 607
Friedmann–Lemâıtre spacetime, 620
fringe spacing, 160, 162, 199
future, 182
future horizon, 473

G
galaxy, 598
Galilean group, 16, 150
Galilean invariance, 55
Galilean limit, 188, 197
Galilean relativity, 79
Galilean transformations, 16, 25, 285
gamma-ray burst, 494
gauge bosons, 265
gauge field, 265
gauge invariance, 281, 433
gauge transformation, 291, 309
gauge, axial, 292
gauge, Coulomb, 292
gauge, de Donder, 541
gauge, Fock, 541
gauge, Hamiltonian, 292
gauge, Hilbert, 541
gauge, Lorenz, 292, 309
gauge, radiation, 292
gauge, temporal, 292
gauge, transverse, 292
gauge-invariant variables, 621
gauge-invariant variables, inflation, 632
Gauss coordinates, 433
Gauss equations, 123, 124, 126, 435
Gauss equations of perturbations, 123
Gauss scalar curvature, 507
Gauss theorem, 29, 389
Gauss’s law of magnetism, 289
Gauss’s theorem, 39
Gauss–Bonnet theorem, 508
Gaussian, 259

Gaussian field, 642
gedankenexperiment, 410, 495
general relativity, 406
generalized coordinates, 73
generating function, 88, 91
geodesic, 192, 222, 336, 409, 418
geodesic deviation, 416, 655
geodesic deviation equation, 546, 657
geodesic equation, 422, 444, 657
geodesic equation, first integrals of, 444
geodesic equation, Schwarzschild, 514
geodesic, Euler–Lagrange equations, 422
geodesic, of a point mass, 422
geodesics, 479
geodetic precession, 245, 523
geometrical optics, 327, 334
geometrical optics limit, 326
geometrical units, 432
geometrization of inertia, 219
geometrization, of inertial force, 222
Gibbons–Hawking–York action, 448
Gibbons–Hawking–York boundary term, 438
global symmetry, 264
GPS, 515
graded algebra, 384
gradient, 28, 49, 387
Grassmann algebra, 384
gravitational binding energy, 459
gravitational charge, 102
gravitational collapse, 462
gravitational constant, 104
gravitational energy, 108, 139, 141, 147
gravitational force, 104
gravitational Hamiltonian, 441
gravitational Lagrangian, 106
gravitational mass, 105, 118, 119, 273, 276, 407,

451, 485, 491
gravitational mass, active, 102, 271, 276
gravitational mass, passive, 101, 271
gravitational potential, 104
gravitational radius, 155
gravitational redshift, 410, 603
gravitational wave, detection of, 546
gravitational waves, 541, 544, 624, 633, 639
gravitational waves, Hamiltonian of, 544
gravitational waves, primordial, 643
gravitomagnetic field, 525
gravitomagnetism, 525
Gravity Probe B, 245, 523, 524
gravity, center of, 61
Great Debate, 602
greybody factor, 497, 505
group velocity, 159, 329
gyroscope, 61, 491, 524

H
Hadamard regularization, 564
Hafele–Keating experiment, 412
Hamilton equations, 117, 258
Hamilton equations, electromagnetism, 314



“DUrootfile1+2+3” — 2018/7/30 — 19:13 — page 684 — #696

684 Index

Hamilton’s equations, 83
Hamilton–Jacobi equation, 87
Hamilton–Jacobi, harmonic oscillator, 87
Hamiltonian, 84
Hamiltonian gauge, 292, 310, 544
Hamiltonian of a system of particles, 85
Hamiltonian, central forces, 117
Hamiltonian, electromagnetism, 312
Hamiltonian, harmonic oscillator, 86
Hamiltonian, of a charge in a field, 286
Hamiltonian, of gravitational waves, 544
Hamiltonian, of gravity, 441
Hamiltonian, Proca, 316
Hamiltonian, reduced, 313
harmonic condition, 548
harmonic coordinates, 513
harmonic gauge, 529
harmonic oscillator, 86, 87
harmonic oscillator Hamiltonian, 86
Hawking radiation, 501
Heaviside distribution, 260, 502
Heisenberg equations, 637
Heisenberg–Kennard inequality, 259
helicity, 321
hereditary, 381
hereditary equations, 381
Hilbert action, 437, 659
Hilbert gauge, 541
Hilbert Lagrangian, 438
Hill curve, 122
Hodge operator, 384
homogeneity, 81
homogeneous ellipsoid, 60
Hooke potential, 117
horizon, 209, 613
horizon problem, 612, 615
hot Big Bang model, 611
hot dark matter, 606
Hubble constant, 600, 608
Hubble function, 593, 608
Hubble radius, 608, 613
Hubble time, 608
Hubble’s law, 149, 600, 608
hybrid inflation, 619
hydrogen atom, 301, 304
hydrogen atom, radiation of, 358
hydrogen atom, stability of, 379
hypotheses non fingo, 109

I
inertia, moment of, 60
impact parameter, 303
impedance, 328
incompressible fluid, 78
induced metrics, 39, 433, 436
inertia, 276
inertia tensor, 60, 128
inertia, axis of, 62
inertia, center of, 65
inertia, geometrization of, 219, 222

inertia, principle of, 55
inertial acceleration, 222
inertial force, 56, 105
inertial frame, 16, 55, 184, 213
inertial frame, instantaneous, 193
inertial mass, 53, 66, 101, 118, 119, 228, 270,

273, 295, 407, 450, 460
inertial reference frames, 182, 227
inflation, 597, 614, 632
inflation dynamics, 616
inflation, chaotic, 617
inflation, initial conditions, 636
inflation, slow-roll, 616
inflaton, 617
initial conditions, of inflation, 636
interaction, field–matter, 269
interaction, short-range, 268
interference, 162
interference, optical, 160
interior Friedmann solution, 465
internal energy, 72, 252
International System of Units, 175
intrinsic angular momentum, 241, 523
invariance under diffeomorphisms, 433
invariant, 667
inverse Compton scattering, 236
irreducible mass, 492, 494, 495, 505
ISCO, 488
island-universe models, 150
isolated system, 65
isometries, 81, 255
isometries and energy–momentum, 445
isometry, 443
isothermal sphere, 143, 144
isotropic radial coordinates, 513
isotropy, 81
Israel uniqueness theorem, 506
Ives–Stilwell experiment, 208

J
Jacobi constant, 122
Jacobi ellipsoids, 147
Jacobi fields, 655
Jacobi identity, 89, 650
Jeans approximation, 152
Jeans equations, 95
Jeans length, 153

K
Katz superpotential, 448, 491
Kelvin approximation, 135
Kepler frame, 25, 115
Kepler orbits, 111
Kepler problem, Lagrangian, 114
Kepler’s first law, 112
Kepler’s laws, 110
Kepler’s second law, 111
Kepler’s third law, 112
Keplerian trajectory, 123
Kerr black hole, 488, 492, 505
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Kerr black hole, uniqueness of, 509
Kerr geodesic, 485
Kerr metric, 482, 483
Kerr solution, 483
Kerr, surface gravity, 494
Kerr–Newman metric, 485
Kerr–Newman solution, 485
Kerr–Newman spacetime, 485
Kerr–Schild coordinates, 482
Kerr–Schild metrics, 481
Killing equations, 81, 255, 443
Killing horizon, 477, 489
Killing tensor, 486
Killing vectors, 81, 255, 443, 591
kilogram, 101, 103
kinetic energy, 67, 75, 230
kinetic energy tensor, 71
kinetic theory, 144
King radius, 143
Klein–Gordon equations, 252, 257, 269, 427, 616
Klein–Nishina formula, 236, 360
Komar integrals, 447, 450, 491
Komar mass, 459
Kottler spacetime, 603
Kretschmann invariant, 467, 488
Kronecker delta, 12, 180
Kruskal coordinates, 470
Kruskal diagram, 472
Kruskal metric, 470
Kruskal transformation, 472
Kruskal–Szekeres extension, 468

L
laboratory frame, 233
Lagrange bracket, 124
Lagrange multipliers, 77
Lagrange points, 122
Lagrange series, 373
Lagrangian, 73, 121
Lagrangian density, 246, 425
Lagrangian density, of electromagnetism, 312
Lagrangian derivative, 63
Lagrangian formalism, 73
Lagrangian, central force, 116
Lagrangian, complex field, 262
Lagrangian, electromagnetism, 312
Lagrangian, gravitational, 106
Lagrangian, harmonic oscillator, 86
Lagrangian, interaction, 266
Lagrangian, Kepler problem, 114
Lagrangian, of a charge in a field, 286
Lagrangian, of a point mass, 422
Lagrangian, of a two-body system, 532
Lagrangian, of Newtonian gravity, 108
Lagrangian, Proca, 316
Lagrangian, reduced, 115, 116
Lagrangian, scalar-field, 257
Lagrangian, three-body, 121
Lamé coefficients, 136
Lambda-CDM model, 605

Landé factor, 305
Landé g-factor, 485
Landau gauge, 265
Landau–Lifshitz pseudo-tensor, 551
Lane–Emden equation, 141
Langevin twins, 194
Laplace effect, 119
Laplace vector, 115, 116
Laplace–Beltrami operator, 388
Laplace–de Rham operator, 388
Laplacian, 28, 38, 49, 107, 388, 660
lapse, 434
large-scale structure, 629
large-scale structure, origin of, 613
Larmor formulas, 352, 364
Larmor radius, 288
laser telemeter, 121
Laurent expansion, 362
Legendre transformation, 84
Lemâıtre coordinates, 467
Lemâıtre spacetime, 593
Lemâıtre–Tolman–Bondi solution, 464
length contraction, 162, 187
length of a curve, 417
lengthening of the day, 137
Lense–Thirring precession, 524
Levi-Civita connection, 48, 409, 418, 656, 663
Levi-Civita symbol, 18, 27, 38, 241
Levi-Civita tensor, 23
Liénard–Wiechert potential, 274, 342, 344
Lie brackets, 650
Lie derivative, 81, 429, 443, 650
light, 292, 337
light cone, 181, 182
light corpuscle, 200, 207
light deflection, 271
light line, 200
light rays, 326, 327, 335
light scattering, 235
light, bending of, 156
light, interference, 160
light-like surface, 489
line integral, 28
line integral of a vector, 28
line of nodes, 130
Liouville equation, 92, 93
Liouville theorem, 92
local frame, 213, 214
local symmetry, 265
locally inertial frame, 419
long-range forces, 228
longitudinal gauge, 543
Lorentz boost, 184, 185
Lorentz equation, 284, 300, 499
Lorentz factor, 184
Lorentz force, 284, 290
Lorentz group, 184
Lorentz invariance, 292, 378
Lorentz rotation, 283
Lorentz transformation, 183
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Lorentzian metric, 656
Lorenz condition, 309
Lorenz gauge, 292, 309
Love numbers, 135
luminosity, 141
luminosity distance, 599, 608
luminosity, absolute, 599
luminosity, apparent, 599

M
Mach’s principle, 53
Maclaurin spheroids, 145
magnetic charge, 293, 307
magnetic field, 282, 289
magnetic field strength, 328
magnetic moment, 308
magnetic monopole, 293
magnetic potential, 282
magnetization, 328
major axis, 112
manifold, 409
manifold, (pseudo-)Riemannian, 410
manifold, connected, 653
manifold, metric, 656
Maskelyne experiment, 106
mass conservation, 254
mass energy, 445
mass shell, 313
mass, BEH boson, 265
mass, center of, 59, 61
mass, electron, 175
mass, gravitational, 105, 485, 491
mass, inertial, of a star, 460
mass, proper, of a star, 459
mass, proton, 175
matching conditions, 139, 330, 436, 458
Mathisson equations, 523
maximal extension, 473, 474, 490
maximally symmetric space, 255, 591
Maxwell distribution, 97
Maxwell equations, 386, 427
Maxwell equations in a medium, 328
Maxwell equations, first group, 289
Maxwell equations, second group, 291
Maxwell equations, vacuum, 311, 317
Maxwell theory, 281, 309
mean angular motion, 114
mean anomaly, 114
mean motion, 302
mean-field approximation, 95
membrane paradigm, 495
Mercury, advance of the perihelion of, 126, 521
Mercury, motion of, 129
Mercury, perihelion, 272
metric, 48
metric connection, 656
metric manifold, 656
metric tensor, 409, 417, 656
metric, conformally flat, 471
metric, Minkowski, 180

metric, post-Newtonian, 528
Michelson–Gale–Pearson experiment, 202
Michelson–Morley experiment, 162, 183
microcanonical, 144
Milne coordinates, 595
Milne functions, 143
Milne group, 16, 105, 110, 129, 150
Milne spacetime, 594
minimal coupling, principle of, 425
Minkowski coordinates, 213
Minkowski frame, 184, 227
Minkowski metric, 180
Minkowski metric, in Fermi coordinates, 215
Minkowski spacetime, 179, 181, 213, 255,

444, 474
Minkowski spacetime, Killing vectors of, 255
mirage, gravitational, 517
models of island-universes, 150
moment of inertia, 60
moment of inertia tensor, 71
momentum, 65, 230
momentum conservation, 230
MOND, 606
monopole problem, 612
monopoles, 613
Moon, 119
Moon, recession of, 137
Moon, synchronous rotation of, 138
motion, uniform circular, 191
motion, uniformly accelerated rectilinear, 191
moving frames, 44, 656
Mukhanov–Sasaki variable, 634
muon, 186, 193, 288
muon lifetime, 186, 193

N
naked singularity, 477
Nambu–Goldstone boson, 264
natural basis, 41, 43, 647, 648
natural components, 647
near zone, 527
Neptune, 126
neutrinos, 606
neutron star, 461, 549, 572
Newton’s bucket, 64
Newton’s constant, 104, 105, 432
Newton’s first law, 55
Newton’s law, 118
Newton’s Principia, 107
Newton’s rings, 162
Newton’s second law, 53, 66
Newton’s theorem, 107, 110, 118
Newton’s third law, 54
Newton, gravitation, 104
Newton, second law of, 271
Newtonian cosmological perturbations, 151
Newtonian cosmology, 148
Newtonian gauge, 626
Newtonian limit, 238, 432, 456, 522, 629
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Newtonian potential, 117
Newtonian spacetime, 12, 213
Newtonian theory of cosmological perturbations,

629
Noether canonical energy–momentum tensor, 429
Noether canonical tensor, 450
Noether charge, 446
Noether energy–momentum tensor, 248
Noether theorem, 79, 534
Noether’s theorem, 248, 290
non-connected manifold, 647
Nordström force, 271
Nordström theory, 107, 266, 520
norm, 417, 656
normal coordinates, 419
nutation, 14, 111

O
oblateness of the Sun, 129
observable universe, 614
observational cosmology, 607
Ohm’s law, 330
Olbers’s paradox, 153
on-shell, 313
Oppenheimer–Snyder model, 462
optical path, 336
orbital parameters, 113
orbiting clock, 515
orthochronous, 184
osculating ellipse, 123, 129

P
p-form, 383, 649
Palatini variation, 439
parallel transport, 22, 34, 37, 47, 409, 413
parametrized post-Newtonian metric, 514
Parseval–Plancherel theorem, 260
particle collisions, 66
particle density, 252
particle horizon, 612
particle, uniformly accelerated, 209
passive gravitational mass, 271
past, 182
past horizon, 473
pendulums, 103
Penrose diagram, 474, 478
Penrose diagram, of a Reissner–Nordström black

hole, 478
Penrose process, 492, 498
Penrose–Carter diagram, 473
perfect fluid, 62, 251, 601
perfect gas, 97
periastron, 113
perihelion, 113
perihelion, advance of, 272
perihelion, precession of, 273
period, 207
permeability, 198
permittivity, 198, 328
perturbation of the scalar field, 632

perturbation theory, 123, 535
perturbation theory, inflation, 632
perturbations, Newtonian cosmological, 151
perturbations, quantization of, 636
perturbing force, relativistic, 535
phase space, 84, 92
phase velocity, 158, 329
photoelectric effect, 236
photon, 200, 231, 337
Planck constant, 235
Planck length, 505
Planck satellite, 609
Planck’s constant, 175
plane wave, 322
plane wave, monochromatic, 317, 326
plum-pudding model, 304
Poincaré lemma, 385, 662
Poincaré transformation, 183
point mass, 422
Poisson brackets, 88, 91, 125, 259
Poisson equations, 106, 139, 298, 432
Poisson theorem, 89
polar coordinates, 30, 33, 36, 37
polarization, 317, 320, 328
polarization of the Earth–Moon orbit, 120
polarization tensor, 542
polarization, circular, 321
polarization, linear, 320
polhode, 61
polytropes, 64, 141, 252, 461
polytropic index, 141
positive frequency mode, 637
post-Keplerian corrections, 535, 539
post-Keplerian motion, 521
post-Keplerian parameters, 539
post-Minkowski, 562
post-Newtonian, 562
post-Newtonian approximation, 562
post-Newtonian bending of light, 515
post-Newtonian formalism, 514
post-Newtonian metric, 528
post-Newtonian parameter, 526
post-Newtonian, two-body problem, 534
post-post-Keplerian equations, 521
potential energy, 68, 75
potential energy tensor, 71
potential energy, gravitational, 108
potential, Newtonian expansion, 128
potentials, Bardeen, 621
Pound–Rebka experiment, 411
power spectrum, 638
power spectrum, of perturbations, 642
Poynting vector, 296, 334
PPN, 514
PPN formalism, 526
PPN parameter, 525
pre-heating, 619
precession, 14, 111
precession of the equinoxes, 129
precession, Lense–Thirring, 524
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predictivizing, 381
pressure, 97
primordial cosmology, 644
primordial nucleosynthesis, 606
principal of least action, 77
principle of action and reaction, 232
principle of Galilean relativity, 79
principle of least action, 74
principle of relativity, 75, 179
probability density, 92
problem of the origin of large-scale structure, 613
Proca Hamiltonian, 316
Proca theory, 316
projection operator, 542
projection tensor, 251
proper distance, 599
proper length, 187
proper mass, 446, 459
proper rotation, 112
proper time, 192
proton mass, 175
pseudo-tensor, 553
PSR 1913+16, 549, 561, 572
pullback, 651

Q
quadrature, 118
quadrupole expansion, 128, 300
quadrupole field, 368
quadrupole formula, 371, 547
quadrupole formula, first, 549
quadrupole formula, second, 552
quadrupole formula, validity of, 549, 553
quadrupole moment, 128, 137, 300, 549
quadrupole radiation, 368
quantity of acceleration, 76
quantum of action, 234
quantum of energy, 236
quantum vacuum, 499, 506
quantum–classical transition, 638, 643
quasar, 494
quasi-normal modes, 498
quintessence, 616

R
Römer delay, 538
radiation field, 348, 349
radiation fluid, 254, 606
radiation gauge, 292
radiation losses, 356
radiation of a self-gravitating system, 554
radiation reaction, 378
radiation reaction force, 363
radiation, by an accelerated charge, 355
radiation, of hydrogen atom, 358
radius of curvature, 592
random variable, 643
rapidity, 184, 198
Rayleigh scattering, 364
reaction force, 361, 364

reaction force, radiation, 363
recession of the Moon, 137
redshift, 411, 476, 599
reduced mass, 115, 123, 534
reference frame, in free fall, 407
reference solid, 223
reflection, 333
reflection coefficients, 333
refraction, 329, 330
Regge–Wheeler equations, 498
regular precession, 61
Reissner–Nordström black hole, 477, 478
Reissner–Nordström spacetime, 477
relative acceleration, 416
relativistic dynamics, first law, 227
relativistic dynamics, second law, 228
relativistic Euler equation, 252
relativistic fluid, 252
relativistic invariant, 232
relativistic tops, 242
relativity, Galilean, 79
relativity, principle of, 179
reparametrization invariance, 75
rest energy, 231
restricted three-body problem, 121
resultant force, 54
retarded position, 229
retarded propagator, 345
retarded quantities, 370, 555
Ricci rotation coefficients, 662
Ricci tensor, 420, 658
Ricci tensor, post-Newtonian, 528
Ricci–York equations, 435
Riemann–Cartan theorem, 419
Riemann–Christoffel curvature, 654
Riemann–Christoffel tensor, 414
Riemannian connection, 418
Riemannian metric, 656
rigid displacements, 15
rigid displacements, group of, 66
Rindler coordinates, 215, 228
Rindler frame, 218, 223, 228
Rindler future horizon, 473
ring singularity, 483, 489
Robertson–Walker spacetime, 593
Robinson–Bertotti solution, 480
Robinson–Bertotti spacetime, 480
Roche limit, 134
rotating frames, 219, 244
Runge–Lenz vector, 115
Rutherford effective cross section, 302
Rutherford formula, 303
Rydberg levels, 380
Rydberg state, 380

S
Sagittarius A*, 462
Sagnac effect, 201, 202, 220
scalar cosmological perturbations, 626
scalar curvature, 420, 658
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scalar curvature, Gauss, 507
scalar field, 45, 428, 616, 632
scalar field, canonical action, 637
scalar field, energy–momentum tensor, 257, 269
scalar field, massive, 257
scalar field, perturbation, 632
scalar mode, 309
scalar product, 22, 27, 31, 190, 417, 656
scalar virial theorem, 70
scale factor, evolution of, 606
scale factors, 149, 593, 599, 600
scattering, Rayleigh, 364
Schwarzschild black hole, 475
Schwarzschild coordinates, 470
Schwarzschild future horizon, 473
Schwarzschild geodesic equation, 514
Schwarzschild horizon, 477
Schwarzschild metric, 455, 482, 513, 665
Schwarzschild radius, 156, 457, 464
Schwarzschild singularity, 457, 468
Schwarzschild spacetime, 455, 474
Schwarzschild, maximal extension, 474
Schwarzschild, surface gravity, 494
Schwarzschild–Droste coordinates, 455
Schwinger effect, 499
second law of thermodynamics, 505
secular effect, 131
secular term, 520
self energy, 231
self field, 372
self-gravitating fluids, 139
self-gravitating system, radiation of, 554
separation of variables, 87, 118
Shapiro effect, 517
shear modulus, 136
shift, 434
short-range forces, 228
SI base units, 175
SI derived units, 175
simultaneity, 185
singular isothermal sphere, 143
singularity, 612
singularity, Schwarzschild, 468
skin depth, 330
slow-roll approximation, 617
slow-roll parameters, 617, 640
slow-roll regime, 616
Snell’s law, 206
Snell–Descartes laws, 330, 336
solar system, 513
solid, 59
solid, equations of motion, 59
Sommerfeld conditions, 304
Sommerfeld quantization, 304
sound, speed of, 152
space of constant curvature, 592
space, homogeneous, 591
space, isotropic, 591
space, maximally symmetric, 591
spacetime coordinates, 179

spacetime singularity, 607
spacetime, absolute, 180
spacetime, anti-de Sitter, 597
spacetime, block, 185
spacetime, circular, 484
spacetime, cosmological, 591
spacetime, de Sitter, 595
spacetime, Einstein static, 602
spacetime, FLRW, 593, 598
spacetime, Friedmann, 465, 593
spacetime, Kerr, 482
spacetime, Lemâıtre, 593
spacetime, Lemâıtre–Tolman–Bondi, 464
spacetime, Milne, 594
spacetime, Minkowski, 179, 181, 213
spacetime, Newtonian, 213
spacetime, Reissner–Nordström, 477
spacetime, Robertson–Walker, 593
spacetime, Schwarzschild, 474
spacetime, static, 455
spacetime, stationary, 444
spatial averages, 353
special relativity, 405
specific heat, 145
spectral index, 639, 642
spectral shift, 207
spectral shift, accelerated observer, 218
speed of light, 155, 293
speed of sound, 152, 158
sphere, expanding, 148
spherical coordinates, 36, 44, 49
spherical symmetry, 445, 446
spherical top, 60
spherical wave, 322
spheroidal coordinates, 40, 482
spheroidal harmonics, 497
spin, 242, 305, 523
spin 4-vector, 305
spin–spin coupling, 525
stability, of a black hole, 498
stability, of hydrogen atom, 379
standard candles, 600
standard model of cosmology, 644
star of constant density, 459
stars, models of, 140, 143
state, 92
static, 455
static Einstein model, 602
static field, 445, 446
static limit, 490, 492
static stars, 457
static universe, of Einstein, 473
stationarity, 489
stationary, 455
steady-state model, 603
Stefan–Boltzmann law, 606, 608
stellar collapse, 475
STEP, 103
Stewart–Walker lemma, 543, 623
Stokes parameters, 322
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Stokes theorem, 29, 388, 389
streamlines, 62
stress tensor, anisotropic, 622
strong equivalence principle, 276, 460, 491
sub-Hubble, 613
sub-Hubble limit, 629
summation convention, 180
Sun, 119
Sun, lifetime, 141
Sun, oblateness of, 129
super-Hubble, 613
superluminal jets, 204
superposition principle, 54, 65
superpotential, 553
superradiance, 495, 498
superradiance, quantum, 499
surface gravity, 494, 505
susceptibility, 328
SVT, 542
SVT decomposition, 620
symmetric tops, 61
symmetry breaking, 262
symplectic form, 90
synchronous coordinates, 464
synchronous frame, 464
synchronous rotation, 138
synchroton frequency, 288
synchrotron, 358

T
tangent, 647
tangent fiber, 45
tangent space, 24, 41, 647
temperature, of CMB, 608
temporal gauge, 292
tensor algebra, 21
tensor field, 246
tensor product, 20, 180
tensor space, 20
tensor, antisymmetric, 383
tensor, symmetric, 383
tensorial virial theorem, 71
tensors, 649
test body, 228
test particle, 444
tetrad, 656
theory of cosmological perturbations, 620
thermal history, 606
thermodynamical limit, 97
thermodynamical temperature, 98
thermodynamics of black holes, 505
thin layer, 437
Thomas frequency, 305
Thomas precession, 243
Thomas rotation, 187, 244
Thomson cross section, 359
Thomson formula, 236
Thomson model, 364
Thomson scattering, 359
thought experiment, 410

three-body Lagrangian, 121
three-body problem, restricted, 121
threshold energy, 233
tidal bulge, 136
tidal effects, 120, 136
tides, 120, 132, 134
time coordinate, 181
time dilation, 186
time machine, 476
time, absolute, 194
time, cosmic, 591
time, flow of, 185
time, proper, 192
timing formula, 537, 561
tired light theory, 603
Tolman formula, 451
Tolman mass, 459, 529
Tolman–Oppenheimer–Volkov equation, 458
topology, 195
torque, 305
torsion, 26, 48, 415, 654
torsion balances, 103, 106
tortoise coordinate, 470, 496, 498, 502
trace extraction operator, 542
trajectory, 190
transformation, Kruskal, 472
transition, quantum–classical, 638
transmission, 333
transmission coefficients, 333, 496
transverse gauge, 292
trapped surface, 477, 489
triad, 44, 49, 129
triangle inequality, 194
true anomaly, 114
TT gauge, 544
two-body problem, relativistic, 534
type-Ia supernova, 600

U
uniqueness theorem, of Israel, 506
universality of free fall, 102
universe, 591
universe, Einstein static, 602
universe, Einstein–de Sitter, 607
universe, observable, 591
Unruh effect, 501
Uranus, 126

V
vacuum, 263
vacuum breakdown, 499
vacuum Einstein equations, 507
vacuum energy, 610
vacuum permeability, 175
vacuum permittivity, 175
vacuum state, 638
vacuum, quantum, 432
variables, Bardeen, 621
variables, gauge-invariant, 542
variational derivative, 74, 258
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variational principle, 88
vector field, 45, 648
vector gauge, 543
vector mode, 309
vector product, 27, 48, 385
vector, light-like, 181
vector, null, 181
vector, space-like, 181
vector, time-like, 181
vectors, 20
velocity, 24
velocity extensions, 441
velocity, areal, 111
vernal equinox, 114
Vessot–Levine experiment, 412
virial theorem, scalar, 70
virial theorem, tensorial, 71
virial theorems, 70
Vlasov equation, 95
vorticity, 630
Vulcan, 127

W
wave 4-vector, 231
wave equation, 157
wave fronts, 158, 326, 335
wave packet, 158, 293, 326

wave vector, 158, 207
wave, energy–momentum tensor of, 323
wavelength, 158
weak energy condition, 505
weak equivalence principle, 271, 273
Weber bars, 547
wedge product, 383
weight, 101
Weyl postulate, 598, 605
Weyl tensor, 421
white dwarf, 461
white hole, 473, 475
Wigner rotation, 244
WKB approximation, 497
world line, 12, 190, 228, 239
wormhole, 476
Wronskian, 262
Wronskian theorem, 499

Y
Young slits, 162

Z
Zeeman effect, anomalous, 305
Zerilli equations, 498
zeroth law, 505
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